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Abstract: Calcium titanate mixed metal oxides with different contents were used as supports for
NiMo catalyst prepared by the sol–gel method. The activities of these catalysts were tested in
the catalytic decomposition of waste polypropylene (PP) for the synthesis of carbon nanotubes
(CNTs) using a single-stage chemical vapor deposition technique. The physico-chemical properties
of the catalysts and deposited carbon over the catalysts were checked by X-ray diffraction (XRD),
scanning electron microscopy (SEM), temperature-programmed reduction (TPR), N2 physisorption,
transmission electron microscopy (TEM), Raman spectroscopy, and thermogravimetric analysis
(TGA). The TEM and XRD results presented a high dispersion of the active metal species on the
surface of the support materials. The result showed that increasing the support content led to an
increased crystallite size of the catalysts and a resultant reduction in CNTs yield from 44% to 35%.
NiMo-supported CaTiO3 catalyst displayed good catalytic activity and stability toward CNTs growth.
Furthermore, the effect of calcination temperature on the morphology, yield, and quality of CNTs was
also studied, and it was observed that thermal treatment up to 700 ◦C could produce well graphitized,
high-quality, and high-yield CNTs from the waste PP.

Keywords: calcium titanate; NiMo catalyst; catalyst support; carbon nanotubes; waste polypropylene

1. Introduction

Carbon nanotubes (CNTs) are one-dimensional graphene sheets rolled up into seamless tubes
and they are generally classified according to their number of wall(s) as single-walled carbon
nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes
(MWCNTs) [1,2]. CNTs possess excellent properties such as large surface area, high tensile strength and
stiffness, good electrical conductivity, extraordinary aspect ratio, etc. [3–5]. Therefore, such properties
made them attractive materials for different applications as reinforcement in composites, sensors, field
emitters, nano-electronics and energy storage, fillers in membranes for wastewater purifications and
gas separation, etc. [6–11].

Considering the enormous global demand and application of CNTs, it is plausible that the cost of
production is minimized while yield and quality are maximized. Accordingly, ‘sleeping treasure’ waste
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polypropylene (PP) has been widely researched as a key material and as a cheap hydrocarbon feedstock
for CNTs synthesis [12–17]. Recently, Wang et al. [18] synthesized high yield (93%) filamentous
carbon from the catalytic pyrolysis of waste PP over Ni-based catalyst in a two-stage fixed bed reactor
system. In addition, Yao and Wang [19] obtained an improved yield of bamboo-like MWCNTs with
average diameter of 22 nm during the catalytic decomposition of PP, and they revealed that the catalyst
component and preparation method significantly affect the carbon yield. The growing demand and
consumption of PP materials from different sectors such as in packaging, automobile, etc., resulted in
their increased prevalence in the waste stream, since it is expected that most consumed plastics should
also constitute the highest waste given their non-biodegradability. Consequently, PP is estimated to
contribute over 24.3% to the waste stream globally, and it is also the largest class of waste found in
municipal solid wastes (MSW) [20,21].

Amongst the methods employed for CNT production, the chemical vapor deposition (CVD)
technique has emerged as the most suitable high-quality, high-purity, relatively low-cost and
mass-producing technique for CNT production [3,22]. Other than CVD parametric conditions
such as synthesis temperature, pressure, etc., which are necessary for CNT growth, catalyst and catalyst
composition play a very crucial role in providing the desired nanoparticle size, morphology, and
stability [23–25]. Studies have shown that transition metals of Ni, Fe, and Co are appropriate metal
catalysts in CNT growth and nucleation [2,26]. It is also evident that the alloys of these transition metals
such as Ni–Mo [15,22,27], Fe–Mo [28], Co–Mo [8,29], Ni–Al [30], Fe–Ni [31,32], etc., offer improved and
enhanced catalytic performance and selectivity toward high yield and highly graphitized CNTs than
monometallic nanoparticles [33]. Additionally, catalyst support is an essential factor that can strongly
affect the size distribution of catalyst particles and the dispersion of active metal [34]. As reported
in the literature, there is a strong link between the catalyst particle size and CNTs diameter [16,35].
Modekwe et al. [36] in their recent study reported that the catalyst preparation method was influential
on the degree of dispersion of catalyst active metal on the support, which inherently determines the
catalyst particle size and the resultant CNTs diameter. The CNT growth mode, average diameter, quality,
and yield are heavily dependent on the structural and textural properties of the substrate [35]. Therefore,
the choice of catalyst support is very important in the synthesis of CNTs. Additionally, thermally stable
support is efficient in hydrocarbon cracking, especially in minimizing catalyst deactivation [34]. Since
all metallic catalysts are prone to sintering, support components effectively inhibit the coalescence of
catalytic metal nanoparticles and also inhibit subsurface diffusion of the catalyst particles [35,37,38].
Therefore, the support material has to be thermally stable and more resistant to sintering than the active
metal catalyst species [37]. To date, metal oxide supports such as MgO, TiO2, SiO2, CaO, etc., have been
widely studied. In addition, binary oxides such as Al2O3–TiO2 [39], MgO–La2O3 [40], etc., have also
been investigated and were reported to exhibit higher and more sustaining stability than single metal
oxide supports [39,41]. Awadallah et al. [42] investigated the effect of different Ti contents on the Ni
supported alumina–titania binary oxides during the catalytic decomposition of methane to hydrogen.
They reported that superior catalytic activity and stability were obtained with Ni/TiO2 (25%)–Al2O3

relative to the single metal oxide 60%Ni/Al2O3 catalyst. Again, with the Ni/TiO2 (25%)–Al2O3 catalyst,
an improved hydrogen yield of 59% was obtained compared to 42% for the 60%Ni–Al2O3 catalyst after
6.5 h under similar reaction conditions.

