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Abstract: Emission of nitric oxide represents a serious environmental problem since it contributes
to the formation of acid rain and photochemical smog. Potassium-modified Co-Mn-Al mixed
oxide is an effective catalyst for NO decomposition. However, there are problems related to
the thermal instability of potassium species and a high content of toxic and expensive cobalt.
The reported research aimed to determine whether these shortcomings can be overcome by replacing
cobalt with magnesium. Therefore, a series of Co-Mg-Mn-Al mixed oxides with different Co/Mg
molar ratio and promoted by various content of potassium was investigated. The catalysts were
thoroughly characterized by atomic absorption spectroscopy (AAS), temperature-programmed
reduction by hydrogen (TPR-H2), temperature-programmed desorption of CO2 (TPD-CO2), X-ray
powder diffraction (XRD), N2 physisorption, species-resolved thermal alkali desorption (SR-TAD),
and tested in direct NO decomposition with and without the addition of oxygen and water vapor.
Partial substitution of magnesium for cobalt did not cause an activity decrease when the optimal
molar ratio of K/Co on the normalized surface area was maintained; it means that the portion of
expensive and toxic cobalt can be successfully replaced by magnesium without any decrease in
catalytic activity.

Keywords: cobalt mixed oxide; alkali promoter; nitric oxide; catalytic decomposition

1. Introduction

Nitrogen oxides (NOx) are not only harmful to the human body but are also responsible for
photochemical smog and acid rain. The largest anthropogenic sources of NOx include exhausts from
motor vehicles and fuel combustion. Other sources of NOx emissions are also chemical processes in
which these oxides are present. In the majority of waste gases, more than 95% of NOx emissions consist
of NO. Nitric acid production is an example where NOx emissions are accompanied by N2O ones.
Direct catalytic decomposition of nitrogen oxides into N2 and O2 offers the most ideal route for NOx

removal from waste gases and is both versatile and economic because no reductants (such as NH3, urea,
CO, or hydrocarbons) are required. However, the catalytic activities of catalysts described in literature
until now are insufficient, particularly in the presence of other gases such as O2 and CO2. For this
reason, studies of catalytic decomposition of NO worldwide are still in the stage of basic laboratory
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research focused on understanding the mechanisms of catalysts operation in ideal or mild conditions
not usable in any real application. However, currently it seems that the most probable application is in
stationary combustion processes because the studied catalysts are active at temperatures higher than
600 ◦C and such high temperatures can be achieved in such processes without additional heating.

Recent progress in catalytic NO decomposition was summarized by Haneda [1], where a historical
perspective on catalytic NO decomposition is given. The main piece of knowledge is that for metal
oxide catalysts, the overall NO decomposition rate is closely dependent on the rate of O2 desorption
step [2]. Therefore, to develop highly active catalysts for NO decomposition, the creation of catalytically
active sites that effectively promote the O2 desorption step is of critical importance.

In the review [1], many kinds of metal oxides-based catalysts have been reported to catalyze
direct NO decomposition. N2 and O2 are always formed at steady state with the O2/N2 molar ratio
of approximately unity and the formation of N2O is almost negligible in NO decomposition over
nonnoble metal oxide-based catalysts. The alkali or alkaline earth metal-doped cobalt oxides represent
one group of effective catalysts. In some works [3,4], the presence of residual Na was important
to achieve high NO conversion. This interesting effect of residual Na was reported in [5] and later
also confirmed by other authors. Haneda et al. [3,4] studied the additive effect of alkali metals on
the activity of Co3O4 for NO decomposition and they found that the catalytic activity changed with
increasing M/Co atomic ratio and the optimal ratio was around 0.02–0.05. The mechanism of alkali and
alkaline earth metals promotion has been proposed to be based on structural or electronic effects [6,7].
Since the addition of alkali or alkaline earth metals into Al2O3, SiO2, and ZrO2 did not increase NO
decomposition activity, the interaction between Co3O4 and alkali or alkaline earth metal must be an
essential factor [4,8]. Potassium deposited on cobalt oxide surface was investigated in [3,9]. It was
concluded that the role of potassium was (i) to form the NO2

− intermediate and (ii) to keep the cobalt
oxide surface partially oxidized so that it can act as an active site for the reaction of the NO2

− species.
The beneficial effect of potassium addition is strongly related to its location in the catalysts [10].

Calcined layered double hydroxides (LDH, hydrotalcites) are potentially useful as catalysts
since they have a high specific surface area and a basic character. In our previous works, the
alkali-promoted Co-Mn-Al mixed oxides derived from hydrotalcite precursors were highly active for
N2O decomposition [11–13] and in recent years, similar materials were also proven to be effective
catalysts in the NO decomposition reaction [14–16]. However, the long-term activity of these catalysts
was compromised by the low stability of alkali metals at reaction temperatures (560–700 ◦C) caused by
their desorption and redistribution. The stabilization of alkali metals can be achieved by adjusting
the chemical composition and/or preparation procedure of the catalyst. In [17], the enhancement of
potassium stability in the composite ferrite catalyst for ethylbenzene dehydrogenation was achieved
by phase-selective doping with Cr, Mn, Ce, Al, and Mg. According to the type of dopant, the additive
can increase or decrease potassium stability, thus phase-specific doping appears to be a critical factor
in preventing potassium volatilization. In paper [18], it was found that the addition of transition
metal elements to the oxide lattice can inhibit the loss of potassium during diesel soot combustion
and in [19], it was reported that introduction of alien metal ions, in specific cases, can substantially
improve the stability of potassium ferrites. The principal location of potassium remained unchanged
by the introduction of the dopants, while the type of stabilization depended on the distribution and
placement of the dopants in the catalyst material [20]. Two ways of K desorption prevention were
reported: (i) incorporation of the K promoter into the structure, which slows down potassium diffusion
from the bulk towards the surface by steric hindrance, and (ii) locating the K promoter at the basal
planes, favoring the cationic state of the potassium, which inhibits the probability of potassium atoms
leaving the surface via work function increase [19,21].

