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Abstract: MIL-53 and the MIL-53–Al2O3 composite synthesized by a solvothermal procedure, with
water as the only solvent besides CrCl3 and benzene-1,4-dicarboxylic acid (BDC), were used as cat-
alytic supports to obtain the novel MIL-53-based catalysts Ni(10 wt.%)/MIL-53 and Ni(10 wt.%)/MIL-
53–Al2O3. Ni nanoparticle deposition by an adapted double-solvent method leads to the uniform dis-
tribution of metallic particles, both smaller (≤10 nm) and larger ones (10–30 nm). MIL-53–Al2O3 and
Ni/MIL-53–Al2O3 show superior thermal stability to MIL-53 and Ni/MIL-53, while MIL-53–Al2O3

samples combine the features of both MIL-53 and alumina in terms of porosity. The investigation
of temperature’s effect on the catalytic performance in the methanation process (CO2:H2 = 1:5.2,
GHSV = 4650 h−1) revealed that Ni/MIL-53 is more active at temperatures below 300 ◦C, and
Ni/MIL-53–Al2O3 above 300 ◦C. Both catalysts show maximum CO2 conversion at 350 ◦C: 75.5%
for Ni/MIL-53 (methane selectivity of 93%) and 88.8% for Ni/MIL-53–Al2O3 (methane selectivity
of 98%). Stability tests performed at 280 ◦C prove that Ni/MIL-53–Al2O3 is a possible candidate
for the CO2 methanation process due to its high CO2 conversion and CH4 selectivity, corroborated
by the preservation of the structure and crystallinity of MIL-53 after prolonged exposure in the
reaction medium.
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1. Introduction

Lately, the methanation of CO2 has experienced a revived interest due to the fact that
it might meet two challenges simultaneously: (1) electrical energy storage in the form of
methane by the use of hydrogen produced using renewable energy [1–3] (the Power-to-Gas
concept); and (2) abatement of CO2 emissions by the utilization of CO2 (the carbon capture
and utilization concept, CCU), rather than CO2 capture and storage (CCS) [4–6]. Although
theoretically very attractive, one of the major problems of CO2 methanation is the catalytic
process, which needs efficient catalysts in order to activate the very stable CO2 molecule
and to overcome the kinetic limitations given by the eight-electron process involved for the
complete reduction from CO2 to CH4 [5].

Generally, catalysts of the metal/support type were used in the methanation of CO2,
with various combinations between selected metals (i.e., Ni, Ru, Rh, Pt, Pd, Fe, Co) [7–10]
or supports (i.e., Al2O3, SiO2, ZrO2, TiO2, CeO2, MCM-41, UiO-66, MIL-101, MOF-5, Al2O3-
MIL-53, etc.) [9–12]. However, Ni/Al2O3 is one of the most widely used catalysts due to
its good catalytic activity and its economic advantage [8,13,14]. Several approaches were
considered to improve the catalytic performance of Ni-based catalysts, among which pro-
motion with noble metals to enhance the activation of hydrogen [8,14,15] or the addition of
basic oxides to enhance the activation of the acidic CO2 molecule [16–19] were considered.
Another interesting approach is to simultaneously pursue the enhancement of both H2 and
CO2 activation by the use of supports with very large surface areas (i.e., ≥250 m2/g), which
could ensure an increased metal dispersion necessary for the activation of H2 [20], as well
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as an increased number of CO2 activation sites due to the large surface area [21–23]. For
this goal, metal–organic frameworks (MOFs) were spotted on the large scene of materials
owing to their special properties given by their large surface area and uniform porosity,
structural diversity, tailorability, and good gas sorption capacities [23–26]. There are only a
few reports on the use of MOF-based catalysts in the methanation of CO2: Ni@MOF-5 [27],
Ni@MIL-101 [22,28], Ni@UiO-66 [28,29], or Pt/UiO-66 [30], although MOFs, MOF com-
posites, or MOF derivatives have found their way for diverse energy applications [23,31].
However, MOFs’ low density as a consequence of their large porosity gives them low
mechanical and thermal stability [32,33], which makes them less attractive for catalytic
applications, despite their exceptional properties. Thus, the shaping of MOFs either by
compacting the powders by pressing [25,32,34] or immobilization into or onto different
structures [33,35–37] becomes of utmost importance. If the compaction of powders by
pressing leads to a decrease in surface area due to the alteration of the crystalline struc-
ture [25], or to the amorphization of the MOF depending on the applied pressure [32], the
immobilization of MOFs onto different structures is not only an elegant shaping approach,
but could bring important advantages, as diffusion limitations given by the narrow pores
of the MOF might be surpassed due to the meso-microporous nature of the MOF composite
thus obtained [25,37,38]. Up to now, different MOFs have been immobilized on either silica
(MOF-5@SiO2 [39,40], MOF-5@SBA-15 [41], HKUST-1@MCM-41 [42], HKUST-1@SiO2 [43])
or alumina supports (HKUST-1@boehmite [38], ZIF-8@Al2O3 [37], MOF-5@α-Al2O3 [44],
MIL-101@α-Al2O3 [35]) using different synthetic approaches.