CNT growth from hydrocarbons is greatly restricted by deactivation of the catalyst due to coke
formation, and employing a catalyst support with good stability could assist in enhancing the catalytic
performance toward improved yield [43]. Calcium titanate, CaTiO3, is a binary-mixed metal oxide
in a class of perovskite-type catalyst with general formula ABO3 [44–46]. CaTiO3 has been studied
as a good catalyst whose catalytic activity and performance overcome the limitations of TiO2 and
CaO-based heterogeneous catalysts such as reduced thermal stability of the anatase phase of TiO2

at high temperatures, etc. [47–49]. These materials are relatively inexpensive and are found to be
thermally stable when calcined at higher temperatures up to 1000 ◦C, unlike other titanate-mixed
perovskite, which is susceptible to sintering at high temperatures, hence reducing the dispersion of
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active metal, leading to reduced catalytic activity [42,50,51]. For example, Yahya and co-workers [52]
studied and compared the catalytic activities of CaTiO3 and commercial CaO as catalysts during the
catalytic production of biodiesel from waste cooking oil. They found that for 1 wt % CaTiO3 catalyst
loading calcined at 400 ◦C, high biodiesel yield up to 80% was produced compared to commercial
CaO catalyst with 60% biodiesel yield under the same reaction conditions of methanol to oil ratio
of 15:1 at 65 ◦C for 60 min. In a patented study by Baker and Summit [53], the catalytic activity of
CaO–TiO2 was compared with fresh commercial silica–alumina (SiO2–Al2O3) catalyst containing about
13% alumina during the catalytic cracking of light gas oil (East Texas) feed in a fixed bed reactor at a
boiling range of 490–700 ◦F under atmospheric pressure. Their result showed that CaO–TiO2 catalyst
produced a higher yield (24.4 wt %) of more olefinic C5–430 ◦F gasoline with better performance
(with bromine number of about 81 cg./mL) than C5–430 ◦F gasoline yield of 23.0 wt % and 40 cg/mL
bromine number obtained with SiO2–Al2O3 catalyst. Similarly, in the same invention by Baker and
Summit, 5% NiO supported on 95% CaO–TiO2 catalyst was also utilized as a reforming catalyst in the
dehydrogenation of methylcyclopentene feed into the aromatic hydrocarbon containing benzene and
its activity was compared with the conventional reforming catalyst 90% Al2O3–10% MoO3 under 2/1
H2 to hydrocarbon dilution at 200 p.s.i.g. (pounds per square in gauge) and 975 ◦F; their result showed
that more aromatic hydrocarbons at about 28% of feed were produced with 5% NiO–95% CaO–TiO2

catalyst relative to the conventional reforming 90% Al2O3–10% MoO3 catalyst [53].
Although several studies have investigated the activity of NiMo-based catalyst to catalyze the

decomposition of hydrocarbons for CNTs production from single pure and waste polymers, available
studies on NiMo catalysts for the pyrolysis of waste PP using a single-stage CVD technique are rather
limited. Additionally, the yield and quality of as-produced carbon deposited over NiMo-supported
CaTiO3 catalyst using waste PP have not been systematically investigated. Therefore, this study
explored the use of bimetallic NiMo-supported CaTiO3 catalysts in the valorization of waste PP into
CNTs using a single-stage chemical vapor deposition method. The effect of catalyst support loading
and catalyst thermal treatment condition on the yield, quality, and morphology of deposited carbon
were also studied.

2. Results and Discussion

2.1. Catalyst Synthesis and Characterization

The XRD patterns of NiMo/CaTiO3 catalysts with different CaTiO3 content (NMC412 and NMC414)
are shown in Figure 1. The XRD patterns of both NiMo/CaTiO3 catalysts reveal characteristic diffraction
peaks of NiO at 2θ = 37.2◦, 43.2◦, 62.9◦, 75.3◦ and 79.4◦ that correspond to the (1 1 1), (2 0 0), (2 2 0),
(3 1 1), and (2 2 2) planes, respectively, were observed [30,54]. Six resolved peaks attributed to CaTiO3

at 2θ = 33.0◦, 47.5◦, 59.2◦, 62.9◦ 69.54◦, and 75.3◦ were observed with NMC412 catalyst, while NMC414
catalyst shows distinctive peaks at 2θ = 33.2◦, 39.8◦, 41.0◦, 47.6◦, 59.2◦, 62.9◦, 69.4◦, and 75.3◦ [45,55].
For both catalysts, NiO and CaTiO3 crystals could be identified on the catalyst surface. However,
the XRD pattern of NMC414 catalyst show more sharp diffraction peaks for CaTiO3 (2θ = 33.2◦),
signifying the degree of increase in the crystallite size of the catalyst. Similarly, NiO of large particle
size was produced by the NMC414 catalyst. The corresponding average crystallite size of the main
phases present in both catalysts is 9.2 nm and 10.1 nm for NMC412 and 11.4 nm and 14.8 nm for
NMC414. The above result is in support of Scherrer’s equation, which links large metal crystallite sizes
to sharp and intense diffraction peaks, while broad peaks are associated with smaller crystallite-sized
particles [56]. For both catalysts, several overlaps were observed: the diffraction peaks at 2θ = 59.2◦

