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Abstract: For a long time, the organic chemistry of sulfur dioxide (SO2) consisted of sulfinates that
react with carbon electrophiles to generate sulfones. With alkenes and other unsaturated compounds,
SO2 generates polymeric materials such as polysulfones. More recently, H-ene, sila-ene and hetero-
Diels–Alder reactions of SO2 have been realized under conditions that avoid polymer formation.
Sultines resulting from the hetero-Diels–Alder reactions of conjugated dienes and SO2 are formed
more rapidly than the corresponding more stable sulfolenes resulting from the cheletropic additions.
In the presence of a protic or Lewis acid catalyst, the sultines derived from 1-alkoxydienes are
ionized into zwitterionic intermediates bearing 1-alkoxyallylic cation moieties which react with
electro-rich alkenes such as enol silyl ethers and allylsilanes with high stereoselectivity. (C–C-bond
formation through Umpolung induced by SO2). This produces silyl sulfinates that react with carbon
electrophiles to give sulfones (one-pot four component asymmetric synthesis of sulfones), or with Cl2,
generating the corresponding sulfonamides that can be reacted in situ with primary and secondary
amines (one-pot four component asymmetric synthesis of sulfonamides). Alternatively, Pd-catalyzed
desulfinylation generates enantiomerically pure polypropionate stereotriads in one-pot operations.
The chirons so obtained are flanked by an ethyl ketone moiety on one side and by a prop-1-en-1-yl
carboxylate group on the other. They are ready for two-directional chain elongations, realizing
expeditious synthesis of long-chain polypropionates and polyketides. The stereotriads have also
been converted into simpler polypropionates such as the cyclohexanone moiety of baconipyrone
A and B, Kishi’s stereoheptad unit of rifamycin S, Nicolaou’s C1–C11-fragment and Koert’s C16–CI

fragment of apoptolidin A. This has also permitted the first total synthesis of (-)-dolabriferol.

Keywords: aldol reactions; alkoxyallylic cation intermediates; apoptolidin A; baconipyrones; dolabriferol;
hetero-Diels–Alder reactions; long-chain polyketides; retro-ene reaction; rifamycin S; Umpolung
with SO2

1. Introduction

Natural polypropionates are a large subgroup of polyketides (1,3-polyols) constructed
by C3-units. They are found in marine organisms including mollusks, sponges, fungi and
actinomycetes [1–5], while some of them are also isolated from terrestrial resources [6].
Polypropionates interspace methyl groups in the polyketide chain which arise biochemi-
cally directly from the propionate unit or from the acetate–methionine motif [7–9]. They
are characterized by abundant structural diversities and are important building blocks in
the biosynthesis of several kinds of antibiotics such as macrolides, polyethers and cyclic
peptides [10]. Most of them exhibit various kinds of bioactivities, especially antitumor
and antimicrobial effects [11]. Examples of natural products containing polypropionate
fragments are collected in Figure 1.
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Figure 1. Examples of natural products containing polypropionate fragments, their synthesis being
presented in this report.

The stereoselective construction of polypropionates is challenging, mainly because
of stereochemical issues. Aldol reactions, crotylations, allenylation and propargylation of
aldehydes R1CHO have been used extensively to construct the four possible stereoisomeric
R1CH(OH)-CH(Me)-R2 units [12–19]. More recently, the same fragments have been pre-
pared through the transition metal catalyzed enantioselective hydro(hydroxycarbation)
of terminal alkene R2CH=CH2 with alcohols R1CH2OH or aldehydes R1CHO + H2 [20].
The latter methods developed by Krische and co-workers have permitted significant short-
ening of the total syntheses of many natural polyketides and polypropionates [21–28].
The stereoselective construction of all possible stereoisomers of stereotriads R3CH(Me)-
CH(OH)-CH(Me)-R4 (6, Figure 2) has been achieved by many methods [29] including those
based on aldol or crotylation reactions of an aldehyde or its metallic enolate analogue
bearing an α-methyl substituent [30–36].
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Figure 2. Four possible diastereomeric polypropionate stereotriads of type R3-CH(Me)-CH(OH)-
CH(Me)-R4. Their enantiomers are not shown. Other stereotriads could be of the type R3-CH(OH)-
CH(Me)-CH(OH)-R4.