The catalytic activity of transition metal oxides is closely connected with the valence states of the
cations and their coordination in the catalyst matrix. An exemplary study devoted to the elucidation
of activities of specific active centers in cobalt spinels for N2O decomposition was presented by
Stelmachowski et al. [22], who assigned the intrinsic activity to octahedral cobalt regardless of the
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nature of the cocation. Catalytic performance of the Co-containing metal oxide not only depends on
the cobalt content, its oxidation state(s), and location either in octahedral or tetrahedral interstitials but
could also be influenced by the Mg/Al ratio [23]. Magnesium and aluminum presence often increases
the specific surface area of catalysts [24–26], which plays an important role in the activity of catalysts in
many reactions [26,27]. The structural effects of substituting components were also published in [22],
where distortion of the spinel structure by the presence of alien cations is reflected in the increase of its
reactivity. In addition to that, the cobalt-magnesium interaction was found to be more beneficial to the
redox properties of free Co3O4 than the cobalt–alumina interaction [28]. Magnesium oxide can also
be used as a support for cobalt catalysts, resulting in systems with an improved activity due to the
magnesium–cobalt interaction [29,30].

The direct catalytic decomposition of NO proceeds via the following generalized steps [31]:
adsorption of NO, reaction of adsorbed NO on the surface leading to the formation of NOx adspecies,
decomposition of NOx adspecies, desorption of N2, and desorption of O2. Adsorption of NO has to
proceed first to initiate the reaction. As NO molecules can be classified as weak or moderately strong
Lewis acids, it would be expected to bind at surface basic sites. The key role of basic sites formed
due to the presence of alkali metals in NO adsorption as well as increased storage of NOx species
when alkali or alkali earth metals were introduced to the catalyst surface were confirmed by several
authors [32–35].

For this reason, K/Co-Mg-Mn-Al mixed oxides were prepared and applied as catalysts for NO
decomposition. The aim of this work was to evaluate the possibility of substituting the cheaper
and nature-friendly Mg for the toxic and expensive Co while maintaining the catalyst’s activity and
simultaneously studying the effect of magnesium on potassium stability. The effects of changing
magnesium content while keeping a constant content of potassium and vice versa were studied.
The expected advantages of magnesium incorporation were an increase in specific surface area, basicity,
and potassium stability.

2. Results

2.1. Characterization of Catalysts

2.1.1. Chemical Composition and Specific Surface Area

The chemical composition of catalysts calcined at 700 ◦C was determined by AAS (Table 1).
Real (residual) and theoretical (nominal) content of constituent elements were nearly the same.
For the 2K/Mgi catalysts (where i denotes the Mg molar content), except for the 2K/Mg2.2 sample
(sample with the highest Mg molar content), some small differences in potassium content ranging
from 1.4 to 1.8 wt. % of potassium were observed despite having constant nominal K content of
2 wt. %. Potassium content for 2K/Mg2.2 was 2.3 wt. % K. Lower-than-nominal potassium content
seems reasonable since potassium vaporization was expected [15,36]. Higher K content (2.3 wt. %)
can be caused by a combination of several factors: experimental error during sample preparation
and potassium determination and non-homogeneity of samples probably caused by an alkali metal
migration process during calcination [36]. No relation between increasing Mg content and residual
potassium content was found.

With increasing Mg substitution for Co, an increase of specific surface area occurred. For catalysts
containing no potassium, SBET ranged from 36 to 63 m2 g−1 (Table 1). A slight decrease in specific
surface area caused by potassium modification was observed. Specific surface area was also dependent
on K content (Figure 1) and this dependence is evident for the aK/Mg2.2 series (where a denotes
potassium content in wt. %) and especially for the aK/Mg1 catalysts. An increase in specific surface
area was observed with increasing K content up to around 1.5 wt. % of K. When K content became
higher than 1.5 wt. %, specific surface area started decreasing.
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Table 1. Chemical composition and specific surface area of K/Co-Mg-Mn-Al mixed oxide catalysts.

Sample Metal Content (wt. %) Real Molar Ratio Theoretical Molar Ratio SBET (m2 g−1) 1

K Co Mg Mn Al Co:Mg:Mn:Al Co:Mg:Mn:Al Fresh Used

0K/Mg0 0.0 52.1 – 11.7 – 4:0:1:- 4:0:1:1 36 –
0K/Mg0.1 – – – – – – 3.9:0.1:1:1 39 –
0K/Mg0.2 – – – – – – 3.8:0.2:1:1 41 –
0K/Mg0.5 – – – – – – 3.5:0.5:1:1 41 –
0K/Mg1 0.0 42.4 5.3 12.5 6.0 3:0.9:0.9:1 3:1:1:1 44 38

0K/Mg1.6 – – – – – – 2.4:1.6:1:1 50 –
0K/Mg2.2 – – – – – – 1.8:2.2:1:1 63 –

2K/Mg0 1.9 50.5 0.0 12.0 6.0 4:0:1:1 4:0:1:1 30 –
2K/Mg0.1 1.5 50.8 0.5 11.4 5.5 3.9:0.1:0.9:0.9 3.9:0.1:1:1 38 –
2K/Mg0.2 1.8 50.7 1.1 11.9 6.5 3.8:0.2:1:1.1 3.8:0.2:1:1 37 26
2K/Mg0.5 1.6 45.5 2.5 11.7 6.3 3.5:0.5:1:1.1 3.5:0.5:1:1 41 25
2K/Mg1 1.5 42.0 5.3 12.5 6.7 3:0.9:1:1 3:1:1:1 40 29

2K/Mg1.6 1.4 35.1 8.4 13.1 6.4 2.4:1.4:1:1 2.4:1.6:1:1 44 –
2K/Mg2.2 2.3 27.4 11.9 13.0 6.5 1.8:1.9:0.9:0.9 1.8:2.2:1:1 52 43

1K/Mg1 0.9 42.8 5.2 12.2 6.3 3:0.9:0:9:1 3:1:1:1 29 28
1.5K/Mg1 1.3 42.3 5.2 12.4 6.2 3:0.9:0:9:1 3:1:1:1 36 31
2.5K/Mg1 2.2 41.4 5.2 12.1 6.0 3:0.9:0:9:0.9 3:1:1:1 38 34
3K/Mg1 2.6 41.1 5.1 11.8 6.0 3:0.9:0:9:0.9 3:1:1:1 31 28
4K/Mg1 2.7 39.1 5.1 11.7 6.1 3:0.9:1:1 3:1:1:1 30 27

1K/Mg2.2 0.6 28.4 12.7 13.7 7.2 1.8:2:0.9:1 1.8:2.2:1:1 59 –
1.5K/Mg2.2 0.9 28.0 12.5 13.6 7.3 1.8:1.9:0.9:1 1.8:2.2:1:1 60 –
4K/Mg2.2 2.2 27.7 12.2 13.1 7.0 1.8:1.9:0.9:1 1.8:2.2:1:1 55 –

1 AutoChem evaluation by the single-point BET equation, SBET = (CSA*6.023 × 1023)/(22.414 × 1018 (S + Y)), where
CSA is adsorbate molecular cross-sectional area (0.162 nm2), S is slope (g/cm3), and Y is Y-intercept (g/cm3).
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Figure 1. Dependence of specific surface area (SBET) on real K content in aK/Mg1 and aK/Mg2.2 catalysts.