and 69.4◦ overlap with the metastable phases of CaMoO4. Again, the peaks at 2θ = 37.2◦, 43.2◦ 62.9◦,
and 75.3◦ were observed to overlap with NiMoO4, NiO, and/or CaTiO3 phases. Diffraction peaks at
2θ = 24.3◦, 35.7◦, and 49.4◦ are linked to anatase TiO2. A similar XRD pattern was also reported for
CaTiO3 by Salinas et al. [55], where an anatase TiO2 phase was observed at 2θ = 24.5◦.
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Figure 1. XRD pattern of NiMo/CaTiO3 catalysts: (A) NMC412 and (B) NMC414.

The morphology of both catalysts (NMC412 and NMC414) obtained from TEM are depicted in
Figure 2. The NMC414 catalyst showed a random irregular structure with an estimated mean average
particle diameter of about 16.7 nm, while the NMC412 catalyst displayed an almost well-rounded
platelet-like structure with an estimated mean diameter of about 9 nm; they also depict a good
dispersion of particles on the surface of the support. These results are consistent with the XRD patterns
for the samples. Liu et al. [32] reported similar smaller Ni particle sizes between 8 and 13 nm for
Ni-based catalysts. Therefore, TEM images showed that by increasing the support content in the
catalyst, the diameter of Ni particles also increases; hence, large particle size distribution was observed
on the NMC414 catalyst compared to the NMC412 catalyst.

Temperature-programmed reduction (TPR) investigation was carried out to study the reducibility
of both catalysts in order to deduce their interaction between the metal oxide (NiO) species and the
CaTiO3 support. The TPR profile of two catalysts under study is shown in Figure 3. Distinct and
broad reduction peaks were observed for both catalysts with different CaTiO3 compositions. For the
NMC414 catalyst, the first reduction peak in the range of 350–427 ◦C with two well-defined divisions,
with maximum at 380 ◦C and 403 ◦C, were attributed to the reduction of Ni2+ in the crystalline NiO
phase [30] and the reduction of TiO2 phases (whose single phase was detected by XRD), respectively [55].
It has been reported that the reduction of unsupported NiO to atomic Ni occurs around 200 ◦C, while
supported NiO is reduced at a rather higher temperature range [57]. For the NMC412 catalyst, the first
reduction peak appeared at the range of 420–538 ◦C with a maximum at 480 ◦C, which was attributed to
the reduction of NiO. This higher reduction temperature could be due to the smaller NiO particle size
for the NMC412 catalyst compared to the NMC414 catalyst, since it was reported that catalysts with
small metal oxide particles require high temperature to be reduced to their metallic stable forms [32].
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Figure 2. TEM images and particle size distribution histograms of NiMo/CaTiO3 catalysts containing
different CaTiO3 content: (a–c) NMC412 and (d–f) NMC414.

Another broad peak that appeared as a shoulder at 576 ◦C was observed for the NMC412 catalyst,
and the similar peak slightly disappears for the NMC414 catalyst due to the appearance of segregated
phases. The broad peak in the range of 570–610 ◦C with a maximum at 576 ◦C could be attributed to
the reduction of less thermally stable NiO–CaTiO3 compounds as well as the reduction of Mo species
as confirmed by XRD [57]. The interaction between NiO and CaTiO3 resulted in the incorporation of
Ca2+ into NiO crystallites, which poses difficulty in the disruption of the Ni–O bond [58].
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Figure 3. Temperature-programmed reduction (TPR) profile of NiMo/CaTiO3 catalysts containing
different CaTiO3 support contents; (A) NMC412 and (B) NMC414.

A larger and stronger peak was observed at a high reduction temperature for the NMC412 catalyst
in the temperature range of 712–802 ◦C with a maximum at 748 ◦C; this peak could be related to the
complete reduction of the MoO2 phase as shown in the XRD pattern due to its metallic form and could
be associated to the reduction of the Ni–Mo–O phase. This could also be attributed to the reduction of
the thermally stable calcium compound CaMoO4, whose reduction has been reported to begin at a
temperature above 700 ◦C [55]. By increasing the support content in the bulk catalyst (i.e., NMC414),
the reduction peak at 650–782 ◦C has a maximum at 710 ◦C, which was lower than the observed peak
for the NMC412 catalyst, signifying a reduced interaction between the catalyst metal oxide species
and the support. Hence, strong and more interaction was observed for the NMC412 catalyst (that is,
between the metal oxide species) than for the NMC414 catalyst.