Non-aldol formation of stereotriads has been proposed, such as the Sharpless asym-
metric epoxidation of allyl alcohol followed by Pd-catalyzed hydrogenolysis of alkenyl
oxirane with HCOOH [37,38] and the cuprate addition to epoxides [39–41]. A method ap-
plying an intramolecular Rh-catalyzed silylformylation/crotylsilylation/“aprotic” Tamao
oxidation sequence has been developed by Leighton and co-workers [42–44]. Stereotriads
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have been prepared through double oxidative hydroboration of allenyl alcohols [45]. Car-
reira and co-workers used enantiomerically pure chiral nitrile oxides and allylic alcohols to
generate enantiomerically pure isoxazolines [46,47]. This permitted the preparation of all
four possible dipropionates diastereoisomers, in a protected form, starting with the same
set of reagents. Erythronolide A has been obtained by this method [48]. The Diels–Alder
additions of alkenes to 1,3-dienes produce cyclohexenes containing up to four stereocenters.
Danishefsky and co-workers have generated polypropionates via the Diels–Alder reaction.
Cycloadditions of aldehydes to 1-methoxy-2-methyl-3-silyloxypenta-1,3-diene produce
pyrans, a molecular fragment in many polypropionates [49,50]. The Diels–Alder reaction
between 2,4-dimethylfuran and enantiomerically pure 1-cyanovinyl carboxylates produces
enantiomerically pure 2-cyano-1,5-dimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-yl esters. The
alkaline hydrolysis of the latter liberates the chiral auxiliary (a carboxylic acid) which can be
recycled. The bicyclic compounds so obtained permitted Vogel and co-workers to prepare
several stereotetrads [51,52]. Alternatively, Plumet and Arjona used a Diels–Alder reaction
between furan and acrylic acid which provided, after several transformations, a complete
library of all possible stereotetrads [53,54]. Hunt and Grieco obtained polypropionates
starting with the opening at the bridgehead of oxabicyclo[3.2.1]octenes employing silyl
ketene acetals [55]. On their side, Toste and co-workers applied the enantioselective amine-
catalyzed Kornblum–DeLaMare rearrangement, a reaction first described by Hagenbuch
and Vogel in 1980 [56], on a 3-benzyloxy-2,4,8-trimethyl-6,7-dioxabicyclo[3.2.2]non-8-ene
derivative to generate the two polypropionate fragments of dolabriferol (Figure 1) [57].

2. One-Pot Synthesis of Polypropionate Stereotriads Ready for Bidirectional
Chain Elongations

For the stereotriads 6 and their enantiomeric forms (Figure 2) to become useful chi-
rons (enantiomericallly pure synthetic intermediates) in the constructions of complicated
polypropionates and analogues, their alcoholic moiety must be protected adequately and
their R3 et R4 terminus should be functions that can enter directly in stereoselective C–C
bond forming reactions, typically metal aldol reactions. Chirons of type 7 and 8 (and their
enantiomers) have been obtained in one-pot operations (Scheme 1) [16]. Their group R3

is an ethyl ketone which can be elongated into a system containing up to two further
stereogenic centers via a direct aldol reaction, while the R4 terminus is a protected ethyl
ketone under the form of (Z)-prop-1-en-1-yl carboxylate (ethyl ketone enol carboxylate)
that stays intact and can be used in the second chain elongation reaction, also producing
up to two further stereogenic centers (see below Section 4).
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Scheme 1. One-pot synthesis of syn,anti and anti,anti stereotriads 7 and 8 through C–C bond formation
between an 1-((1S)-phenylethyloxy)-2-methylpenta-1,3-dien-3-yl carboxylic esters 10 and the (E)- or
(Z)-enoxysilane derived from butan-3-one ((E)-9, (Z)-9). HA is either a protic (e.g., (CF3SO2)2NH) or
Lewis acid (e.g,: Me3SiOSO2CF3) catalyst.
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The enantiomers of stereotriads 7 and 8 are obtained in the same way using (R)-1-
phenylethanol instead of (S)-1-phenylethanol to generate dienes 10. Other 1-arylethanols
can be used to generate more enantiomerically pure dienes (see below). The SO2 is recov-
ered at the end of the process. With the acid catalyst (e.g., HA = (CF3SO2)2NH) it induces
the Umpolung of the electron-rich diene into an alkoxyallylic cation intermediate (see
below Section 3). R can be an alkyl (e.g., Me2CH) or an aryl group (e.g., Ph).

