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Abstract: Hierarchical aluminum-silicon materials have been successfully prepared by mixing
pre-crystallization of silica-alumina sol and citric acid under hydrothermal conditions. The influence of
pre-crystallization time on the micro-mesoporous structure is studied using Fourier transform infrared
spectroscopy (FT-IR), X-ray powder diffraction (XRD), N2 physical adsorption, and high-resolution
transmission electron microscopy (HRTEM). The catalytic performance of hierarchical silica-alumina
material is evaluated by alkylation of phenol with tert-butanol. The results show that the silica-alumina
materials with a pre-crystallization time of 16 h show micro-mesoporous structure and excellent
catalytic activity.

Keywords: hierarchical pore; micro-mesoporous silica-alumina; phenol tert-butylation;
pre-crystallization time

1. Introduction

As a commonly used material for adsorption separation and catalysis, molecular sieves can be
simply divided into three types: micropore, mesopore, and micropore. The pores with a diameter of
less than 2 nm, 2–50 nm, and more than 50 nm were called micropores, mesopores, and macropores,
respectively [1–3]. With the advancement of research, researchers have gradually discovered that
molecular sieves of three pore size have their own characteristics. However, materials with a certain
pore structure applied separately in the fields of catalysis, petrochemicals, and ion exchange were
usually not ideal [4–8]. For example, the widely used ZSM-5 molecular sieve had a strong acidity
and excellent channel selectivity [9–14]. However, the narrow pore size of ZSM-5 limited the transfer
and diffusion of macro reactants and products [15–20]. However, the pore walls of the mesoporous
materials were amorphous, and the acidity of the materials was relatively low. Therefore, mesoporous
materials had poor catalytic activity in acid-catalyzed reactions [21–23].

Due to the shortcomings of single microporous and mesoporous materials in catalytic reactions,
many researchers were committed to the composite research of microporous and mesoporous
materials [24,25]. Mesoporous template was added into synthetic microporous silica-alumina precursor,
which was adopted in situ synthesis method to prepare micro-mesoporous silica-alumina materials.
Moreover, the pore wall of the mesoporous silica-alumina material was crystallized, which was named
the post-synthesis method [26–28]. In situ synthesis mainly included single template synthesis and
double template synthesis [29]. The method was easy to operate, but micropores and mesopores were not
well compounded and were easy to separate, leading to the synthesis of a single microporous material
or mesoporous material. The post-synthesis method mainly included the pore wall crystallization
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method, epitaxial growth method, and alkali treatment method [30]. These methods need be completed
in at least two steps, so the preparation methods were more complicated. In our previous work, we used
polyethylene glycol as the mesoporous soft template to synthesize hierarchical ZSM-5 zeolites [21].
However, there were two kinds of acid sites, which would result in side reactions. In this work, we used
citric acid as the mesoporous template to synthesize hierarchical ZSM-5 zeolites with main single kind
of acid site, which favors improvement of the selectivity.

Micro-mesoporous silica-alumina materials obtained by pre-crystallization and an in situ
synthesis method can effectively avoid the defects of in situ synthesis and post-synthesis methods.
The aluminum-silicon was crystallized at different times to prepare pre-crystallization product with a
microporous structural unit or a microporous nanocrystal. The mesoporous pore-forming agent citric
acid and the pre-crystallized product were self-assembled under hydrothermal conditions to prepare a
micro-mesoporous silica-alumina material.

2. Results and Discussion

Figure 1 shows the XRD patterns of the materials. When the pre-crystallization time of the
silica-alumina sol is 0 h and 4 h, a broad diffraction peak appeared at 2θ = 20–30◦, indicating that
the silica-alumina sol pre-crystallization time is too short to form a ZSM-5 nano-structure. When the
pre-crystallization time is extended to more than 8 h, the sample exhibits characteristic diffraction
peaks at 2θ = 8.0◦, 8.8◦, 3.2◦, 24.0◦ and 24.5◦. It is consistent with the XRD diffraction peaks of ZSM-5
zeolite in the literature [31], which indicates that the prepared materials have the crystal structure of
ZSM-5 molecular sieve. With the increase of crystallization time, the intensity of ZSM-5 diffraction
peaks gradually increases, suggesting that the crystallization degree of samples increases [32,33].
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Figure 1. XRD patterns of the samples.