The morphology of the two catalysts with different support content was determined by SEM
analysis, as shown in Figure 4. These results showed almost dissimilar aggregates of catalyst particles
for both catalysts. The NMC412 catalyst depicts more porous, more defined morphology and smoother
particle than the NMC414 catalyst. The NMC414 catalyst displayed a compacted-stack structure,
which could be due to the presence of more CaTiO3 content in the catalyst resulting in different
aggregated degrees of the catalyst particles.
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Energy-dispersive X-ray spectroscopy (EDXS) analysis was used to determine the elements
present on some spots on the catalyst surface, as shown in Figure 5. Analysis of EDXS result peaks
in keV showed that all elements of interest in the catalyst mix were all found. Table S3 disclosed the
composition of elements in NMC412 and NMC414 catalysts, respectively. This also revealed that the
stoichiometric ratio of CaTiO3 present in Figure 5B is higher than that in Figure 5A.
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2.2. Effect of Support Composition and Content on the Microstructure, Yield, and Quality of CNTs

The microstructure of the carbon nanomaterial deposited on the surface of catalysts is shown
in Figure 6. The carbon deposits were majorly a filamentous type of carbon in the tubular-like form
identified as multi-walled carbon nanotubes (MWCNTs) with their length up to a few micrometers.
The numbers of the walls were mainly in the range of 10–15 (see high-resolution TEM images in
Figure 6a,b). The absence of radial breathing mode (RBM), a characteristic of SWCNT [59], was
confirmed in Figure S1 for all as-grown CNTs over both catalysts. A very small proportion of
amorphous and disordered carbon was also detected. It is noteworthy to mention that amongst the
MWCNTs deposited on the surface of the NMC414 catalyst, carbon nanofibers (CNFs) with few broken
and deformed nanotubes were also deposited. The diameter distribution of MWCNTs obtained from
the two different catalysts of diverse support content is shown in Figure 6. Long, smooth, and twisted
MWCNTs with outer diameters ranging from 5 to 35 nm were obtained from MWCNTs deposited over
the NMC412 catalyst; this correlates with the XRD and TEM particle size results. Rough-edged and
larger diameter MWCNTs with an outer diameter in the range of 12 to 36 nm were produced over the
NMC414 catalyst. It could be suggested that a smaller particle-sized catalyst yielded long, smoother,
and small diameter MWCNTs. This result agrees with what is reported in the literature: the size of
active metal particles controls the diameter as well as growth of CNTs [60,61].
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The yield of CNTs deposited over the NMC412 catalyst was obtained to be 44%, while the NMC414
catalyst yielded about 35% CNTs. The above result also reveals that support material composition
and content is significant and has a noticeable influence on the catalytic performance toward CNTs
yield. Similarly, the above result could be due to the smaller metal particle size of the NMC412 catalyst
relative to the NMC414 catalyst, as confirmed from XRD and TEM results. According to the study
by Yao et al. [56] they reported that Ni/α–Al2O3 catalyst with a smaller metal particle size produced
higher CNTs yield (26.1 wt. %) than Ni/γ–Al2O3 catalyst (21.1 wt. %). The authors suggested this
could probably be due to smaller metal particles on the catalyst surface, which facilitated carbon atom
diffusion, nucleation, and nanotubes growth at the interface, ultimately resulting in higher CNTs



Catalysts 2020, 10, 1030 9 of 20

yield. It could be confirmed that there is a connection among CNTs yield, the crystallite size of NiO,
and the CaTiO3 content in the catalyst, which resulted in a higher CNTs yield. Accordingly, smaller
crystallite-sized active sites (in this case NiO) result in high carbon yield [61].

To study the quality and graphitization degree of as-produced CNTs, Raman analysis was
conducted. The Raman spectra of MWCNTs produced over the two catalysts under study are
illustrated in Figure S1. Three different bands are seen on the spectrum for each CNTs; the G-band at
about 1580 cm−1 is an indication of the presence of ordered and graphitized carbon. The D-band around
1352 cm−1 is attributed to the presence of amorphous or disordered carbon atoms in the CNTs [62],
while the G’ band (2D-band) obtained at 2691 cm−1 is linked to the second-order two-photon process.
It indicates the presence of parallel graphitic layers in CNTs [63]. The peak intensity ratios IG/ID and
IG’/IG are used to investigate the quality and degree of graphitization of CNTs; it is also an indication
of defects in the graphitic structure [22]. Therefore, a higher IG/ID ratio suggests high-quality and
well-graphitized CNTs, while a high IG’/IG ratio also suggests high-purity CNTs [64]. A very distinctive
2D-band (G’ band) appeared in all CNTs deposited over both catalysts, indicating that CNTs formed
from both catalysts are of high purity and possess more parallel graphitic layers. For the MWCNTs
deposited over the NMC412 catalyst, an IG/ID ratio of 1.15 and IG’/IG ratio of 0.80 were obtained; while
the produced MWCNTs over the NMC414 catalyst have an IG/ID ratio of 0.96 and an IG’/IG ratio of 0.84.
The above results suggest the presence of defects on the CNTs obtained from both catalysts, but the
CNTs deposited over the NMC412 catalyst possess fewer defects and have higher quality and a higher
degree of structural ordering than those obtained over the NMC414 catalyst. Therefore, it could be
concluded that the microstructure, yield, and quality of MWCNTs obtained are strongly affected by
the CaTiO3 content in the parent catalyst because of the optimum interaction between the support
and the Ni-active metal. It is worthwhile comparing this work with other studies in the literature
that employed the use of waste PP as a carbon source for CNTs synthesis with respect to the quality
and yield of CNTs obtained. Mishra et al. [65] also utilized a single-stage CVD reactor in their study;
waste PP was the used carbon precursor in the presence of unsupported Ni catalyst. They reported
a good graphitic CNTs yield of 19% with their outer diameter in the range of 10–20 nm. Bajad and
co-workers [66] also synthesized CNTs from waste PP in a batch reactor using NiMo-supported MgO
catalyst; their obtained yield was 3.2 g CNTs/6 g PP with 40–60 nm outer diameter CNTs of lower
quality reported.