A decrease in specific surface area of used catalysts (catalysts after the NO decomposition reaction)
in comparison with fresh catalysts was observed (Figure 2). Nevertheless, the trend of specific surface
area increase with increasing Mg content was preserved even after the reaction.
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Figure 2. Dependence of SBET on Mg/Co molar ratio for 2K/Mgi catalysts before and after reaction of
NO decomposition.

2.1.2. Phase Composition

XRD patterns of catalysts belonging to the 0K/Mgi series are shown in Figure 3. Two different
spinel-like phases (S) (Figure 3a) marked as spinel A and B (Figure 3b), Mn2O3 (M) (PDF-2 card
No. 01-071-0636), and periclase (P) (PDF-2 card No. 01-080-4191) were observed. However, the exact
determination of spinel type/composition was impossible because of many possible existing spinel
structures having similar structural parameters. For example, in [26], MgCoMnO4, MnCo2Ox, and
CoMn2O4 were found in XRD patterns of CoMnMgAl mixed oxides calcined at 700 ◦C, where Mg
and Al were substituted with cobalt and manganese. Similarly, the presence of CoAl2O4, Co2AlO4,
Co3O4, and MgAl2O4 was published in [25]. The 2θ positions of (400) diffraction in the spinel
end-members (Al0.54Mg0.51Mn1.95O4 (PDF No. 01-079-6007), MnCo2O4 (PDF No. 00-023-1237),
MnAl2O4 (PDF No. 00-029-0880), Al2MgO4 (PDF No. 01-070-5187), MgCo2O4 (PDF No. 01-082-9882),
CoAl2O4 (PDF No. 00-044-0160), and Co3O4 (PDF No. 01-073-1701) were taken from the ICPDF
database to provide approximate identification of the type of spinel in the catalyst samples (Figure 4).
No strict assignment to specific spinel type was obvious. When the sample contained no magnesium,
only spinel A was present. Spinel B occurred just after magnesium substitution and with increasing
magnesium content the position of spinel B continually moved to lower 2θ angles indicating an increase
of the lattice parameter (Figure 3b and Figure S1a). Contrary to that, the position of (400) reflection of
spinel A shifted to higher angles and back (Figure 3b), reflecting different changes of the shape and
size of the unit cell. Simultaneously, (400) peak intensity decreased for spinel A and increased for
spinel B. Since the XRD peak intensities depend on the position of atoms in the spinel unit cell, it can
be assumed that incorporation of Mg into spinel B and redistribution of Co, Mn, and Al took place.
Coherent domain size, Lc, decreased for spinel B with increasing Mg/Co molar ratio (Figure S1b) and
also with increasing specific surface area (Figure S1c) while similar dependence was not observed for
spinel A. The findings also confirm that magnesium, which is responsible for the surface area increase,
was mainly incorporated into spinel B. The intensity ratio I (220/440) of diffractions (220) and (440) was
found to be sensitive to the cation distribution in the tetrahedral and octahedral sites [37–39] (Figure S2).
Continuous decrease of I (220/440) with increasing Mg content in the 0K/Mgi series (Figure S2a) for
both spinels (A and B) confirms a gradual rearrangement of the atoms in the spinel unit cell influenced
by magnesium substitution. The same trend was also observed for the other two series (2K/Mgi and
4K/Mgi) (Figure S2b,c).
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Figure 4. The 2θ positions of (400) diffractions in spinel A and B in the aK/Mgi catalysts
and standard spinel end-members. Legend: circle–0K/Mgi, square–2K/Mgi, triangle–4K/Mgi,
1—Al0.54Mg0.51Mn1.95O4 (PDF No. 01-079-6007), 2—MnCo2O4 (PDF No. 00-023-1237), 3—MnAl2O4

(PDF No. 00-029-0880), 4—Al2MgO4 (PDF No. 01-070-5187), 5—MgCo2O4 (PDF No. 01-082-9882),
6—CoAl2O4 (PDF No. 00-044-0160), and 7—Co3O4 (PDF No. 01-073-1701).

For samples containing potassium, the reflections belonging to potassium manganese oxide,
attributed to K2Mn4O8 (PDF-2, card No. 00-016-0205) and/or K1.39Mn3O6 (PDF-2, card No. 01-080-7317)
were found (Figure 5), which is in accordance with the results reported in [15]. The phases containing
potassium and cobalt together were not identified.

The influence of potassium on the XRD patterns of aK/Mgi catalysts is demonstrated on the 2θ
position of diffraction (400) in Figure 4. The position of spinel B shifted to higher diffraction angles after
the addition of potassium ranging from 0 to 2 wt. % of K. However, subsequent increase of potassium
content above 2 wt. % did not cause any further shift.

The (400) diffraction line position of spinel A was not affected by potassium addition, except
for the aK/Mg2.2 series, which means that potassium preferentially affected the spinel B structure.
Regarding the (220)/(440) intensity ratio sensitivity to the cation distribution, no effect of varying
potassium content was observed (Figure S2) for both spinels.
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2.1.3. TPR-H2

TPR-H2 was used to characterize the reducibility of the prepared catalysts (Table 2). Changes in
electronic properties combined with structural characteristics of the material can be evaluated from
TPR-H2 and these properties are expected to influence the catalytic activity of investigated samples.
The presence of potassium in the samples does not allow performing the TPR-H2 analysis at high
temperatures due to potassium evaporation. For this reason, TPR measurement was performed within
the temperature range of 40–600 ◦C and the subsequent isothermal step at 600 ◦C for 25 min, giving
information about reducible species at a reaction temperature of 600 ◦C. Hydrogen consumption
was calculated for the entire measured temperature region including the isothermal period and
ranges from 3.5 to 6.9 mmol H2 per gram of sample. H2 consumption decreased with increasing Mg
molar content, confirming that reducible cobalt species were replaced by nonreducible magnesium
(Figure S3a). The effect of potassium on H2 consumption was not almost discernible. Only a very gentle
increase of reducible species with increasing potassium amount was observed, with the exception
of the 4K/Mg1 sample, which possessed a markedly higher amount of species reducible in the
low-temperature region (Table 2, Figure S3b).