Figure 2 shows the FT-IR spectra of the samples. The absorption peak at 465 cm−1 is ascribed
to Si–O–Si (Al) variable angle bending vibration, while the absorption peak at 810 cm−1 belongs to
Si–O–Si (Al) symmetric stretching vibration. Moreover, the peak at 1080 cm−1 is due to Si–O–Si (Al)
anti-symmetric stretching vibration, whereas the bands at 1639 cm−1 and 3430 cm−1 are attributed to O–H
bond bending vibration of water and Si–OH or O–H bond stretching vibration of water, respectively [34].
For pre-crystallization micro-mesoporous materials at 8 h, 16 h, and 24 h, the characteristic peak at
550 cm−1 indicates MFI structure (Figure 2c–e) [34]. However, the ZSM-5 zeolites crystallized at 0 and
4 h do not have this characteristic peak, indicating that the pre-crystallization time is too short and the
MFI structure of ZSM-5 is not formed. Therefore, prolonging the pre-crystallization time favors the
formation of the microporous structure.
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Figure 2. FT-IR spectra of (a) NM-ZSM-5-0 h, (b) NM-ZSM-5-4 h, (c) NM-ZSM-5-8 h, (d) NM-ZSM-5-
16 h, and (e) NM-ZSM-5-24 h. 
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Figure 3 shows the N2 adsorption-desorption isotherm curves and pore distribution of the samples.
It can be seen that the N2 adsorption-desorption isotherm curves of silica-alumina material is type
IV with a H2 hysteresis ring, indicating that the synthesized samples contain a mesoporous structure.
With increasing pre-crystallization time, the hysteresis ring of the isothermal curves becomes smaller,
indicating that the crystallinity of the material increases, and the mesoporous order becomes lower.
From 0 h to 24 h, the micropore BET specific surface area of the samples gradually decreases from
547 m2 g−1 to 440 m2 g−1. With the increase of pre-crystallization time, the pore specific surface area
gradually increases and the mesoporous specific surface area gradually decreases, indicating that the
micropore ratio of the samples increases, which is consistent with the results of XRD and FT-IR analysis.

Figure 3b exhibits the pore distribution of the silica-alumina materials. The silica-alumina
materials pre-crystallized at different times contain bi-continuous micropore and mesopore distribution.
The microporous distribution is mainly centered at about 1 nm, while the mesopore distribution
is mainly concentrated at around 6 nm. For the samples with shorter pre-crystallization time
(i.e., NM-ZSM-5-0h, NM-ZSM-5-4h and NM-ZSM-5-8h), the distribution of mesopores is relatively
concentrated. When the crystallization time is extended to 24 h, the distribution is relatively broad,
which is related to the decrease of the mesoporous order degree.Catalysts 2020, 10, x FOR PEER REVIEW 4 of 12 
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Figure 3. (a) N2 adsorption-desorption isotherms and (b) pore distribution of the samples.
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Figure 4 displays TEM images of the samples. The samples with a shorter pre-crystallization
time have a uniform structure (Figure 4a–c). With the increase of pre-crystallization time to 24 h,
the mesoporous channels gradually change disorder (Figure 4e). The channels are stacked by grains of
ZSM-5 nano-crystal.
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Figure 4. TEM images of (a) NM-ZSM-5-0h, (b) NM-ZSM-5-4h, (c) NM-ZSM-5-8h, (d) NM-ZSM-5-16h,
and (e) NM-ZSM-5-24h.