It could be concluded that CaTiO3 support in the NiMo catalyst mix resulted in small diameter
and a high yield of CNTs of good quality.

2.3. The Effect of Calcination Temperatures on the Yield and Quality of CNTs

The effect of variation in calcination temperature (600 ◦C, 700 ◦C, and 800 ◦C) on NiMo/CaTiO3
catalyst prepared at molar ratios of 4:1:2 (designated as NMC412) was studied to evaluate its influence
on the yield, microstructure, and quality of as-produced CNTs. The investigation was carried out on
NMC412 catalyst calcined at 600 ◦C, 700 ◦C, and 800 ◦C.

The textural property of the NMC412 catalyst at different calcination temperatures was obtained
via N2 physisorption at −196 ◦C (see Table 1 for the results). It could be observed that there is a
progressive decrease in the specific surface area and pore volume of the catalysts as the calcination
temperature increases from 600 to 800 ◦C. This result is expected based on what was reported in the
literature: at high calcination temperature, the wall porous structures of materials collapse, and this
leads to their lower total surface area [41,58]. Furthermore, the low BET (Brunauer-Emmett-Teller)
surface area for all the catalyst calcined from 600 to 800 ◦C could be due to the agglomeration of metal
particles at elevated temperature or due to catalyst precursor (additive) composition and/or catalyst
preparation technique [37]. Although no direct comparison could be obtained from the literature,
studies by Pfaff [50] and Liu and co-workers [67] presented similar reductions in surface and pore
volume with increasing calcination temperature.
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Table 1. Textural property of the NMC412 catalyst at different calcination temperatures.

Calcination Temperature (◦C) SBET (m2/g) Pore Volume (cm3/g)

600 17.43 0.0974
700 13.46 0.0805
800 7.74 0.0476

The structural changes in the phases of NMC412 catalysts calcined at different temperatures were
evaluated using XRD analysis, as depicted in Figure 7. The individual peaks corresponding to different
phases were identified and labeled in the XRD spectra, as shown in Figure 7. It could be observed that
as the calcination temperature increases, the identified peaks become sharper and more elongated,
indicating an increased crystallite size of the catalysts [56] with increasing calcination temperature,
while broader and shortened peaks disclose smaller crystallite size (600 ◦C < 700 ◦C < 800 ◦C), as shown
in Table 2. A major change was identified with the 800 ◦C calcined catalyst with the appearance
of additional metal stable phases of NiMoO4, CaMoO4, and tricalcium dititanium oxide (Ca3Ti2O7)
phases (the Ca3Ti2O7 compound is a double perovskite sheet interwoven with CaO) [50]. The presence
of thermally stable compounds inhibits catalyst deactivation and the agglomeration of NiO particles on
the catalyst surface, disallowing the formation of excessive larger NiO particles [61]. This confirms that
high calcination temperatures result in the emergence of thermally stable compounds in the catalysts,
which builds up a strong interaction between the catalyst-active metal and the support. In addition,
it was also observed that the crystallite size of all the phases of interest—that is, NiO and CaTiO3

(Ca3Ti2O7)—increased as the thermal treatment temperature increased from 600 to 800 ◦C, as shown in
Table 2.
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Table 2. Crystallite sizes of phases NiO and CaTiO3 (or Ca3Ti2O7 as the case may be) present in the
NMC412 catalyst prepared at different calcination temperatures as obtained from XRD analysis.

Calcination Temperature (◦C) NiO Crystallite Size (nm) CaTiO3/Ca3Ti2O7 Crystallite Size (nm)

600 5.9 4.4
700 9.1 10.1
800 45.1 23.3
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TPR was used to study the interaction between the Ni active phase and the support material
of the catalysts prepared at different calcination temperatures, as illustrated in Figure 8. From the
TPR profile, the peaks at 460 ◦C, 480 ◦C, and 484 ◦C for 600 ◦C, 700 ◦C, and 800 ◦C calcined catalysts
respectively, could be attributed to the high-temperature reduction of the NiO species to Ni0 due to
its interaction with the support material. Again, the small crystallite size of the metal oxide could be
the reason also for its high reduction temperature. It is also necessary to recall that crystallites with
small size require high temperature to be reduced to their metallic form [32,68]. The profile for the
800 ◦C calcined catalyst shows somehow a shift to more complex peaks and a shoulder (plateau) at
631 ◦C, 691 ◦C, and 776 ◦C. This could be due to the presence of the larger amount of thermally stable
phases present, as shown in the XRD pattern in Figure 7. The peaks ranging from 746 to 794 ◦C with a
maximum at 776 ◦C could be associated with the reduction of the Ni–Mo–O phase [27,69] and some
thermally stable NiMoO4 and CaMoO4 phases. The prevalence of more thermally stable phases in the
catalysts increased as the calcination temperature increased from 600 to 800 ◦C, therefore enhancing
the interaction between the catalyst and support. This occurrence of these phases helps enhance the
stability and activity of NiMo/CaTiO3 catalysts during CNTs nucleation and growth, and this in turn
affects the overall performance of the catalyst to grow CNTs.
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calcined at different temperatures: (A) 600 ◦C, (B) 700 ◦C, and (C) 800 ◦C.