Following our experience in the methanation of CO2, either on alumina-supported
Ni catalysts [15] or on MOF-based catalysts [28,30], we aimed to shape MOFs in order to
obtain more stable MOF-based catalytic supports [45]. Thus, in our quest for shaping MOFs
by crystallization on preformed structures, MIL-101 was first chosen to be immobilized on
alumina pellets due to its large surface area and its interesting mesoporous structure given
by the two types of cavities (2.9 and 3.4 nm), which can be accessed through apertures of
1.2 and 1.6 nm width [46]. Thus, starting from the synthesis conditions for MIL-101 and
pursuing the synthesis of the MIL-101–Al2O3 composite, it was initially found that MIL-53
was also immobilized on the selected amount of alumina, besides the targeted MIL-101.
MIL-53 and MIL-101 are two members of the chromium benzenedicarboxylate family of
MOFs (Cr-BDCs), with different porosity characteristics: MIL-101 possesses BET surface
areas >3000 m2/g and a large pore volume due to its special mesoporous structure, while
MIL-53 gives surface areas up to 1500 m2/g and a lower pore volume of 0.6 cm3/g due to
its microporous structure (pores around 0.85 nm) [47]. On the other hand, MIL-53 is a three-
dimensional framework with a one-dimensional pore channel system, and exhibits a very
interesting breathing effect given by its three forms: the pores of the as-synthesized MIL-53
(MIL-53as) filled with disordered benzene-1,4-dicarboxylic acid (BDC) can be liberated by
calcination to give the high-temperature MIL-53 structure (MIL-53ht), which by hydration
at room temperature gives the low-temperature form (MIL-53lt) [47].

If MIL-101 and more so the composite material MIL-101–Al2O3, obtained by immo-
bilization on alumina, proved their efficiency as catalytic supports in the methanation
of CO2 [28,45], what is the case for their MIL-53 homologues? Since MIL-53 is known
for its CO2 adsorption capacity even in its hydrated form [48,49], and considering that
it is generally accepted that the support plays an important role in the activation and
dissociation of CO2 during the methanation process [8], MIL-53-based catalytic supports
could be an interesting choice for this reaction. Therefore, the aim of this work is to re-
port for the first time the synthesis of MIL-53-coated alumina, giving the MIL-53–Al2O3
composite, and to evaluate its performance as a catalytic support in the methanation of
CO2. Therefore, a Ni(10 wt.%)/MIL-53–Al2O3 catalyst synthesized by an adapted double-
solvent method was tested in the CO2 methanation process and compared to its homologue
Ni(10 wt.%)/MIL-53. It should be highlighted that both MIL-53 and the MIL-53–Al2O3
composite were obtained under hydrothermal conditions, with no added HF, after only 12
h reaction time, as compared to 72 h for the classical synthesis procedure for MIL-53 [47], a
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less time- and energy-consuming synthetic approach, and therefore more advantageous
from the environmental point of view.

2. Results and Discussion
2.1. Structural Characteristics of Catalysts

As previously reported, in the attempt of immobilizing MIL-101 on alumina particles
starting from the synthesis procedure of MIL-101, it was noticed that the equimolar mixture
of BDC and CrCl3 (220 ◦C, 24 h) results in a mixture of both MIL-101 and MIL-53 covering
the alumina particles introduced in the reaction pot [45]. Thus, the synthesis procedure
was modified with the goal to obtain either MIL-101 or MIL-53 on the alumina particles,
giving MIL-101–Al2O3 [45] and MIL-53–Al2O3 composites, respectively. The MIL-53–Al2O3
composite was obtained successfully after one deposition procedure at 150 ◦C, 12 h.