Figure 5 shows the NH3-TPD curves of the samples. All the samples show a NH3-desorption
peak. The sample NM-ZSM-5-0h has a broad desorption peak at around 446 K, indicating that
the acidity of the sample is weak due to low crystallization [34]. As the pre-crystallization time is
prolonged, the desorption peak temperature of NH3 gradually increases, indicating that the acidity
is enhanced with the increase of microporous crystallinity [35]. For example, for NM-ZSM-5-4h,
NM-ZSM-5-8h, NM-ZSM-5-16h, and NM-ZSM-5-24h, the NH3-desorption peak is located at 449 K, 452
K, 485 K, and 486 K, respectively. The desorption peaks of samples NM-ZSM-5-8h, NM-ZSM-5-16h,
and NM-ZSM-5-24h can be attributed to the desorption of NH3 from medium acid sites [34]. As a whole,
the acidity of the hierarchical silicon-alumina material is not strong and suitable for medium-strength
acid-catalyzed reactions.
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It was reported that the alkylation of phenol by tert-butanol is an acid-catalyzed reaction. However,
the small pore size of microporous molecular sieves such as ZSM-5 (<2 nm) made it very difficult
for the large-sized molecule to diffuse effectively in the pore system. Accordingly, the reaction
activity of tert-butylation of phenol over the microporous molecular sieves was low. In addition,
mesoporous molecular sieve such as Al-MCM-41 has the larger pore channels. However, its catalytic
activity is still low, which should be ascribed to weak acidity of amorphous mesoporous walls. It is
well known that the micropores in the hierarchical channels system provide acid-catalyzed active
centers, while the mesopores and the macropores favor the diffusion of substances and product
molecules [36]. The synergistic effect of hierarchical pores could make the complex reaction system
efficient, which allows large molecules to coexist with small molecule and is conducive to the formation
of the target product. In this work, the alkylation of phenol and tert-butanol is used as a model
reaction to investigate the catalytic performance of the hierarchical silica-alumina materials. The phenol
tert-butylation reaction is a kind of industrially important acid-catalyzed reaction. The main products,
4-tert-butylphenol (4-TBP) and 2,4-di-tert-butylphenol (2,4-di-TBP), have been widely used in industry
as intermediates, such as used in the production of rubber, coatings, antioxidants, thermal stabilizers,
and regenerated rubber activators. In addition, the phenol tert-butyl alkylation reaction could be
catalyzed by various acids, including Lewis acids and Brönsted acids, such as homogenous liquid
acid H3PO4, H2SO4, HF, HClO4, and solid acid catalysts, such as cation exchange resins, zeolites,
and mesoporous aluminosilicates. Homogeneous acid catalysts are difficult to recycle, easily corrode
equipment, and pollute the environment, and their applications in industry are greatly restricted.
Cation exchange resins are easily decomposed and cannot be used at high temperature. Therefore, many
researchers invested in microporous zeolites and mesoporous molecular sieves, because they have the
advantages of uniform pore size distribution, high thermal stability, and recyclability. The development
and application of solid acid catalysts was also of great significance to our environmental protection.
In the tert-butylation reaction of phenol, the conversion and selectivity of the product mainly depend
on the acidity of the catalyst and the size of the pores. The control of the preparation conditions of
the porous silica-alumina material could provide the required pore size and acidity according to the
requirements of the reaction. Therefore, it is suitable to use the phenol tert-butylation reaction as a model
reaction to investigate the catalytic performance of the hierarchical porous silica-alumina material.

Table 1 shows the catalytic results of the tert-butylation reaction with phenol on the hierarchical
silica-alumina materials and compared catalysts. The main products of the reaction are 2-TBP,
4-TBP, 2,4-di-TBP, and a small amount of 2,4,6-tri-TBP. In the alkylation of phenol with tert-butanol,
the selectivity depends on the nature of acidic sites in catalysts, reaction temperature and reaction
time [37,38]. On weak acidic catalysts, e.g., FIBAN K-1 and KU-2-8 sulfonated cation-exchange
resin, oxygen-alkylated product (i.e., phenyl alkyl ether, t-BPE) is formed as a major product [39].
On moderate acidic catalysts, such as ZSM-12 [40], SAPO-11 [41] and zeolite-Y [42], o-isomer (2-TBP),
and p-isomer(4-TBP) are mainly formed. In addition, tert-butyl phenyl ether (TBPE) is one of the
products in the early stage of the reaction (1–2 h). As the reaction time increases, a decrease in the yield
of TBPE and an increase in the yield of TBP (ortho and para isomers) are observed [43]. In our catalytic
system, the tert-butyl ether is not obviously observed due to that the product of tert-butylation is
withdrawn after reaction for 2 h.
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Table 1. The compared results of alkylation of phenol with tert-butanol on different catalysts.