It is evident from the TPR profiles (Figure S4) that in most cases, the reduction of samples
proceeded in two main regions: at 200–500 ◦C and above 500 ◦C. In some cases, a change in the trend
of the first temperature peak was observed. The reduction of cobalt oxides takes place at similar
temperatures as the reduction of manganese oxides [40], which results in overlapping reduction peaks
of both compounds in their combined spinels [41]. In the low-temperature region, the reduction of
Co3+

→ Co2+ followed by the reduction of Co2+
→ Co0 is accompanied by the reduction of Mn4+

species and Mn3+ to Mn2+. The high-temperature peak (>500 ◦C) was attributed to the reduction of Co
ions surrounded by Al ions in a spinel-like phase [12] and the Mn3+ to Mn2+ reduction, which can take
place in both temperature regions. Magnesium oxide is not supposed to be reduced within the studied
temperature region [42].

The modification of Co-Mn-Al mixed oxides by magnesium did not cause significant changes
in the shapes of TPR-H2 profiles (Figure S4a). However, for the catalyst with the highest Mg
content—0K/Mg2.2, the first peak was lowered by half, which suggests that the 0K/Mg2.2 sample
phase composition differs significantly from the rest of the samples, which is in accordance with the
XRD findings. From the TPR-H2 patterns of 2K/Mgi series (Figure S4b), it is evident that the reduction
profiles are similar, differing only slightly in low-temperature shoulder progress.
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Table 2. Results of temperature-programmed reduction by hydrogen (TPR-H2) and
temperature-programmed desorption of CO2 (TPD-CO2) analysis of K/Co-Mg-Mn-Al mixed
oxide catalysts.

Sample TPR-H2 (mmol g−1) Tmax (◦C) 1 TPD-CO2 (mmol g−1) Tmax (◦C) 2

40–600 ◦C 1 28–650 ◦C

0K/Mg0 5.8 206, 450 0.2 –
0K/Mg0.1 6.9 435 0.3 –
0K/Mg0.2 – – – –
0K/Mg0.5 5.5 454 0.3 –
0K/Mg1 5.1 461 0.8 –

0K/Mg1.6 – – – –
0K/Mg2.2 3.5 452 1.0 –

2K/Mg0 6.1 317, 398 0.9 404
2K/Mg0.1 6.0 164, 423 0.7 426
2K/Mg0.2 6.0 143, 404 1.2 430
2K/Mg0.5 5.1 437 1.0 422
2K/Mg1 5.1 445 1.9 445

2K/Mg1.6 4.6 433 1.4 416
2K/Mg2.2 4.1 437 2.1 366

1K/Mg1 5.2 145, 449 0.6 370
1.5K/Mg1 5.3 142, 432 0.9 391
2.5K/Mg1 5.4 153, 434 1.5 420
3K/Mg1 5.5 420 1.1 485
4K/Mg1 6.3 169, 303, 390 2.4 363, >600

1K/Mg2.2 4.0 251, 466 0.9 –
1.5K/Mg2.2 4.1 213, 450 1.7 –
4K/Mg2.2 4.2 212, 419 2.2 391

1 Temperature maximum from TPR-H2 measurement; 2 temperature of the high-temperature peak from TPD-CO2.

The TPR-H2 graphical results for the other two groups of catalysts with the same magnesium
molar content (Mg = 1 or 2.2 in aK/Co4-iMgiMnAlOx) but different potassium content are shown in
Figure S4c,d. In both cases, the decrease in the reduction temperature of the low-temperature peak
with increasing K content was observed (Figure 6). The same trend—a slight shift of reduction peaks to
lower temperatures with increasing K content was also found previously for the Co4MnAlOx spinel [12].
In that study, TPR-H2 was measured up to 1000 ◦C and a broadening of the high-temperature peak,
along with a new peak formation at around 580–620 ◦C and a new peak (shoulder) formation in the
low-temperature region (<300 ◦C) were observed with increasing K content.

A new reduction peak around 300 ◦C, sometimes manifesting itself only as a shoulder, was clearly
visible in the low-temperature region for the samples with a high content of potassium: 2.5K/Mg1,
3K/Mg1, and 4K/Mg1 (samples from the aK/Mg1 catalyst group) (Figure S4c). In the case of the
4K/Mg1 sample, even an additional peak at around 150 ◦C was observed. The reduction peaks in
low temperatures—below 250 ◦C—may be attributed to the transformation of a CoO2-like phase to a
Co3O4-like phase [43]. For catalysts with Mg molar content of 2.2 (the aK/Mg2.2 catalyst group), the
formation of the low-temperature peak with increasing K content was not observed (Figure S4d); this
can be explained by the real (residual) K content in the catalysts, which is lower than in the aK/Mgi
series (Table 1). The assignment of the low-temperature shoulder is not fully clear, and different
explanations were published in literature [44,45].
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2.1.4. TPD-CO2

The basicity of a deNO catalyst is an important factor influencing chemical reactivity towards
NO because of the acidic nature of the NO molecule [14,46] and is also necessary for NO adsorption
according to the proposed reaction mechanism pathways [31]. Three major types of basic sites can
exist on a metal oxide catalyst surface—weak basic sites represented by OH groups on the catalyst
surface, medium basic sites consisting of oxygen in Me2+–O2− and Me3+–O2− pairs, and strong basic
sites corresponding to isolated O2− anions [47]. TPD-CO2 profiles are shown in Figure 7a–d. Similar to
the TPR-H2 measurement, the TPD-CO2 measurement was also terminated at 650 ◦C in order to avoid
potassium desorption and detector damage.