Comparative analysis of XRD patterns for MIL-53 and the MIL-53–Al2O3 composite
(low-temperature forms) (Figure 1) reveals that characteristic peaks of MIL-53 are well
defined in both samples, indicating that MIL-53 was successfully obtained either alone or
deposited on the alumina particles. The only notable difference between the synthesized
MIL-53 and MIL-53–Al2O3 is that the diffraction peak situated at 12◦ in the case of MIL-53
is slightly shifted to the right in the case of MIL-53–Al2O3. Besides the diffraction lines
corresponding to the deposited MOF, the XRD pattern of the MIL-53–Al2O3 composite
also show a characteristic reflexion corresponding to γ-alumina situated at 67.1◦ (JCPDS
card no. 50-0741) (inset of Figure 1). Following the deposition of Ni nanoparticles by the
double-solvent method, both MIL-53 and MIL-53–Al2O3 supports preserve their structure,
the characteristic diffraction lines of MIL-53 being evident in both Ni/MIL-53 and Ni/MIL-
53–Al2O3 samples (Figure 1). Characteristic diffraction lines for Ni are slightly noticeable
only at 44.5◦ corresponding to Ni (1 1 1) (JCPDS card no. 65-0380), suggesting the formation
of small and well dispersed Ni nanoparticles on either MIL-53 or MIL-53–Al2O3 supports
(see inset of Figure 1). This observation is in agreement with previous reports related to
the encapsulation of metal nanoparticles inside the pores of different MOFs or MOF-based
composites: Pd(5 wt.%)/MIL-101 [50], Ni(10 wt.%)/MIL-101 [28,45], Ni(20 wt.%)/UiO-
66 [29], or Ni(10 wt.%)/MIL-101-Al2O3 [45].

Catalysts 2021, 11, x FOR PEER REVIEW 3 of 15 
 

 

Ni(10wt.%)/MIL-53. It should be highlighted that both MIL-53 and the MIL-53–Al2O3 com-

posite were obtained under hydrothermal conditions, with no added HF, after only 12 h 

reaction time, as compared to 72 h for the classical synthesis procedure for MIL-53 [47], a 

less time- and energy-consuming synthetic approach, and therefore more advantageous 

from the environmental point of view. 

2. Results and Discussions 

2.1. Structural Characteristics of Catalysts 

As previously reported, in the attempt of immobilizing MIL-101 on alumina particles 

starting from the synthesis procedure of MIL-101, it was noticed that the equimolar mix-

ture of BDC and CrCl3 (220 °C, 24 h) results in a mixture of both MIL-101 and MIL-53 

covering the alumina particles introduced in the reaction pot [45]. Thus, the synthesis pro-

cedure was modified with the goal to obtain either MIL-101 or MIL-53 on the alumina 

particles, giving MIL-101–Al2O3 [45] and MIL-53–Al2O3 composites, respectively. The 

MIL-53–Al2O3 composite was obtained successfully after one deposition procedure at 150 

°C, 12 h. 

Comparative analysis of XRD patterns for MIL-53 and the MIL-53–Al2O3 composite 

(low-temperature forms) (Figure 1) reveals that characteristic peaks of MIL-53 are well 

defined in both samples, indicating that MIL-53 was successfully obtained either alone or 

deposited on the alumina particles. The only notable difference between the synthesized 

MIL-53 and MIL-53–Al2O3 is that the diffraction peak situated at 12° in the case of MIL-53 

is slightly shifted to the right in the case of MIL-53–Al2O3. Besides the diffraction lines 

corresponding to the deposited MOF, the XRD pattern of the MIL-53–Al2O3 composite also 

show a characteristic reflexion corresponding to γ-alumina situated at 67.1° (JCPDS card 

no. 50-0741) (inset of Figure 1). Following the deposition of Ni nanoparticles by the dou-

ble-solvent method, both MIL-53 and MIL-53–Al2O3 supports preserve their structure, the 

characteristic diffraction lines of MIL-53 being evident in both Ni/MIL-53 and Ni/MIL-53–

Al2O3 samples (Figure 1). Characteristic diffraction lines for Ni are slightly noticeable only 

at 44.5° corresponding to Ni (1 1 1) (JCPDS card no. 65-0380), suggesting the formation of 

small and well dispersed Ni nanoparticles on either MIL-53 or MIL-53–Al2O3 supports 

(see inset of Figure 1). This observation is in agreement with previous reports related to 

the encapsulation of metal nanoparticles inside the pores of different MOFs or MOF-based 

composites: Pd(5wt.%)/MIL-101 [50], Ni(10wt.%)/MIL-101 [28,45], Ni(20wt.%)/UiO-66 

[29], or Ni(10wt.%)/MIL-101-Al2O3 [45]. 