3. Sulfur Dioxide as Umpolung Agent to Promote Carbon–Carbon Bond Forming
Reactions between Alkenes and Dienes

In the presence of SO2, alkenes, alkynes and polyenes produce polymeric materials,
including polysulfones (copolymer with sulfur dioxide) [58–60]. Competing with these
reactions, SO2-catalyzed alkene isomerization can be observed. We have demonstrated
that the latter reaction may not imply a hetero-ene reaction of the alkene with SO2, fol-
lowed by a fast [1,3]-sigmatropic shift of the intermediate β,γ-sulfinic acid and retro-ene
reaction [61,62]. Instead, an allylic hydrogen atom is abstracted form the alkene by an alka-
nesulfonyl radical intermediate equilibrating with the polysulfone [63–65]. Since 1914 [66]
it has been well-known that 1,3-dienes (that can adopt a s-cis-conformation) and sulfur
dioxide equilibrate with their sulfolenes (cheletropic additions). On heating (>100 ◦C)
the sulfolenes undergo cheletropic eliminations giving back the 1,3-dienes and SO2. The
first examples of hetero-Diels–Alder additions of SO2 involved highly reactive dienes
such as 1,4,5,6-tetramethyl-2,3-dimethylidenetriclo[2.1.1.05,6]hexane [67] and orthoquin-
odimethane [68]. Below −60 ◦C simple 1,3-dienes such as isoprene and piperylene react
with SO2 equilibrating with their sultines resulting from hetero-Diels–Alder reactions
that are much faster than the corresponding cheletropic additions. Deguin and Vogel
showed in 1992 that (E,E)-deuteriopiperylene (11) equilibrates with sultine 12 at −80 ◦C
in the presence of an acid catalyst such as CF3COOH. At −60 ◦C 12 is isomerized into
the more stable isomeric sultine 13, by cycloreversion into the initial cycloaddents and re-
addition in a second hetero-Diels–Alder reaction (Scheme 2). Both the [4+2]-cycloadditions
11 + SO2 → 12 and 11 + SO2 → 13 are highly regio- and stereoselective [69]. As for many
Diels–Alder reactions, the acid-catalyzed hetero-Diels–Alder reactions of SO2 adheres to
the Alder-endo rule and to the Woodward–Hoffmann rule of suprafaciality for the di-
ene [69]. Sulfur dioxide itself catalyzes its cycloadditions [70–73]. In the absence of acid, the
secondary deuterium kinetic isotopic effects of the SO2 reaction with the dideuterodiene
15-d2 induced a regioselectivity opposite to the equilibrium isotopic regioselectivity. Sultine
ortho-17 formed faster than regioisomer meta-17. On staying at −55 ◦C, ortho-17 was slowly
isomerized into meta-17 (Scheme 2). This demonstrates that the hetero-Diels–Alder reaction
of SO2 follows a mechanism with asynchronous formation of the C–S and C–O bonds in
the transition state: the C–S bond is formed to a greater extent than the C–O bond [74].

The sulfolenes arising from the cheletropic additions of SO2 to alkyl substituted
1,3-dienes are about 10 kcal mol−1 more stable than their isomeric sultines. In contrast,
fluorosultines that result from the hetero-Diels–Alder reactions of SO2 with 1-fluoro-1,3-
dienes are more stable than their isomeric sulfolenes. This is assigned to an enthalpic
anomeric effect of the F–C–O(S=O) moiety in the sultines [75].