Catalysts nphenol/ntert-butanol
WHSV

(h−1)
T

(◦C)
Phenol

Conversion (%)

Selectivity (%)
Ref.2-TBP

(%)
4-TBP

(%)
2,4-Di-TBP

(%)
2,4,6-Tri-TBP

(%)

NM-ZSM-5-0h 0.4 2.20 145 46.1 11.6 70.3 18.0 0.1 This work
NM-ZSM-5-4h 0.4 2.20 145 50.5 12.7 61.3 25.9 0.1 This work
NM-ZSM-5-8h 0.4 2.20 145 65.6 13.5 65.3 21.0 0.2 This work

NM-ZSM-5-16h 0.4 2.20 145 87.5 15.5 62.7 21.6 0.2 This work
NM-ZSM-5-24h 0.4 2.20 145 86.2 15.6 63.2 21.1 0.1 This work

MZ-9-3.2 0.4 2.20 145 96.5 6.2 39.2 53.9 - [21]
HY 0.5 2.4 200 28.6 11.7 69.7 14.6 - [37]

HY-550 0.5 2.4 200 62.5 8.5 75.9 9.5 - [37]
Hβ 2 0.67 145 96.2 2.99 76.38 20.63 - [38]

ZSM-5 0.4 2.2 145 36.7 16.8 42.6 40.6 - [39]
AlMCM-41(56) 0.5 4.5 175 35.9 8.1 83.4 3.9 - [40]
H-AlMCM-41 0.5 4.8 215 64.1 1.7 29.9 1.4 - [40]

FIBAN K1 3 - 100 23 58 33 10 - [41]
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The phenol conversion of NM-ZSM-5-0h and NM-ZSM-5-4h is low due to the weak acidity of
pore walls as revealed by the XRD, FT-IR and NH3-TPD analysis. The acid was generated by Al3+

atoms replacing Si4+ atoms. The lone pair electrons in the Al site generate Lewis acid. To balance
the skeleton charge, a hydroxyl is formed on the Al site, which generates the Brønsted acid site.
With the pre-crystallization time increasing to 16 h, the catalytic activity of NM-ZSM-5-16h increases.
The conversion of phenol increases to 89.5%, which is attributed to that the microporous nanocrystals
in the silica-alumina catalyst provide sufficient acid centers for the reaction, suggesting that the
phenol tert-butylation reaction can be efficiently catalyzed by medium-strength acid. In addition,
the mesoporous structure promotes transfer and diffusion of reactants and products. When the
pre-crystallization time reaches 24 h, the catalytic activity of the NM-ZSM-5-24h decreases slightly
to 86.2%. From the results of XRD and TEM analysis, it is found that the mesoporous uniformity of
the sample NM-ZSM-5-24h decreases, which results in the decrease of catalytic activity. Therefore,
the phenol tert-butylation reaction is affected by acid strength and pore structure. Medium-strength
acid and suitable mesopores favor this reaction.

The catalytic activity on micropore zeolite (HY [44], Hβ [45], ZSM-5 [46]), mesopore molecular
sieve (AlMCM-41) [47], and hierarchical zeolite (MZ-9-3.2) [21] are compared in Table 1. The difference
in the activity could be mainly attributed to their different pore structure property and acidity. Hence,
proper pore structure and acidity in the hierarchical ZSM-5 zeolite enable easy diffusion of reactants
and products, favoring high phenol conversion and high selectivity. It is worth mentioning that the
selectivity of the macromolecular 2,4-di-TBP in the products of the hierarchical porous silica-alumina
catalyst is low, while the selectivity of the 4-TBP is high, which is consistent with the results of the
overall acidity of hierarchical porous silicon-aluminum materials, indicating that the acid center of the
medium acidity of the catalyst is more suitable for the formation of 4-TBP. In addition, the formation of
4-TBP might be due to transalkylation from 2-TBP as reported previously [48].

3. Experimental Section

3.1. Experimental Reagents

The following reagents were used in this study: Aluminum sulfate octadecahydrate (99.9%, Xilong
Chemical Plant, Shantou, Guangdong, China); citric acid (>99.8%, Sinopharm Chemical Reagent Co.,
Ltd, Shanghai, China); tetrapropylammonium hydroxide (TPAOH) (25%, Wengjiang Chemical Reagent
Co., Ltd, Shaogua, Guangdong, China) ethyl orthosilicate (TEOS) (analytical grade, Damao Chemical
Reagent Factory, Tianjin, China); ammonium nitrate (analytical grade, Xilong Chemical Plant, Shantou,
Guangdong, China); phenol (analytical grade, Damao Chemical Reagent Factory, Tianjin, China);
tert-butyl alcohol Sinopharm Chemical Reagent Co., Ltd, Shanghai, China. All the reagents were used
as received without further purification.