For samples without potassium (Figure 7a), only one main peak assigned to weak and/or medium
basic site was observable. The number and strength of these sites increased with increasing Mg content.
Increased number of basic sites, together with their higher strength, was expected after the addition
of an alkaline earth component in accordance with published results [48]. Consecutive potassium
addition also influenced the number as well as the type of basic sites, as indicated by TPD-CO2 profile
changes (Figure 7b). The number of basic sites for catalysts without potassium is much lower than
for K-promoted samples (Table 2, Figure 7a). For K-promoted samples, new desorption peaks above
200 ◦C, dependent on Mg content, appeared (Figure 7b). The similarities of the types of basic sites
defined by Tmax at around 350–400 ◦C were recognized for border cases of 2K/Mgi series–the 2K/Mg0
and 2K/Mg2.2 catalysts. However, these two materials differ in the number of surface basic sites.
After careful inspection of the 2K/Mg2.2 catalyst profile, it can be supposed that another maximum at
around 460 ◦C also exists, which was also recognized in the profiles of the rest of the samples of the
2K/Mgi series. The shape of the TPD-CO2 profiles (Figure 7c,d) was dependent on the K content for
all studied catalysts. A second desorption peak appeared from approximately 1.5 wt. % nominal K
content and further progress (new high-temperature maxima) was observed with a gradual increase
of K content. From the dependence of the number of basic sites on K content, it is evident that CO2

consumption increased with increasing K content (Figure 8a) regardless of the type of basic sites.
The number of specific types of sites (defined by the temperature of desorption) was linearly dependent
on the total number of basic sites (Figure 8b). The same trend was observed for the samples without
magnesium [12,15].
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2.1.5. Species-Resolved Thermal Alkali Desorption

The stability of potassium on the catalyst surface was studied by species-resolved thermal
alkali desorption (SR-TAD). Four samples with the same nominal potassium content and different
magnesium content (2K/Mgi) were tested. The maximum SR-TAD measurement temperatures are
different for each sample since the used experimental set up did not allow fixing the temperature to a
constant value. In general, the K–surface bond is broken during the thermal desorption experiment.
Thus, the SR-TAD profiles provide information on the surface state of the promoter. Potassium
desorption from fresh samples can be observed in vacuum already at temperatures of 400 ◦C and
higher. Monotonic curves of the desorption signal as a function of temperature were observed for all
the tested samples (Figure 9). It means that loosely bonded potassium species were already removed
from the surface. The exponential components of the signal were always dominant. This indicates that
the potassium promoter predominantly leaves the surface through a single energy barrier.Catalysts 2020, 10, x FOR PEER REVIEW 12 of 24 
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Figure 9. Atomic K desorption flux as a function of temperature.

The intensity of the K atomic desorption flux as a function of the temperature obtained during
heating and cooling was almost the same or slightly higher for all samples, with the exception of
the 2K/Mg0.2 catalyst (not shown), where substantially higher desorption flux during cooling than
during the heating phase was observed. Such changes in the signal suggest that potassium was
accumulated and segregated on the surface during the heating. From shapes of the recorded curves,
it can be inferred that magnesium content has no direct effect on potassium desorption and, therefore,
potassium stabilization on the catalysts’ surface.

The desorption activation energies for fresh samples determined from the linear parts of the
corresponding Arrhenius-like plots during heating, assuming first-order kinetics, are given in Table 3.
The activation energies of desorption correspond to the strength of a surface chemical bond, which
breaks during the desorption process and can be used as a suitable parameter for the evaluation
of K surface stability [10]. No direct dependence between values of Ea and Mg/Co molar ratio in
the catalyst was observed. Although the K desorption results clearly show that potassium became
mobile above 500 ◦C, it has to be remembered that the experiments are performed under high vacuum.
The potassium desorption flux will be attenuated by the surrounding gas. Indeed, it was observed that
the potassium desorption signals decrease with the pressure as 1/p [49].
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Table 3. Activation energies of K desorption for selected samples.

Sample Activation Energy of Potassium Desorption (eV)

2K/Mg0 2.1
2K/Mg0.2 1.4
2K/Mg1.6 1.8
2K/Mg2.2 1.8

2.2. NO Decomposition

The effect of K and Mg content on the catalytic activity of K-promoted Co-Mg-Mn-Al mixed
oxides for direct NO decomposition was investigated for NO diluted in an inert atmosphere as well as
in the presence of oxygen and water vapor. Apart from catalyst activity and selectivity, characteristics
related to stability and the effect of pressure were also evaluated.

2.2.1. Catalytic Activity in Inert Conditions

In our previous work, the effect of calcination temperature, calcination time, potassium content,
and the long-term stability of K-promoted Co-Mn-Al mixed oxide in direct NO decomposition was
investigated [15]. Stable performance of the catalyst was achieved after 20 h and was maintained
for 80 h [15]. For this reason, a stabilization period of at least 20 h was also maintained in this
study for all catalysts before measurements of the temperature dependence of NO conversion were
performed. As expected from previously reported results [14,15,31], the samples without potassium
were inactive at given reaction conditions, and thus, only the results of K-promoted samples are shown.
During catalytic tests, the presence of possible reaction products—N2O and NO2—was checked, and
no formation of N2O or NO2 was observed for any sample.

During catalytic measurements, the tested samples showed stable performance and repeated
cooling and heating procedures did not influence the obtained NO conversions. The effect of magnesium
content on deNO catalyst activity is shown in Figure 10a (for the catalysts with nominal potassium
content of 2 wt. %). The sample without Mg was the least active from this group of catalysts; the
highest activity was achieved over 2K/Mg1, 2K/Mg0.5, and 2K/Mg0.2 samples (Figure 10a,b).
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Figure 10. (a) Temperature dependence of NO conversion over the 2K/Mgi group of catalysts
and (b) effect of Mg/Co molar ratio on NO conversion over the 2K/Mgi group of catalysts.
Conditions: 1000 ppm NO balanced by N2 and gas hourly space velocity (GHSV) = 6 L g−1 h−1.
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The temperature dependence of NO conversion over the aK/Mg1 and aK/Mg2.2 groups of catalysts,
which means catalysts with different wt. % of K (nominal potassium content) and constant content of
magnesium, is shown in Figure 11a,b. NO conversion increased with increasing nominal content of
potassium up to 2 wt. % (Figure 11a,b); further increase of K content led to a decrease of catalytic activity.
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Figure 11. Temperature dependence of NO decomposition over: (a) the aK/Mg1 group of catalyst and
(b) the aK/Mg2.2 group of catalysts. Conditions: 1000 ppm NO balanced by N2 and GHSV = 6 L g−1 h−1.