With 1-alkoxy- 3-acyloxy-1,3-dienes 10 (prepared in four steps from butan-3-one and
(S)-1-phenylethanol [76], the corresponding sultines 19 are not seen at −100 ◦C (large
excess of SO2, CH2Cl2 or toluene as co-solvent) as these dienes generate the corresponding
sulfolenes at this temperature already. Nevertheless, sultines 19 are believed to be formed
as intermediates before the isomeric sulfolenes (Scheme 3). In the presence of an acid
catalyst (protic acid or Lewis acid), they equilibrate with zwitterionic intermediates 20 that
can be reacted with electron-rich alkenes such as enoxysilane (Z)-9. This generates the silyl
sulfinates 24. The role of SO2 is to convert the electron-rich dienes into 1-alkoxyallyl cation
intermediates, realizing an inversion of polarity (Umpolung) that make possible the C–C
coupling reaction between the two nucleophilic partners 10 and (Z)-9 [77].
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Scheme 3. Proposed mechanism for the reaction cascade producing the syn,anti-stereotriad 7 as major
product: (1) face-selective acid-catalyzed hetero-Diels–Alder reaction of SO2, (2) immediate ionization
of the sultine so-obtained into a zwitterion, (3) face-selective quenching of the alkoxyallyl cation
intermediate by the enoxysilane, (4) intramolecular or intermolecular silyl transfer forming a silyl sul-
finate (can be isolated), (5) its Pd-catalyzed alcoholysis with isopropanol forming the corresponding,
β,γ-unsaturated sulfinic acid which (6) undergoes a face-selective H-retro-ene reaction.
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After removal of SO2 in excess and solvent under vacuum, enough K2CO3 in CH3CN
was added to neutralize the acid catalyst. Then a 1:1 mixture of Pd(AcO)2/Ph3P and
isopropanol was added, and heating to 80 ◦C produced the final stereotriads. The stere-
oselectivity of the reaction cascade is explained in the following way (Scheme 3). The
hetero-Diels–Alder reaction of SO2 is face selective because the chiral auxiliary (1-alkoxy
substituent of the diene) favors transition structure 18, the least encumbered face of the
diene reacting preferentially. The acid catalyzed ionization of the resulting sultines 19
generate ion-pairs 20 in which the sulfinate anion remains closed to the 1-alkoxyallyl cation
moieties. This forces the nucleophile (e.g., enoxysilane (Z)-12) to attack 20 on the face
opposite to that occupied by the sulfinate anion (transition structure 21). The resulting
adducts 22 undergo intramolecular silyl group transfers via conformations 22′. Alterna-
tively, two molecules of 22 could undergo a double intramolecular silyl group transfer
giving the silyl sulfinates 23. Alcoholysis of 23 gives sulfinic acids 24 which undergo
H-retro-ene reactions generating 7, the stereoselectivity of which is controlled by steric
factors making transition structures 24 preferred to 24′. For the reaction cascade using
enoxysilane (Z)-9 and diene 10 with R = i-Pr, R* = (S)-1-phenylethyl) (1:1 SO2/toluene, cata-
lyst AH = (CF3SO2)2NH) the corresponding stereotriads 7 and 8 were isolated in 67 and 13
% yield, respectively, after column chromatography. Using Greene’s chiral auxiliaries ((S)-
1-[2,4,6- tris(isopropyl)phenyl]ethanol) [78]) instead of inexpensive (S)-1-phenylethanol the
diastereoselectivity syn,anti vs. anti,anti-stereotriad was better than 95:5 [79].

The silyl sulfinates 23 can be isolated, or converted in situ into sulfinate salts that
are quenched by all kinds of electrophiles to give sulfones (four-component synthesis of
polyfunctional sulfones [80]), or converted in situ (with Cl2 or N-chlorosuccinimide) into
sulfonyl chlorides that react with amines to produce sulfonamides (four-component synthe-
sis of polyfunctional sulfonamides [81,82]). Acidic treatment of 23 also leads to desulfiny-
lation producing the stereotriads in a lower yield, due to elimination of 1-phenylethanol-
generating dienes 26 and aldols 27, the latter undergoing retro-aldol decomposition into
penta-3-one and aldehydes 28 (Scheme 4). This is avoided when the silyl sulfinates are
treated under neutral or slightly basic conditions (K2CO3) in isopropanol in the presence
of a catalytic amount of Pd(AcO)2 and Ph3P. Without Ph3P the reaction does not occur
(formation of Pd(0) species as catalyst). One can envisage a Pd(0) complex intermediate
which adds oxidatively (retention of configuration) into the allylic C–SO2SiMe3 bond of 23.
Subsequent desulfinylation and protolysis of the Pd–SiMe3 bond gives i-PrOSiMe3 (driving
force) and an (allyl)palladium hydride that undergoes regioselective and stereoselective
β-insertion of hydride into another (allyl)Pd intermediate. An alternative mechanism
(Scheme 3) is to invoke that the Pd(0) role is just to promote the Si-sulfinate bond cleavage
under non-acidic conditions generating the corresponding β,γ-unsaturated sulfinic acids
that, in turn, undergo H-retro-ene elimination of SO2 [83].
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4. Long-Chain Polypropionates through Bidirectional Chain Elongation