Evaluating the effect of different calcination temperature on the yield of MWCNTs shows that there
was not much appreciable difference in the carbon yield as the calcination temperature increased from
600 to 800 ◦C. The carbon yield gradually increased from 43% at 600 ◦C to 44% at 700 ◦C and showed a
little decline to 42% as the thermal treatment temperature was further increased to 800 ◦C. The decrease
in carbon yield at 800 ◦C could be attributed to the excessive dominance of the thermally stable NiMoO4

and CaMoO4 species (as observed in the XRD pattern in Figure 7). Although their presence assisted in
inhibiting the formation of large NiO particle mass, they also take up the active metal species, which
are the bedrock for CNTs nucleation and growth, thereby reducing their availability for nucleation,
resulting in low carbon yield [61].

The TEM micrographs of the as-produced carbon are shown in Figure 9. It could be observed that
the presented filamentous hollow-core nanostructure indicates the presence of MWCNTs, although
a few carbon nanofibers (CNFs) are present. The catalyst calcined at 600 ◦C showed long MWCNTs
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with large uniform outer diameter CNTs ranging from 11 to 60 nm and few surface-rugged CNTs. The
catalyst calcined at 800 ◦C produced short structured MWCNTs with an outer diameter in the range of
14–32 nm. The obtained short length MWCNTs could be a result of its large NiO crystallite size, as
observed in Table 2. Studies in the literature have reported that increasing the calcination temperature
of catalysts results in the loss of their porosity [50,68]. This is true as shown in the BET surface area
and pore volume, as presented in Table 1. It is also evident that at high calcination temperature, NiO
particles are prone to agglomerate, which could reduce the mobility of active species on the support,
resulting in a reduction of carbon yield and/or reduction of the number of reducible NiO present in the
bulk catalyst [43]. However, this study reveals that although the interaction of the NiO species could
be strong, the good stability of the catalyst material still resulted in the growth of small diameter CNTs.
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(NMC412) catalysts prepared at different calcination temperatures: (a,b) 600 ◦C, (c,d) 700 ◦C, and (e,f)
800 ◦C.

The Raman spectra of as-grown CNTs deposited on NiMo/CaTiO3 catalyst prepared at various
calcination temperatures are shown in Figure 10. The appearance of three major peaks (D-band, G-band,
and G’ or 2D-bands) could be seen on the spectrum for each CNT sample. The intensity ratios IG/ID

of 1.00, 1.12, and 1.03 were obtained from CNTs deposited over 600 ◦C, 700 ◦C, and 800 ◦C calcined
catalysts, respectively. The intensity ratio IG/ID is an indicator of the quality of CNTs [63]. Therefore,
the relatively high IG/ID ratio of 1.12 for CNTs obtained over a 700 ◦C-treated catalyst indicates less
defects or amorphous carbon within the graphite layer, unlike CNTs deposited on 600 ◦C and 800 ◦C
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calcined catalysts with a lower IG/ID ratio. Consequently, the 700 ◦C thermally treated catalyst showed
less defective and higher quality and structurally ordered MWCNTs than 600 ◦C and 800 ◦C catalysts.
This result suggests that CNTs deposited on a 700 ◦C thermally-treated catalyst had more of an sp2

hybridized in-plane graphitic structure than CNTs obtained on 600 ◦C and 800 ◦C calcined catalysts.
The result from Raman spectra was in agreement with those of thermogravimetric analysis (TGA) and
TEM. This is an indication of the high quality of CNTs obtained over a bimetallic NiMo-supported
CaTiO3 catalyst mix, irrespective of their degree of thermal treatment.
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Figure 10. Raman spectra of as-produced CNTs over NiMo/CaTiO3 catalysts prepared at different
calcination temperatures: (A) 600 ◦C, (B) 700 ◦C, and (C) 800 ◦C.