 

Figure 1. Low-angle XRD patterns of MIL-53 and MIL-53–Al2O3 samples, and XRD patterns of the 

corresponding Ni-based catalysts (Ni/MIL-53, Ni/MIL-53–Al2O3)—inset. 

5 10 15 20 25 30

In
te

n
s

it
y

 (
a

.u
.)

2 ()

 MIL-53 sim 

 MIL-53

 Ni/MIL-53

 MIL-53-Al2O3

 Ni/MIL-53-Al2O3

0 10 20 30 40 50 60 70 80

Al2O3Ni (1 1 1)

 Ni/MIL-53

 Ni/MIL-53-Al2O3

In
te

n
s
it

y
 (

a
.u

.)

2 ()

Figure 1. Low-angle XRD patterns of MIL-53 and MIL-53–Al2O3 samples, and XRD patterns of the
corresponding Ni-based catalysts (Ni/MIL-53, Ni/MIL-53–Al2O3)—inset.

Nitrogen adsorption–desorption isotherms of the MIL-53-based samples, as well
as their pore size distribution, are presented in Figure 2, while corresponding surface
area values, total pore volumes, micropore volumes, and average pore dimensions are
given in Table 1. It may be observed that both MIL-53 and Ni/MIL-53 present a type
I adsorption–desorption isotherm, characteristic to microporous materials [51]. Indeed,
pore size distribution evaluated using the Horvath–Kawazoe model shows pore widths
ranging between 0.4 and 2 nm in the case of both samples. As a consequence of Ni
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nanoparticle deposition, the number of very small pores is reduced in the case of Ni/MIL-
53, indicating either the deposition of very small Ni particles inside the pores of the MOF
or the blockage of some pores due to the deposition of larger metallic particles. Specific
surface area decreases from 933.2 m2/g for MIL-53 to 519.9 m2/g for Ni/MIL-53, with the
corresponding decrease in specific pore volume from 0.48 cm3/g to 0.31 cm3/g, respectively,
as well as of the calculated micropore volume from 0.34 cm3/g to 0.18 cm3/g.
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Figure 2. (a) Nitrogen adsorption–desorption isotherms and (b) pore size distribution for the MIL-
53-based samples.

Table 1. Textural properties of the synthesized samples.

Sample SBET
(m2/g)

Vp
(cm3/g)

Vµ *
(cm3/g)

Dm
(nm)

MIL-53 933.2 0.48 0.34 0.4–2
Ni(10%)/MIL-53 519.9 0.31 0.18 0.4–2

Al2O3 110.0 0.21 - 10–25

MIL-53–Al2O3 489.4 0.50 0.07 0.6–2.2; 3–6;
10–25

Ni(10%)/MIL-53–Al2O3 277.9 0.42 0.03 0.6–2.8; 3–6;
12–25

* Micropore volume calculated using the t-plot method.