The polypropionate 31 (a stereodecad) containing 10 contiguous stereogenic centers
has been obtained by two successive metal-aldol reactions of stereotriad 7 (Scheme 5) [84].
Applying Paterson’s method for direct formation of enoxyboranes [85–87] the dicyclo-
hexyl(enoxy)borane derived from 7 reacted with acetaldehyde giving an boron anti-2-
methylaldolate that was reduced directly with NaBH4 generating a anti,anti-2-methyl-
1,3-diol moiety, which was protected as the acetonide 29 (a stereohexad in one pot op-
eration) in 61% overall yield. The (Z)-enol isobutyrate group of 29 was converted with
retention into the (Z) lithium enolate 30 by reaction with MeLi.LiBr in ether. The lat-
ter added to the acetonide of D-glyceraldehyde giving a major lithium aldolate. Its
phenylethyl ether was hydrogenolyzed under standard conditions and the aldol was
reduced with Me4NB(AcO)3H [88,89] selectively into the corresponding anti-1,3-diol 31
(67% overall yield).
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5. First Total Asymmetric Synthesis of the Cyclohexanol Subunit of Baconipyrones A
and B

Baconipyrones A-D were isolated in 1989 by Faulkner and co-workers from Siphonaria
baconi [90]. The stereotriad 7 (R = i-Pr, R* = (S)-1-phenylethyl) has been converted in
two steps into cyclohexanone 34 (overall yield: 86%), subunit of baconipyrones A and B
(Figure 1) [91]. Transesterification of enol isobutyrate 7 (Scheme 6) with Bu3SnOMe [92,93]
induced the desired stereoselective intramolecular aldol reaction, giving 33. Transition
structure 32 was proposed to explain the stereoselectivity hydrogenolysis of 33 and pro-
vided 34 quantitatively.
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6. First Total Asymmetric Synthesis of (-)-Dolabriferol

(-)-Dolabriferol was isolated from Dolabrifera dolabrifera, a shell-less mollusk. (-)- Dolabriferol
is assumed to protect the mollusk from predators [94]. This natural product is made of
two polypropionates subunits linked by an ester function, a structural motif which is also
found in baconipyrones (Figure 1). Ozonolysis of pure 35 arising from the reaction of
diene 13 (R’ = (R)-1-phenylethyl) and enoxysilane (E)-9 provided the carboxylic subunit
(+)-36 of (-)-dolabriferol (two steps from diene 13). Similarly, reaction of diene 37 with
enoxysilane 38 resulted in a stereotriad 39 (67%, single diastereomer, diasteroselectivity
better than 95:5), that was reduced with stereoselectivity into alcohol 40 (a stereotetrad in
two steps from diene 37). Protection as an allyl carbonate (alloc), followed by TiCl4-induced
E1 cleavage of the 1-phenylethyl ether moiety furnished alcohol 41. The esterification of 41
with carboxylic acid (+)-36 using Paterson’s protocol [95] produced 42 (DMAP = 4-dim-
ethylaminopyridine). Selective removal of the acetyl group was realized by treatment
in pure Bu3SnOMe at 70 ◦C, followed by KF/H2O work-up. Subsequent treatment with
CF3COOH removed the phenylethyl ether, giving 43. Final deprotection of the alloc group
(TPPS = 3,3′,3”-phosphinidynetris(benzenesulfonic acid) trisodium salt) and formation of
the cyclic hemiacetal gave (-)-dolabriferol (Scheme 7).[96] Since this first total synthesis
which established the absolute configuration of (-)-dolabriferol, several other synthetic
approaches have been proposed, sometimes requiring more steps [57,97–100].
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7. Expeditious Asymmetric Synthesis of the Stereoheptad C19–C27 of Rifamycins:
Formal Total Synthesis of Rifamycin S