Typically, model CNTs and graphite are reported to oxidize and decompose under O2 and inert
environment at temperatures above 500 ◦C and 600 ◦C, respectively [70]. For all as-grown CNTs over
600 ◦C, 700 ◦C, and 800 ◦C calcined catalysts, weight loss started above 600 ◦C and 500 ◦C under inert
and oxidizing environments, as indicated in Figure 11a,b, respectively. Weight losses were calculated
to be 76.7%, 83.2%, and 75.0% for all CNTs deposited over 600 ◦C, 700 ◦C, and 800 ◦C calcined catalysts,
respectively. However, the catalyst calcined at 600 ◦C produced the least thermally stable CNTs.
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Figure 11. Thermogravimetric analysis (TGA) and Differential Thermal analysis (DTG) curves of
as-produced CNTs deposited over NiMo/CaTiO3 catalyst prepared at different calcination temperatures:
A = 600 ◦C, B = 700 ◦C, and C = 800 ◦C: (a) under N2; (b) under O2, and (c) DTG under O2 atmosphere.
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3. Materials and Methods

3.1. Materials and Catalyst Preparation

Nickel (II) nitrate hexahydrate, ammonium molybdate tetrahydrate, and calcium carbonate
(supplied by Associated Chemical Enterprises (PTY) LTD); titanium (IV) isopropoxide (TTIP)
(Sigma-Aldrich, Johannesburg, South Africa), additive-citric acid (supplied by Rochelle Chemicals and
Laboratory equipment company, Johannesburg, South Africa); ethanol solvents, and deionized water
were used in the synthesis. All supplied chemicals were used without further purification. The sol–gel
method was used to prepare bimetallic NiMo/CaTiO3 catalysts with the parent catalyst (metal content)
composition Ni–Mo maintained at a molar ratio of 4:1. The support (CaTiO3) content was varied (while
still maintaining a Ca/Ti molar ratio at 1:1 in both catalysts), resulting in two catalysts of different
support content; NiMo/CaTiO3 (molar ratio 4:1:2) and NiMo/CaTiO3 (molar ratio 4:1:4).

CaO precursor was dissolved in ethanol, and 1.7 M of TTIP was drop-wisely added to the
Ca–ethanol solution while vigorously stirred using a magnetic stirrer at 80 ◦C at a pH = 9.0. The entire
mixture was allowed to stir under the same conditions for 5 h. Thereafter, the calculated amount of
Ni and Mo salt precursors was dissolved in deionized water, and the mixture added to the Ca–TTIP
solution while still vigorously stirred. Again, 4.0 g of citric acid was also added to the mixture until
pH = 4.0, and the entire content aged overnight. The resultant gel was oven-dried for 6 h at 100 ◦C
to remove the remaining solvents. The obtained solid chunk was crushed to powder using an agate
mortar and calcined in air at 700 ◦C for 3 h to obtain the fresh catalyst. The final catalysts were denoted
as NMC412 and NMC414 for NiMo/CaTiO3 catalysts with molar ratios of 4:1:2 and 4:1:4, respectively.

3.2. Production of CNTs from Waste PP

The waste PP (food package container) used for this work was obtained from the University of
Johannesburg refuse deposition/collection center, washed, air-dried, and cut into tiny pieces (1–4 mm)
using a Retsch SM 200 (Retsch GmbH, Haan, Germany) jaw crusher. The experimental setup used in
the production of CNTs from waste PP was similar to that described elsewhere by Mishra et al. [65]
with some modifications. Briefly, a single-stage CVD setup was utilized to grow CNTs from waste PP.
The system consisted of a horizontal tubular furnace and a quartz tube reactor (110 cm length and
50 mm I.D.), as well as a gas supplying system with a flow meter and exhaust gas bubbler at the end.

Two sets of experiments were carried out in this study to determine the effect of different catalyst
support contents (NMC412 and NMC414) on the yield and quality of CNTs, as well as the influence of
different calcination temperatures (600 ◦C, 700 ◦C, and 800 ◦C) on the quality and morphology of CNTs.
Typically, 0.5 g of catalyst was packed evenly on a quartz boat situated at the center of the reactor and
heated to 700 ◦C at a ramp rate of 10 ◦C/min. When the set temperature was achieved, the catalyst
was reduced in situ for 20 min under the flow of 5 vol.% H2/95 vol.% Ar gas mixtures at a flow rate of
100 mL/min. At the end of the treatment, the 5 vol.% H2/95 vol.% Ar gas mixture was switched to N2,
maintaining the flow at 100 mL/min; then, the ceramic boat housing 1.0 g of waste PP was introduced
for the continuous decomposition and growth of carbon nanomaterial at a dwelling time of 30 min,
after which the reactor was cooled down overnight in a N2 atmosphere at a flow rate of 100 mL/min.
The experiment was repeated to assure the reliability and repeatability of the results. The obtained
black material was further purified using mild acid treatment (0.1 M HCl) and subsequently washed
with hot and cold DI water until the pH was around 7. The CNT yield was estimated with respect to
the mass of feedstock (waste PP) used according to Equation (1) as described by [71]:

CNTs Yield (%) =
Mass of CNTs

Mass of Polymer used
× 100 % (1)

where, Mass of CNTs = Mass of carbon deposit before purification–Mass of catalyst used.
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3.3. Catalysts and CNTs Characterization

3.3.1. Morphological Analysis

A surface morphological study of catalysts was performed using VEGA 3 TESCAN (TESCAN,
Brno, Czech Republic) scanning electron microscope (SEM) operated at 10 kV, which was coupled to
an energy-dispersive X-ray spectroscopy (EDXS).

3.3.2. Microstructure Analysis

The morphology of the catalysts and microstructure of deposited carbon as well as the diameters
of catalyst metal particles was carried out with a JEM-2100 transmission electron microscope (TEM)
instrument (JEOL, Tokyo, Japan) operating at 200 kV. A small amount of sample was dispersed and
sonicated in ethanol for 10 min; 2 drops of the blend were dispersed onto carbon-coated copper grid,
dried, and photographed.