The adsorption–desorption isotherms of MIL-53–Al2O3 and Ni/MIL-53–Al2O3 sam-
ples combine the characteristics of both MIL-53 and Al2O3. Alumina, a typical mesoporous
material, shows a characteristic type IV isotherm with a H2 hysteresis loop [51]. Both
MIL-53–Al2O3-based samples exhibit the type I isotherms in the low p/p0 region, while
at higher p/p0 values the isotherms resemble type IV more due to the characteristic hys-
teresis loop, proving the micro-mesoporous structure. Indeed, this combination of features
originating from both MIL-53 and alumina is more evident when taking into account the
pore size distribution of the MIL-53–Al2O3-based samples. Thus, Figure 2b shows that
both MIL-53–Al2O3 and Ni/MIL-53–Al2O3 samples exhibit two types of pores: micropores
ranging from 0.6 to 2.2 nm, and mesopores, some smaller in the 3–6 nm region, as well
as larger ones, in the 10–25 nm domain. It should be noted, however, that Ni nanopar-
ticle deposition on MIL-53–Al2O3 results in a decrease in the proportion of pores in the
0.6–2.2 region, suggesting that part of the deposited Ni fills this type of pores. Additionally,
total pore volume decreases slightly upon Ni nanoparticle deposition, while calculated
micropore volume is two times lower for Ni/MIL-53–Al2O3 as compared to MIL-53–Al2O3.
With respect to surface area, the Ni/MIL-53–Al2O3 sample presents a value of 277.9 m2/g,
lower than the corresponding value of 489.4 m2/g of the starting MIL-53–Al2O3 composite.
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Morphologically, MIL-53 is composed of well-defined four-pointed star crystals (SEM
image in Figure 3a), as typically reported for this MOF structure [52,53]. MIL-53 crystal
growth on alumina pellets leads to the formation of MOF crystals of the same shape, which
do not necessarily uniformly cover the alumina granules (Figure 3b), in contrast to the
uniform coverage with MIL-101 crystals on alumina reported in our previous work in the
case of the MIL-101–Al2O3 composite [45]. Ni deposition on the MIL-53–Al2O3 composite
preserves the shape of the MIL-53 crystals (SEM image in Figure 3c), while TEM images
presented in Figure 3d,e, with the corresponding EDS mapping, reveal a quite uniform
distribution of both small (≤10 nm) and larger Ni particles (10–30 nm). Considering that
MIL-53 does not uniformly cover the alumina pellets, Ni nanoparticles are deposited both
on MIL-53 and Al2O3 in the case of the MIL-53–Al2O3 composite.
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Thermogravimetric analysis of MIL-53 and MIL-53–Al2O3 samples reveals a quite
different thermal stability of the two types of materials (Figure 4). Both MIL-53 and
Ni/MIL-53 samples show a first weight loss of about 5% below 120 ◦C due to the removal
of physically adsorbed guest molecules (i.e., H2O), and a second weight loss of 64% for
MIL-53 (410 ◦C) and 54% for Ni/MIL-53 (390 ◦C) attributed to the collapse of the MOF
structure due to ligand decomposition [53,54]. MIL-53–Al2O3 and Ni/MIL-53–Al2O3,
on the other side, show the first weight loss of about 3% at temperatures below 120 ◦C,
while the second weight loss occurring at temperatures above 420 ◦C is around 20% and
14%, respectively. The higher temperatures for the second weight loss observed from the
TGA profiles indicate that both MIL-53–Al2O3 samples have a superior thermal stability
than their MIL-53 homologues, which suggests that alumina has a stabilizing effect on
MIL-53. A similar effect was evidenced in our previous work concerning MIL-101–Al2O3
composites [45], for which the thermal stability is, however, inferior to the one reported
here for the MIL-53–Al2O3 samples. Moreover, TGA analysis gives important information
about the temperature range, which should be considered for catalytic activity runs so
that the MOF structure is not destroyed during tests. Thus, it was concluded that catalytic
tests may be carried out up to 370 ◦C for MIL-53 samples and 420 ◦C for MIL-53–Al2O3
ones. However, in order to be able to compare the catalytic performance of the samples
among each other, and also with the previously reported Ni/MIL-101–Al2O3 catalyst, CO2
methanation was performed in the temperature range of 30–350 ◦C.
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Figure 4. Thermal stability of MIL-53-based samples (TGA profiles).

2.2. Catalytic Activity Tests
2.2.1. Temperature Influence

The effect of temperature upon the catalytic performance of the studied catalysts in the
CO2 methanation process was investigated by means of temperature programmed reaction
runs (TPRea), under plug flow conditions, in the temperature window of 30–350 ◦C. CO2
conversion and methane selectivity profiles are comparatively presented in Figure 5 for
both Ni/MIL-53 and Ni/MIL-53–Al2O3 catalysts, as well as the catalytic supports alone
(MIL-53, MIL-53–Al2O3, or Al2O3). As expected, an increase in reaction temperature
leads to an increase in CO2 conversion in the case of Ni catalysts, while MIL-53, MIL-
53–Al2O3, or Al2O3 alone show no relevant activity in the methanation of CO2 over the
entire investigated temperature domain. Ni/MIL-53 and Ni/MIL-53–Al2O3 samples show
catalytic activity starting with temperatures as low as 250 ◦C. It is interesting to note that
up to 300 ◦C, TPRea profiles show that Ni/MIL-53 is more active than Ni/MIL-53–Al2O3
in terms of CO2 conversion, while at reaction temperatures above 300 ◦C the behavior is
reversed for the two Ni catalysts (Figure 5a). Thus, at 280 ◦C, Ni/MIL-53 shows a CO2
conversion value of 21.6%, while Ni/MIL-53–Al2O3 exhibits only 7.6%. On the other hand,
at 320 ◦C, Ni/MIL-53–Al2O3 shows a CO2 conversion of 75.6%, significantly higher than
for Ni/MIL-53 at the same temperature, that is 51.9%. Both MIL-53-based catalysts show
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maximum CO2 conversion values at 350 ◦C: 75.5% for Ni/MIL-53 and 88.8% for Ni/MIL-
53–Al2O3. In terms of temperature for half CO2 conversion (T50%), there are no significant
differences between the two Ni catalysts, since T50% = 312 ◦C for Ni/MIL-53–Al2O3 and
T50% = 320 ◦C for Ni/MIL-53.
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Figure 5. Temperature influence on the catalytic performance of the MIL-53-based samples in the
methanation of CO2: (a) CO2 conversion and (b) methane selectivity (CO2:H2 = 1:5.2; [CO2] = 6.6%,
p = 1 atm, 2 ◦C/min, 4650 h−1).