Rifamycins [101–103] are antibiotics belonging to the group of naphthalenic ansamycins [104]
characterized by an aliphatic bridge (polypropionate chain) linking two non-adjacent cen-
ters of an aromatic moiety. They are produced from Streptomyces mediterranei [105] and are
active against a large variety of organisms, including bacteria, eukaryotes and viruses [106].
Rifamycins have shown also antitumour activity [107] and anti-inflammatory activity [108].
At present, rifamycins and analogues are applied in the treatment of tuberculosis. They
inhibit bacterial DNA-dependent RNA polymerase [109–111]. Rifamycin S (4) and several
analogues showing promising activities have been prepared [112–115].

The first total synthesis of rifamycin S (4) was reported by Kishi and co-workers in
1980 [116–119]. The stereoheptad (-)-48 is a key intermediate for the construction of the
ansa chain. It was obtained in 26 steps and 5.2% overall yield from (2S)-3-benzyloxy-2-
methylpropanal. Since then, several total asymmetric syntheses of the polypropionate
fragment have been proposed [120–123]. The construction of the C19–C27 fragment ((-)-48
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and analogues) of this antibiotic has become a challenging target for the testing of asym-
metric synthetic methods and strategies [50,124–141].

Starting from the readily available diene 10 (R* = (S)-1-phenylethyl, X = isobutyrate,
Scheme 1) Kishi’s intermediate (-)-48 was obtained in 25% yield requiring the isola-
tion of only four synthetic intermediates (Scheme 8). The (Z)-enol ether 44 resulting
from the silylation of ethyl ketone 7 (derived from diene 10) reacted with 9-bromo-9-
borabicyclo[3.3.1]nonane (BrBBN) in CH2Cl2 (silyl/boron exchange) and then with alde-
hyde 45 to produce a 12.5:1 mixture of 46 and 9-epimer in 81% yield. Pure 46 was reduced
under Evans’ conditions [88,89] to give diol 47. The next five operations were carried out
in the same pot without isolating any intermediate. Treatment of 47 with AcOH cleaved
the silyl ether. Then hydrogenolysis removed the phenylethyl group. The crude tetrol
so obtained was converted into the corresponding diacetonide. Ozonolysis of the enol
isobutyrate moiety gave a mixed anhydride that was reduced with LiAlH4 into (-)-48 [142].
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8. Generalization of the SO2-Induced Umpolung. Short Synthesis of the C16–C28
Fragment of Apoptolidinone: Formal Total Synthesis of Apoptolidin A

Apoptolidin A (isolated from Nocardiopsis sp.) [143,144] and the natural analogues B, C,
D, E and F [145–147] are leads for the chemotherapy of cancers [148–151]. They selectively
induce apoptosis in cancer cells. The groups of Nicolaou [152,153] and Koert [154,155]
have presented the first syntheses of apoptolidin A. The groups of Sulikowsky [156,157]
and Crimmins [158] have reported syntheses of the aglycon apoptolidinone A. Fragments
of this aglycon has been prepared by other groups [159].