2.2.2. Catalytic Activity in the Presence of Oxygen and Water Vapor

The effect of 2 mol. % oxygen in the inlet reaction mixture on direct NO decomposition was also
studied (Figure 12a). It is evident that oxygen had a significant inhibitive influence on the activity of all
tested samples and the decrease of NO conversion was around 77–90% from the original value in inert
gas. Samples that were more active in inert conditions were also more active in the presence of oxygen.
Other authors also reported a similar negative effect of oxygen on various types of catalysts [8,31,50,51].
Competitive adsorption of NO and oxygen was suggested based on possible NO decomposition
mechanism [31]. After removing oxygen from the inlet gas mixture, the activity of catalysts was
restored. This means that the oxygen inhibition effect is reversible (Figure S5).

The effect of H2O on deNO catalytic activity was tested over the 2K/Mg1 catalyst (Figure 12b).
The NO conversion in the gas mixture of 1000 ppm NO + 2 mol. % H2O balanced by N2 decreased
by half in comparison to inert conditions. It is evident that oxygen had a more significant inhibitive
effect on catalytic activity than water vapor. Similar to the effect of oxygen, the effect of water vapor
was reversible. Relatively weak inhibition by water in comparison to oxygen was also observed for
perovskite type catalysts [52], where it was proposed that hydroxyls on the surface influence the
character of the oxygen surface species and, therefore, interfere in the formation of intermediates
involving the N–N bond, which is believed to lead to N2 formation.
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Figure 12. Dependence of NO decomposition over: (a) the aK/Mgi group of catalysts in inert and
oxygen atmosphere and (b) the 2K/Mg1 catalyst in inert and wet atmosphere. Conditions: 1000 ppm
NO balanced by N2 or 1000 ppm NO + 2 mol. % O2 balanced by N2 or 1000 ppm NO + 2 mol. % H2O
balanced by N2 and GHSV = 6 L g−1 h−1.

2.2.3. The Effect of Pressure

For reactions performed in gas phase, it is expected that increasing pressure could increase
the rate of reaction. The effect of absolute pressure on NO conversion was tested over 2K/Mg0.2
sample. NO conversion increased with increasing pressure in the reactor (Figure 13). NO conversion
increase of about 15% was observed when pressure was increased about 80 kPa. This probative fact
shows the necessity to ensure pressure stability during laboratory catalytic experimental testing to
guarantee accuracy.
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Figure 13. The dependence of NO conversion on pressure over the 2K/Mg0.2 catalyst.
Conditions: 1000 ppm NO balanced by N2 and GHSV = 6 L g−1 h−1.

3. Discussions

Based on the results obtained in this study, physical–chemical properties of the prepared catalysts
correlate with their activity for NO decomposition. No dependence of NO conversion on nanocrystal
size was observed (not shown). Similarly, dependence of NO activity on specific surface area of the
catalyst was not confirmed. Dependence of NO conversion on (i) basic site strength based on the
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temperature maxima determined from TPD-CO2 (Figure 14a), (ii) the number of basic sites (Figure 14b),
and (iii) sample reducibility based on the TPR-H2 low-temperature maximum (Figure 14c) were
found. The obtained dependencies are in accordance with the results published in [15], where samples
containing no magnesium were tested for NO decomposition. However, in the current work,
the determined relations are characterized by an optimal value, while in [15], after achieving the
highest values, no distinct maximum or even wide plateau was observed, especially in the case of NO
conversion dependence on the number of basic sites. This means that the combination of optimal
basicity and reducibility is essential for obtaining high deNO reactivity. Thus, the generation of
additional basicity (additional basic sites) via incorporation of other alkaline earth species is pointless
in this case. The highest catalytic activity was achieved on catalysts which shared the following
characteristics: (i) the main reduction peak is placed at temperatures ranging from 400 to 445 ◦C, (ii) CO2

desorption proceeds around 420 ◦C, and (iii) the number of basic sites determined for the temperature
of 300–650 ◦C ranges from 0.4 to 0.6 mmol CO2/g. The individual steps of NO decomposition are, in a
simplified way: NO adsorption, reaction of adsorbed NO on the surface leading to the formation of
surface NOx species, decomposition of NOx species, and desorption of N2 and O2. Surface basicity is
closely related to the NO adsorption and oxidation steps, whereas reducibility is connected with the
rate of oxygen desorption from the catalyst surface.
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Figure 14. Dependence of NO conversion on: (a) the high-temperature maximum from TPD-CO2,
(b) the number of basic sites, and (c) the temperature maximum from TPR-H2.

Catalyst reducibility and basicity are dependent on potassium content, as was shown in the
characterization part. For this reason, catalytic activity was correlated with the content of potassium
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(Figure 15a). Obvious dependence of catalytic activity on K content with a maximum at around
1–2 wt. % of K exists. However, potassium itself is supposed to be inactive and the active sites are
formed after the interaction of a transition metal oxide and an alkali metal [3], since alkali metals
govern basic properties and influence redox properties, which are derived from transition metals [25].
In our case, it is assumed that Co-K and/or Co-Mn-K can form surface active sites. Although the
dependence of NO conversion on Co content was not found (Figure 15b), the dependence of NO
conversion on the molar ratio of K/Co (Figure 16a) and K/Mn (not shown) indicate the similar type of
dependences–optimal K/Me ratio (Me means transition metal) has to be fixed for optimal catalytic
performance. From the obtained results, it is impossible to deduce exactly which transition metal
(Co or Mn) represents the active site. In order to explain the individual functions of both metals in
NO decomposition, a detailed examination of a series of catalysts with variable content of cobalt and
manganese are currently under investigation. In this article, only the effect of cobalt substitution is
discussed. An important finding is that the partial substitution of Mg for Co did not cause an activity
decrease induced by the decrease of cobalt content in the catalysts if the optimal molar ratio of K/Co
was maintained. As much as half of the cobalt in K/Co4MnAlOx can be replaced by magnesium
while keeping high activity. The optimal K/Co ratio was found out to be around 0.05 (Figure 16a),
which is in agreement with the results published in [4], where Co3O4 promoted by Na, K, Rb, and
Cs was studied. The necessity of optimal cobalt and potassium interactions can also be illustrated by
the dependence of NO conversion on the normalized cobalt/potassium loading (Figure 16b). It was
previously reported [53] that potassium electron donation effect is enhanced with increasing content
of potassium. However, when a critical content of potassium is reached for a surface area unit,
depolarization effect negatively affects the work function and electronic properties of the catalyst.
In our case, the optimal surface concentration of potassium related to the cobalt surface concentration
seems to be essential.
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Figure 16. Dependence of NO conversion on: (a) real K/Co molar ratio and (b) K/Co molar ratio to
specific surface area.