Selectivity to methane is above 85% in the case of both catalysts over the entire
temperature range; however, Ni/MIL-53–Al2O3 shows slightly superior selectivity values
of 94–99%, as compared to 86–93% for Ni/MIL-53, at reaction temperatures above 250 ◦C
(Figure 5b).

Methane turnover frequency (TOF) values, defined as moles of formed methane/moles
of Ni/time, were calculated under differential reaction conditions, that is, conversion of
CO2 below 25%. It should be noted here that each Ni particle was considered accessible by
the species of interest, since the metal surface area is difficult to determine for metal/MOF
catalysts. This is due to the fact during H2 chemisorption analysis, as usually employed for
metal surface area determination, one cannot accurately discriminate between the amount
of hydrogen adsorbed on the active metal sites and the amount of hydrogen adsorbed in the
MOF scaffold (one of the first explored applications for MOFs was actually the adsorption
and storage of H2). This means that methane turnover frequencies presented here are actu-
ally underestimated. Even so, the obtained values still highlight the catalytic potential of
MIL-53-based catalysts. Thus, at 220 ◦C, Ni/MIL-53 shows a TOF value of 1.22 × 10−4 s−1,
while Ni/MIL-53–Al2O3 presents a value only slightly superior, 1.27 × 10−4 s−1. However,
at 280 ◦C, Ni/MIL-53 reveals a TOF value almost three times larger than that corresponding
to Ni/MIL-53–Al2O3 (8.44 × 10−4 s−1 compared to 3.07 × 10−4 s−1). These TOF values are
similar or larger than TOF values determined at the same temperature (280 ◦C) for the very
few MOF-based Ni catalysts reported in the literature to have been investigated for the CO2
methanation process: 0.9 × 10−4 s−1 [22] or 2.21 × 10−4 s−1 [28] for Ni(10%)/MIL-101(DS),
or 8.05 × 10−4 s−1 for the Ni/MIL-101–Al2O3 catalyst [45]. MIL-53 catalysts presented in
this work reveal a different behavior as compared to their MIL-101 homologues reported
previously [45], for which the Ni/MIL-101–Al2O3 catalyst revealed net superior catalytic
performance parameters (CO2 conversion, T50%, or TOF) compared to Ni/MIL-101 over
the entire investigated temperature range. This peculiar behavior of Ni/MIL-53–Al2O3
compared to Ni/MIL-53 is most probably due to the less pronounced synergistic effect
occurring between MIL-53 and alumina as a consequence of irregular MOF growth on the
alumina pellets. Compared to the case of the MIL-101–Al2O3 composite, a lower affinity of
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MIL-53 to the alumina was observed, which leads to a less intimate interaction between
alumina and MIL-53.

2.2.2. Stability Tests

Ni/MIL-53 and Ni/MIL-53–Al2O3 were subjected to stability tests in the methanation
of CO2 at 280 ◦C, with all other reaction conditions identical to those employed in the TPRea
runs. In the case of Ni/MIL-53, approximately 20 min time on stream (TOS) is needed to
attain steady-state CO2 conversion and CH4 selectivity values, while for Ni/MIL-53–Al2O3
stability is attained only after approximately 90 min TOS (Figure 6). Interestingly, both
Ni catalysts present superior catalytic activity values than those determined from TPRea
runs at the same temperature, with peculiar differences among them, however. In the case
of Ni/MIL-53, stability values are only slightly larger than those evaluated from TPRea
tests: CO2 conversion around 23% compared to 21.6%. Ni/MIL-53–Al2O3, on the other
hand, shows almost seven times larger stable CO2 conversion values, around 52–53%,
as compared to 7.6% obtained at 280 ◦C during TPRea runs. Moreover, CH4 selectivity
values stabilize around 94% for Ni/MIL-53 and 97% for Ni/MIL-53–Al2O3, with both
values higher than the corresponding ones determined during TPRea tests. One possible
explanation for this different behavior between TPRea and stability tests is the fact that a
2 ◦C/min temperature rate, although low, does not allow stabilization at each temperature
value, and therefore, catalytic activity parameters evaluated from TPRea runs are transient
ones. However, this fact is not sufficient to explain the low differences observed in the case
of Ni/MIL-53, and the significantly larger ones in the case of Ni/MIL-53–Al2O3. Another
possible explanation would be the effect of the presence of larger Ni particles on the MIL-
53–Al2O3 composite, besides the very small ones, considering that CO2 methanation is
favored neither by very small metal particles nor by very large ones [1].
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Figure 6. Stability of Ni/MIL-53 and Ni/MIL-53–Al2O3 catalysts in the methanation of CO2 at
280 ◦C: (a) conversion of CO2 and (b) CH4 selectivity (CO2:H2 = 1:5.2; [CO2] = 6.6%, p = 1 atm,
4650 h−1).