Applying our SO2-induced Umpolung reaction, rapid access (nine steps) to Koert’s
C16–C28 polyketide fragment 57 (Scheme 9) of apoptolidinones A has been realized [160].
This work illustrates that other dienes and enoxysilanes than those presented in Scheme 1
can be used in our reaction cascade. Fragment 57 is adequately protected for the glycosida-
tion steps necessary in the construction of apoptolidin A.
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Diene 49 (derived from inexpensive (R)-1-phenylethanol) and silyl ethers 50 (1:1 E/Z
mixture) were reacted with a catalytic amount of (CF3SO2)2NH in SO2/CH2Cl2 (5:1) cooled
to −78 ◦C. After neutralization of the acid catalyst with Et3N and solvent evaporation,
alcoholysis with i-PrOH (80 ◦C) gave a 4:1 mixture of stereotriad 51 and its α,β,γ–anti,anti
stereomer. This mixture was converted into their kinetic silyl enol ethers and oxidized with
mCPBA (Rubottom oxidation [161]) giving 52 that underwent Mukaiyama aldol coupling
with aldehyde 53 [162,163], producing alkene 54. Ozonolysis of 54 followed by treatment
with Me2S gave an aldehyde that was allylated under Brown’s conditions [164]. The
resulting homoallylic alcohol was equilibrated with the hemiacetal 55 that underwent
desilylation, debenzylation and Fischer glycosidation on treatment with HCl/MeOH at
50 ◦C. The resulting triol was then acetylated selectively into a diacetate (at C19 and C20); the
most sterically hindered alcohol at C23 was then silylated giving 56. Sharpless asymmetric
dihydroxylation [165] of 56 furnished a 4.5:1 mixture of the corresponding diol that was
selectively monomethylated with MeI/Ag2O giving Koert’s intermediate 57.

9. The One-Pot Four-Component Synthesis of Polyfunctional Sulfones: Application to
a Short Synthesis of the C1–C11 Fragment of Apoptolidin A

Another key intermediate in the total synthesis of apoptolidin A is the Nicolaou’s
C1–C11-fragment (+)-65 the preparation of which requires 11 steps [152]. Applying our SO2-
induced Umpolung reaction, an expeditious synthesis of this intermediate was realized
with an overall yield of 29% starting with simple diene 58, enoxysilane 59 and the known
enantiomerically pure (S)-3-methoxymethoxy-2-methylprop-1-yl iodide. The method
required the isolation of only three synthetic intermediates (Scheme 10) [166]. In the
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presence of 0.4 equivalent of a strong acid such as (CF3SO2)2NH sulfur dioxide adds to
the s-trans form of diene 58 equilibrating with a zwitterionic intermediate 60 that was
quenched by the enoxysilane 59. One assumes that another zwitterionic intermediate
61 was formed, which after treatment with tetrabutylammonium fluoride generated the
dihydroxyketone 62, an aldol that loses one equivalent of water under acidic conditions
(p-TsOH, MeOH, 70 ◦C) to give the (E,E)-dienone 63 (one pot: 87% yield). Silyl ether and
enol silyl ether formation was followed by oxidation with mCPBA. This generated an α-
hydroxyketone which was not isolated but directly submitted to the Malaprade oxidation,
giving a carboxylic acid that was esterified in situ with diazomethane-producing ester 64.
Dess–Martin oxidation of the primary alcohol of 64 gave an aldehyde that was reacted,
without purification, with Et3SiCC-Li to give a 5:1 mixture of diastereomeric propargylic
alcohols. They were silylated and the sulfone moiety underwent a Ramberg–Bäcklund
rearrangement [167–169] providing a 12:1 mixture of (E,E,E)-/(E,E,Z)-triene-ester (+)-65.
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10. Allylsilanes as Nucleophiles: Development of Two-Directional
Polypropionate–Polyketide Synthesis

Like enol silyl ethers, allylsilanes are nucleophiles that can be used in our SO2-induced
CC bond-forming reaction. Using allyldisilane 67 and two different dienes, 66 and 69, the
stereotetrads 70 can be prepared in one-pot operations (Scheme 11). Diene 66 possesses a
1-(1-phenyl)ethoxy group whereas diene bears a 1-[1-(4-fluorophenyl]ethoxy substituent.
The SN1 and E1 cleavage of the benzylic C–O ether bond of the 1-phenylethoxy group are
faster than the SN1 and E1 C–O benzylic bond cleavage of the 1-(4-fluorophenyl)ethoxy
group; the pseudo-symmetrical stereotetrad is suitable for two successive aldol reactions on
both their chain terminus. This permits the expeditious syntheses of long-chain polyketides
and polypropionates.
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directional chain elongation.