Potassium desorption activation energies (Ea
des, Table 3) correlate with the deNO reactivity of

these samples (Figure 10a). A monotonous increase of NO conversion for a given reaction temperature
is observed with the decrease of the Ea

des (Figure S6). Thus, the K-surface interaction strength plays a
crucial role in governing catalytic activity. The potassium surface state is also reflected in the basicity
and reducibility of the samples.

Regardless of the optimal K/Co ratio, it is clear that if partial magnesium substitution did not cause
a decrease in catalyst activity, only a part of initially present cobalt species was directly responsible
for NO decomposition. It is known that transition metal ion coordination exerts a huge influence
on its catalytic activity in various reactions [22,26]. In mixed oxides with spinel structure, elements
are distributed in both octahedral and tetrahedral sites. Concerning applications in catalysis, the
catalytic activity of spinels depends essentially on the degree of tetrahedral sites substitution and the
degree of inversion of the spinel [54]. From octahedral site preference energies of ions, we can assume
that Co3+, Mn4+, Mn3+, and Al3+ ions are predominantly placed in octahedral sites, whereas Mn2+,
Co2+, and Mg2+ ions preferentially occupy tetrahedral sites when incorporated in the spinel matrix.
Mg2+ should thus substitute Co2+ in tetrahedral positions after cobalt substitution. Similar to the
results of Stelmachowski et al. [22], who studied N2O decomposition, the octahedral cobalt species
seems to also be important for NO decomposition.

4. Materials and Methods

4.1. Catalyst Preparation

The Co-Mg-Mn-Al LDH precursors with (Co + Mg):Mn:Al molar ratio of 4:1:1 were prepared by
coprecipitation of the corresponding nitrates (Co(NO3)2·6 H2O, Mn(NO3)2·4 H2O, Al(NO3)3·9 H2O,
and Mg(NO3)2·6 H2O) in Na2CO3/NaOH solution at 30 ◦C and pH 10. The washed and dried products
were calcined for 4 h at 670 or 700 ◦C in air. The prepared mixed oxides were crushed and sieved to
obtain a fraction with a particle size of 0.016–0.315 mm. Samples calcined at 700 ◦C were directly used
for catalytic measurements. These catalysts were examined as reference samples.

Further, potassium was used as a promoter for modification of the prepared Co-Mg-Mn-Al mixed
oxides calcined at 670 ◦C. The modification was done by impregnation with KNO3 solution by the
pore-filling method. KNO3 solution with different concentrations was added to Co-Mg-Mn-Al mixed
oxide to achieve the desired (nominal) K content; the mixture was matured for 1 h. After drying at
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105 ◦C for 4 h, the impregnated samples were calcined at 700 ◦C for 4 h and sieved to 0.016–0.315 mm
fraction. The samples were labeled according to their nominal (intended) potassium and magnesium
content, e.g., 2K/Mg0.2 means that the Co:Mg:Mn:Al molar ratio in the samples is 3.8:0.2:1:1 and the
mixed oxide catalyst was modified by 2 wt. % of potassium. The list of prepared samples is given
in Table 1. When referencing the series with a constant Mg content and different K content or vice
versa, abbreviations using the symbols a or i are used, e.g., aK/Mgi, and these denote the K wt. % or
Mg molar content in Co4-iMgiMnAlOx, respectively. The x denotes molar fraction of oxygen, which is
unknown but theoretically should approach 8.

4.2. Catalyst Characterization

Chemical composition of the prepared catalysts was determined by atomic absorption spectroscopy
(AAS) using the Analytik Jena ContrAA 700 spectrometer after dissolving approximately 50 mg of the
sample (powder form) in aqua regia acid by heating it to 200 ◦C in the Ethos UP microwave reactor
(Milestone Ethos Up, Sorisole, Italy). Details are given in [15].

Phase composition was determined using the X-ray powder diffraction (XRD) technique. The XRD
patterns were recorded under CoKα radiation (λ1 = 0.1789 nm and λ2 = 0.1793 nm) using the Rigaku
SmartLab diffractometer (Rigaku Corporation, Tokyo, Japan) equipped with the D/teX Ultra 250 detector
(Rigaku Corporation, Tokyo, Japan). Further details are published in [15]. Measurements were carried
out in reflection mode; powdered samples were pressed in a rotational holder; a goniometer with the
Bragg-Brentano geometry in 2θ range from 5◦ to 90◦, step size 0.01◦, was used. The phase composition
was evaluated using the PDF-2 (International Centre for Diffraction Data) database.

Temperature-programmed reduction by hydrogen (TPR-H2) was carried out on the AutoChem
II-2920 system (Micromeritics, Atlanta, GA, USA). Before each TPR-H2 experiment, the sample (0.08 g,
0.160–0.315 mm) was pretreated in Ar (50 mL min−1) at 600 ◦C for 1 h. After cooling to 40 ◦C in the
same atmosphere, a hydrogen–argon mixture (10 mol. % H2/Ar) was used to reduce the sample at a
flow of 50 mL min−1. The temperature was linearly increased at a rate of 20 ◦C min−1 up to 600 ◦C.
After reaching 600 ◦C, the temperature was kept constant for 20 min. Water vapor formed during the
TPR measurements was captured in a cold trap.