Characterization by powder X-ray diffraction of used catalysts during stability tests
performed at 280 ◦C reveals their good stability under prolonged exposure to the reaction
medium. Thus, XRD patterns illustrated in Figure 7 show that the structure and crystallinity
of MIL-53 deposited on the alumina pellets are very well preserved, either in the used
MIL-53–Al2O3 composite alone or the corresponding Ni catalyst. This feature, together
with the good thermal stability of the MIL-53-based catalysts, makes Ni/MIL-53 and
Ni/MIL-53–Al2O3 promising candidates for the CO2 methanation process.
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Figure 7. Comparative XRD patterns for the fresh and used Ni/MIL-53–Al2O3 samples.

Corroborating the results obtained during catalytic activity investigations (TPRea
and stability tests), it might be concluded that Ni/MIL-53–Al2O3 shows better catalytic
performance than Ni/MIL-53 in the methanation of CO2. Comparison with their previously
reported MIL-101 homologues [45], tested under the same reaction conditions (low GHSV
of 4650 h−1 and excess of H2), leads us to the conclusion that catalytic activity in the
investigated reaction increases in the series: Ni/MIL-53 < Ni/MIL-101 < Ni/MIL-53–Al2O3
< Ni/MIL-101–Al2O3. Although not superior to Ni/MIL-101–Al2O3 in terms of catalytic
activity, the performance of Ni/MIL-53–Al2O3 in CO2 methanation proves once more the
real potential of using MOFs for catalytic applications by their immobilization on cheap
and mechanically more stable supports such as alumina.

3. Materials and Methods
3.1. Chemicals and Gases

All chemicals and gases were purchased from commercial suppliers and used as
such. Benzene-1,4-dicarboxylic acid (BDC), N,N-dimethylformamide (DMF), and nickel
nitrate hexahydrate (Ni(NO3)2·6H2O) were purchased from Merck (Darmstadt, Germany),
chromium chloride hexahydrate (CrCl3·6H2O) from Sigma Aldrich (Steinheim, Germany),
alumina (Al2O3) from Alfa Aesar (Karlsruhe, Germany), and gases (Ar, and gas mixtures:
CO2 in Ar, H2 and Ar) from Linde Gaz Romania (Cluj Napoca, Romania).

3.2. MIL-53 and MIL-53–Al2O3 Synthesis

Synthesis of MIL-53 was achieved by means of an adapted synthesis method, using
only water as solvent, with no added HF as used in the classical procedure [47], while
the reaction time is reduced from 72 h to 12 h. Thus, an equimolar mixture of reactants
(4.35 mmol BDC and 4.35 mmol CrCl3·6H2O), mixed with 5 mL distilled water, was heated
at 190 ◦C for 12 h in an electric oven, using a Teflon-lined stainless-steel autoclave. After
cooling to room temperature, the product was filtered using a fritted funnel and washed
with distilled water several times. The obtained solid was dried at 100 ◦C for 12 h, activated
under reflux of dimethylformamide (DMF) for 24 h in order to remove the unreacted
BDC trapped in the pores of the MOF, filtered again, and dried at 150 ◦C for 12 h. In
order to obtain the low-temperature form of MIL-53, the dried sample was heat-treated by
1 ◦C/min up to 300 ◦C, under air, for 24 h, and then cooled naturally to room temperature.