3.2. Preparation of Materials

3.2.1. Preparation of Microporous-Mesoporous ZSM-5

After 0.1420 g Al2(SO4)3·18H2O solid was completely dissolved in 3.75 mL H2O, 6.25 mL of
tetrapropylammonium hydroxide (TPAOH) was added to the solution. Then it was stirred for 3 h
until it became a colorless transparent liquid. 5 mL of tetraethyl orthosilicate (TEOS) was added to
the colorless transparent liquid, which was stirred for 9 h to form silica-alumina sol. The sol was
transferred into polytetrafluoroethylene-lined reactor and pre-crystallized for different times (0 h, 4 h,
8 h, 16 h and 24 h) in 373 K. Finally, 5.7 g of citric acid was added into the pre-crystallization sol, stirred
for 3 h, and crystallized at 373 K for 48 h. After sufficient grinding, the remaining solids were roasted
in a muffle furnace at 823 K. According to the pre-crystallization time, the samples were named as
NM-ZSM-5-0h, NM-ZSM-5-4h, NM-ZSM-5-8h, NM-ZSM-5-16h, and NM-ZSM-5-24h.
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3.2.2. Preparation of H-Type Microporous-Mesoporous ZSM-5

The alkylation reaction of phenol and tert-butanol was used as a model reaction, which is a
well-known acid-catalyzed reaction using a solid acid as a catalyst. Therefore, the prepared hierarchical
porous silicon aluminum materials were treated into acidic H-type solid acid catalysts as follows: 1.5 g
of white solid powder after calcination was put into a three-necked flask, and 24 g of ammonium
nitrate and 100 mL of distilled water were added. After stirring for 4 h in a 353 K, filtering, and drying
at 373 K for 1 h, 1.5 g of the dried product and 24 g of ammonium nitrate was stirred in 100 mL of
distilled water at 353 K for 4 h. After filtering and washing, the obtained filter cake was dried at 373 K
and then calcined in a muffle furnace at 773 K for 5 h to obtain an H-type microporous-mesoporous
silica-alumina catalyst.

3.3. Catalyst Characterization

The Fourier Infrared Spectroscopy (FT-IR) was performed on an IRAffinity-IS Fourier Infrared
Spectrometer (Shimadzu Corporation, Kyoto, Japan). X-ray powder diffraction (XRD) was performed
on a D8 type X-ray powder diffractometer (Bruker, Karlsruhe, Germany). For N2 physical adsorption,
the specific surface area and pore volume of the sample are measured on a Micromeritics ASAP 2010
type adsorber (Micromeritics, Atlanta, GA, USA). The sample was degassed at 573 K for 3 h before the
sample was measured. Adsorption is performed at the temperature of liquid nitrogen, and N2 is the
adsorbate. Under relative pressure P/P0 = 0.05–0.20, the BET specific surface area is calculated using
the BET equation. The high-resolution transmission electron microscope (TEM) was performed on a
Tecnai G2 F20 high-resolution transmission electron microscope (FEI Company, Hillsboro, OR, USA).

3.4. Catalytic Tests

The phenol tert-butylation reaction was performed in a fixed-bed a micro-quantitative reactor.
0.5 g of hydrogen-type microporous-mesoporous silica-alumina material was used as the catalyst for
the phenol tert-butylation reaction. The reactants of n (phenol): n (tert-butanol) = 1:2.5, the injection
speed was 2.2 mL/h, and the reaction temperature was 418 K. The reaction product was dissolved in
absolute ethanol, which was analyzed with a gas chromatograph. Using area normalization method,
the phenol conversion rate and product selectivity can be obtained.

4. Conclusions

In conclusion, we have successfully synthesized hierarchical aluminum-silicon materials by the
hydrothermal method and using citric acid as the mesoporous template. The microporous distribution
is centered at ca. 1 nm, whereas the mesopore distribution is located at ca. 6 nm. A main single kind
of acid site is formed in the as-prepared catalysts. Medium-strength acidity and micro-mesoporous
structure are generated in the hierarchical aluminum-silicon materials with a pre-crystallization time
of 16 h, which can efficiently catalyze alkylation of phenol with tert-butanol, on which 87.5% of phenol
conversion and 62.7% selectivity to 4-di-TBP can be achieved.
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