Temperature-programmed desorption of CO2 (TPD-CO2) was carried out on the AutoChem
II-2920 system (Micromeritics, Atlanta, GA, USA) connected on-line to a mass spectrometer (Prevac,
Rogów, Poland). Prior to CO2 adsorption, the catalysts (0.08 g, 0.160–0.315 mm) were heated up to
650 ◦C in He for 1 h (flow rate of 50 mL min−1). Then, the sample was cooled and the adsorption of
CO2 (50 mol. % CO2 in He) was performed at 28 ◦C for 1 h. To remove physically adsorbed CO2, the
samples was purified for 105 min in helium stream (50 mL/min) at 28 ◦C. TPD-CO2 was carried out on
catalysts using helium as a carrier gas (50 mL min−1). The desorption of CO2 was induced by heating
(20 ◦C min−1) up to a final temperature of 650 ◦C. The temperature was kept constant for 10 min.

N2 physisorption at 196 ◦C was performed on the AutoChem II-2920 system (Micromeritics,
Atlanta, GA, USA), and the single-point BET method was used for specific surface area evaluation.
Before analysis, each sample was degassed for 1 h at 450 ◦C in He flow of 50 mL min−1. After degassing,
a mixture of 30 mol. % N2 and 70 mol. % He was applied to the sample that was immersed in
liquid nitrogen. The amount of N2 adsorbed at liquid nitrogen temperature was used to calculate the
surface area.

Thermal stability of the potassium promoter was investigated by the species-resolved thermal
alkali desorption (SR-TAD) method. The experiments were carried out in a vacuum apparatus with a
background pressure of 10−7 kPa. The samples in the form of wafers (13 mm diameter and 100 mg
weight) were heated up from room temperature to 560 ◦C in stepwise mode by increasing the electric
current flowing through the heater plate. The desorption flux of potassium atoms was determined
by means of a surface ionization detector. During the measurements, the samples were biased with
a positive potential (+10 V) to quench the thermal emission of electrons. In all measurements, the
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resulting positive current was directly measured with the Keithley 6512 digital electrometer (Keithley,
Cleveland, OH, USA).

4.3. Catalytic Measurement

Catalytic decomposition of NO was performed in a tubular stainless-steel reactor with 6 mm
internal diameter in the temperature range of 560–700 ◦C under atmospheric pressure. When the effect
of pressure was tested, the pressure of 111.325–191.325 kPa was applied. The gradual increase of
pressure was set by a needle valve located downstream of the reactor and upstream of the IR analyzer.
The total flow rate was 49 mL min−1 (NTP). The catalyst bed contained 0.5 g of the catalyst with particle
size of 0.160–0.315 mm leading to gas hourly space velocity (GHSV) of 5.88 L gcat

−1 h−1. The inlet gas
contained 0.1 mol. % NO in nitrogen, while 2 mol. % O2 or 2 mol. % H2O was introduced to some
runs. A temperature-controlled furnace heated the reactor.

Before the first catalytic run, the catalyst was pretreated in an oxygen (20 mol. %)/N2 mixture at
650 ◦C for 1 h. Then the reaction was started and NO catalytic decomposition at 650 ◦C was measured
for 24 h at least. After this period, when stable performance was observed, the test of conversion
dependence on temperature was launched with a cooling rate of 5 ◦C min−1 and the catalyst activity
was measured for 3 h at each temperature (640, 620, 600, 580, and 560 ◦C). Then the stability of catalysts
at 650 ◦C was tested (Figure S7). In case the performance was stable, the catalyst was heated to 700 ◦C.
Finally, NO decomposition in inert gas and in the presence of 2 mol. % oxygen or in the presence of
2 mol. % water vapor at 700 ◦C was measured. NO concentration achieved at steady state was used for
calculation of NO conversion.

The ULTRAMAT 6 infrared analyzer (Siemens, Karlsruhe, Germany) was used for online analysis
of NO. The low-temperature NO2/NO converter (TESO Ltd., Prague, Czech Republic) was connected
to the NO analyzer in bypass mode and was periodically switched to conversion mode in order to
analyze the sum of NOx and thus control the amount of NO2. The presence of N2O was controlled on
FTIR spectrometer (Antaris IGS) (Nicolet, Prague, Czech Republic). The error of NO conversion was
determined by repeated measurements as ±5% (absolute error).

5. Conclusions

From the results obtained in this work, we can conclude that K/Co-Mg-Mn-Al mixed oxides
promoted by potassium are active in direct NO decomposition. However, the presence of oxygen
negatively influenced their catalytic activity. Water vapor inhibition showed a much less significant
effect on catalytic activity than oxygen. The formation of a potassium-manganese oxide phase was
observed with increasing K content in the catalysts with constant Mg content. The presence of
potassium increased catalysts’ basicity and improved reducibility. Both factors are necessary for the
activation of the NO molecule and oxygen desorption and both influenced the catalytic deNO activity.
Substitution of magnesium for cobalt in the spinel structure led to increased specific surface area but
no correlation between specific surface area and NO conversion was observed. Although there was no
direct correlation of K stability with Mg content, a direct correlation between the activation energy
of potassium desorption and deNO catalytic activity was found. Partial substitution of magnesium
for cobalt did not decrease the activity if the optimal molar ratio of K/Co on the unit surface area was
maintained. It means that as much as half of the potentially toxic and expensive cobalt species can be
easily replaced with magnesium without any activity loss.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/931/s1,
Figure S1: Dependence of (a) lattice parameter a on Mg/Co molar ratio, (b) coherent domain size Lc on Mg/Co
molar ratio, and (c) coherent domain size Lc on specific surface area for spinel B; Figure S2: Intensity ratio I
(220)/(440) for (a) 0K/Mgi, (b) 2K/Mgi, and (c) 4K/Mgi; Figure S3: Consumed amount of H2 during TPR-H2 for:
(a) 0K/Mgi and 2K/Mgi catalysts and (b) aK/Mg1 and aK/Mg2.2 catalysts; Figure S4: TPR-H2 of K/Co-Mg-Mn-Al
mixed oxide catalysts: (a) 0K/Mgi catalysts, (b) 2K/Mgi catalysts, (c) aK/Mg1 catalysts, and (d) aK/Mg2.2 catalysts.
Figure S5: Time on stream dependence of NO conversion; Figure S6: Dependence of NO conversion on potassium
desorption activation energies; Figure S7: Catalytic measurement procedure-stability verification.
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