Reaction of diene 66 with 67 and SO2 promoted by Me3SiOTf generated the prod-
uct of mono-alkoxyallylation 68. The reaction 66 + 67→ 68 is faster than the reaction of
monoallysilane 68 with diene 67 + SO2 because bisallylsilane 66 enjoys twice the β-silicon
effect. In the presence of one equivalent of diene 66 the product of double oxyallytion
is not formed; only sulfinate 68 is formed. It can be reacted without purification with
SO2 and diene 69, providing a bis(silyl sulfinate) which is not isolated but submitted
directly to the double Pd(0)-catalyzed desilylation and desulfitation reactions, furnishing
the stereotetrad 70, isolated in 54% yield (one-pot). Selective debenzylation of 70 with
BCl3/pentamethylbenzene eliminated the phenylethyl group, giving a homoallylic alcohol
that was not isolated but treated directly with (Me3Si)2NLi to engender the corresponding
lithium alcoholate 71 (one pot). The latter underwent rapid acyl group migration from the
neighboring enol benzoate forming lithium enolate 72. Without isolation, the latter enolate
reacted with Me3SiCl giving a (Z)-enoxysilane that was reacted in situ with isobutyralde-
hyde and BF3 etherate, providing aldol 73 which was a single stereomer isolated in 72%
yield. Reduction of aldol 72 under Narasaka’s conditions [170] gave the corresponding
syn-1,3-diol that was converted in situ into its acetonide 74 (83%, overall). The treatment
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of enol benzoate 74 with MeLi.LiBr furnished the corresponding lithium (Z)-enolate. It
was quenched by the chiral aldehyde 75 producing a major aldol that was not isolated but
directly reduced under Evans’ conditions [88,89]. This furnished 76, a polyketides contain-
ing 11 stereogenic centers. As the configuration of the 1-oxydienes 66 and 69 can be either
(R) or (S) and since the two successive aldol reactions on the intermediate stereotetrad can
used a wide variety of aldehydes under well-chosen conditions, a very large library of
polyketides can be prepared applying our method illustrated in Scheme 11 [171,172].

11. Conclusions

At low temperature, and in the presence of a protic or Lewis acid catalyst, 1-alkoxy-
1,3-dienes undergo fast hetero-Diels–Alder reactions with SO2, forming unstable sultines
that are converted rapidly into zwitterionic intermediates containing 1-oxyallyl cation
moieties. The latter are quenched in situ by electron-rich alkenes such as silyl enol ethers
generating β,γ-unsaturated silyl sulfinates. Sufur dioxide induces a stereoselective C–C
bond forming reactions between electron-rich dienes and alkenes (Umpolung through
SO2). The silyl sulfinates so obtained can be converted in situ into stereotriads that are
flanked by an ethyl ketone group at one side and by an enol ester of an ethyl ketone
on the other side. In a few synthetic steps the synthesis of the cyclohexanone unit of
baconipyrones and of the two fragments of (-)-dolabriferol have been realized. With the
first total synthesis of (-)-dolabriferol we could establish its absolute configuration. Aldol
condensation of the ethyl ketone group of one of our stereotriads has opened a very short
route to Kishi’s stereoheptad, which he used to construct rifamycin-S. A similar strategy has
permitted us to obtain the Koert’s C16–C28 polyketide fragment of apoptolidin A. Under
strongly acidic conditions, s-trans-1-alkoxydienes and enoxysilanes react with SO2 forming
sulfinates that are quenched in situ with electrophiles to generate polyfunctional sulfones
with a conjugated (E,E)-dienone moiety. The method has permitted an efficient synthesis
of Nicolaou’s C1–C11 fragment of apoptolidin A. The stereotriads undergo two successive
metal aldol reactions that produce complicated polyketides and polypropionates in a few
steps. Allylsilanes can be used instead of enoxysilanes in our SO2-induced Umpolung
reaction. With 2-[(methyldiphenyl)methyl]allylmethyl(diphenyl)silane), two successive
alkoxyallylations with two different 1-alkoxydienes can be run in the same pot, thus
generating stereotetrads ready for two successive aldol reactions (two-directional chain
elongations). The strategy permits us to construct, in a few steps, complicated polyketides
and polypropionates in a combinatorial fashion.
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