3.3.3. X-Ray Diffraction

The different crystalline phases present on the surface of NiMo-supported CaTiO3 catalysts of
different contents were determined out by X-Ray Diffraction (XRD) using Rigaku Ultima IV X-Ray
Diffractometer (RIGAKU Corporation, Tokyo, Japan). The samples were scanned in the 2θ range of
10◦ to 90◦ with a step width of 0.01◦ operating at 40 kV and 30 mA with Cu Kα (λ = 1.54 Å) radiation.
XRD data analysis was undertaken using PDXL software.

3.3.4. Surface Area and Pore Volume Measurement

The textural properties of the prepared catalysts were determined by nitrogen physisorption
analysis at −196 ◦C using Micromeritics ASAP 2020 (Micromeritics, Atlanta, GA, USA) surface area
and a particle analyzer. During the analysis, 200 mg of catalyst was degassed under vacuum using
a Micromeritics flow Prep 060 sample degas system at 300 ◦C for 3 h. The adsorption isotherm was
used to estimate the specific surface area, while the Barrett–Joyner–Halenda (BJH) method was used to
estimate the pore volumes of the catalysts.

3.3.5. Temperature-Programmed Reduction (TPR)

The TPR technique was used to study the reduction behavior of the catalysts using a Quantachrome
TPR-Win instrument (Quantachrome, Boynton Beach, FL, USA); about 100 mg of the fresh catalyst was
dried at 300 ◦C for 1 h under Ar flow and then cooled to room temperature. Afterwards, 5 vol.% H2/95
vol.% Ar gas mixture with a flow rate of 30 mL/min was passed through the catalyst. The catalyst was
heated to 800 ◦C at a heating rate of 10 ◦C/min for 2 h. A thermal conductivity detector (TCD) was
used to monitor the H2 consumption by the metallic oxide part of the catalyst.

3.3.6. Thermogravimetric Analysis (TGA)

TGA analysis was employed to examine the thermal stability of the as-produced carbon
nanomaterial using a HITACHI STA-7200RV thermal analysis system (HITACHI, Tokyo, Japan).
The analysis was carried out in two different environments: N2 and air atmosphere. During the
analysis, the sample was heated under N2 and synthetic air at a gas flow rate of 20 mL/min with a
ramp rate of 10 ◦C/min from 30 to 900 ◦C.

3.3.7. Raman Spectroscopy

The purity and graphitization degree of as-produced CNTs were determined using WITec focus
innovations Raman spectrometer (WITec Wissenschaftliche Instrumente and Technologie GmbH, Ulm,
Germany) operating at a wavelength of 532 nm with Raman shift in the range of 500 to 3000 cm−1.
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4. Conclusions

The yield, quality, and morphology of carbon nanotubes (CNTs) obtained from waste PP is greatly
influenced by the amount of catalyst support in the catalyst. In this study, bimetallic NiMo-supported
CaTiO3 catalysts with excellent stability and superior activity for the synthesis of CNTs from waste PP
were successfully synthesized and tested. The strong interaction between metal and support resulted
in a higher yield for both catalysts with different supports (CaTiO3) content. This can be attributed
to the presence of thermally stable species in the catalysts that inhibited the agglomeration of metal
particles resulting in the formation of small metal particles and the resultant high yield and small
diameter CNTs. The low CaTiO3 content in the NiMo catalyst (denoted as NMC412) gave the highest
CNTs yield and quality. However, increasing the calcination temperature from 600 to 800 ◦C resulted
in a shift in CNTs morphology to a shorter length and larger diameter CNTs at 800 ◦C and a drop in
CNTs yield. The maximum CNTs quality and a yield of 44% was obtained over the NiMo/CaTiO3

catalyst with a molar ratio of 4:1:2 calcined at 700 ◦C. Therefore, the excellent thermal stability of the
NiMo/CaTiO3 catalyst plays a more determining role in the catalytic decomposition of PP toward
CNTs growth in a single stage CVD setup. Therefore, this work presents the feasibility of growing
CNTs from waste PP using an efficient NiMo/CaTiO3 catalyst in a single-stage CVD method. Thus, it
highlights the potential of this approach for the large-scale production of CNTs from wastes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/9/1030/s1,
Table S1: Particle size (nm) distribution of NMC412 catalyst, Table S2: Particle size (nm) distribution of NMC414
catalyst, Table S3: Elemental composition of NMC412 and NMC414 catalysts obtained from EDXS analysis, Table
S4: Outer diameter (nm) of CNTs deposited over NMC412 catalyst, Table S5: Outer diameter (nm) distribution of
CNTs deposited over NMC414 catalyst, Figure S1: Raman spectra of as-synthesized CNTs over NMC412 and
NMC414, Table S6: Outer diameter distribution of CNTs obtained over 600 ◦C calcined catalyst, Table S7: Outer
diameter distribution of CNTs obtained over 700 ◦C calcined catalyst, Table S8: Outer diameter distribution of
CNTs obtained over 800 ◦C calcined catalyst and Table S9: TGA data of as-deposited CNTs over NiMo/CaTiO3
catalyst calcined at different temperature.
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