MIL-53–Al2O3 was obtained by crystallization of MIL-53 on alumina particles (com-
mercial alumina, 110 m2/g, 0.21 cm3/g, dp > 0.125 mm), using the same mixture of
reactants as in the case of MIL-53 alone. Thus, 0.3 g alumina, the equimolar mixture of
BDC and CrCl3·6H2O (4.35 mmol each), and water (5 mL) were heated at 150 ◦C for 12 h
in a Teflon-lined stainless-steel autoclave. After cooling, the solid was separated from the
liquid phase by decantation, and washed with water several times. The separated solid was
further dried in an electric oven at 150 ◦C for 12 h. The dried granules of MIL-53-coated
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alumina were activated in dimethylformamide (DMF) under reflux for 24 h, filtered, and
then dried for 12 h at 150 ◦C. As in the case of MIL-53 alone, the obtained composite
MIL-53–Al2O3 was heat-treated in air for 24 h at 300 ◦C (1 ◦C/min), and then cooled down
to room temperature.

3.3. Preparation of Ni/MIL-53 and Ni/MIL-53–Al2O3 Catalysts

Before deposition of Ni nanoparticles, the pores of both MIL-53 and MIL-53–Al2O3
were cleared by drying at 300 ◦C (2 h). In order to deposit the Ni nanoparticles of interest
in the pores of MIL-53, instead of on its outer surface, an adapted “double solvent method”
(DS) was used [28,55] for both MIL-53 and MIL-53–Al2O3. In principle, two solvents are
used to achieve this goal: a nonpolar solvent (i.e., n-hexane) is used to make the outer
surface of the catalytic support hydrophobic, while a polar solvent (i.e., water) is used to
dissolve the metallic precursor and to orient it to the hydrophilic pores of the support.

In order to prepare Ni/MIL-53 catalyst, 0.3 g of dried MIL-53 was dispersed in hexane
(60 mL) in a round bottom flask, after cleaning the flask with Ar in order to remove the
air. Homogeneous dispersion of MIL-53 in hexane was achieved by sonication for 30 min,
and then magnetic stirring (500 rpm, 30 min). In order to obtain the targeted 10 wt.% Ni
loading, a volume of Ni(NO3)2 aqueous solution equal to the pore volume of the support
was prepared and added dropwise over the dispersed MOF, and then stirred for 30 min.
The remaining clear hexane over the impregnated MIL-53 was removed by decantation.
Reduction to metallic Ni was performed by NaBH4 aqueous solution (3M): a solution
volume equal to 5 times the pore volume of the initial amount of MIL-53 was added in fine
drops over the impregnated MIL-53 dispersed in water (60 mL). The mixture was stirred
for 15 min, then filtered, and thoroughly washed with distilled water. The Ni/MIL-53
sample thus obtained was further dried overnight at room temperature, and then dried for
3 h in an electric oven at 150 ◦C.

Synthesis of Ni/MIL-53–Al2O3 catalyst was performed following the same procedure
as for Ni/MIL-53, apart from the sonication step of the support in hexane, which was
avoided in order to ensure that the deposited MOF on alumina is not removed during
this step.

3.4. Characterization Techniques

X-ray powder diffraction (XRD) analyses were carried out using a Bruker D8 Ad-
vance Diffractometer (Billerica, MA, USA), with the X-ray tube operating at 40 kV and
40 mA and equipped with a germanium monochromator to obtain CuKα1 radiation. The
diffractograms were recorded in the 385◦ 2θ range, with a scan rate of 0.01◦/s. Nitrogen
physisorption isotherms at −196 ◦C (Sorptomatic 1990, Thermo Electron, Milan, Italy)
were used to estimate the specific surface area (BET method, p/p0 = 0.01–0.25), pore
volume (p/p0 = 0.95), and pore size distribution of the prepared samples. The t-plot
method was used to estimate the micropore volume of samples (de Boer statistical thick-
ness of 3.0–6.5 Å). Pretreatment of samples before N2 adsorption consisted of degassing
at 200 ◦C, under vacuum, for 4 h. Thermogravimetric analysis (TGA) was carried out in
air (100 mL/min), in the temperature range of 25–700 ◦C, with a 10 ◦C/min temperature
rate (SDT Q600, TA Instruments, New Castle, DE, USA). A HITACHI HD-2700 STEM
microscope (Hitachi, Tokyo, Japan) operating at 200 kV was used for scanning electron
microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray
(EDX) analyses. Each catalyst sample was dispersed in ethanol by sonication (3 min) before
SEM/TEM analyses.

3.5. Catalytic Measurements

The performance of the MIL-53 catalysts in the methanation process was evaluated
using an experimental set-up comprised of the TPDRO 1100 Series instrument (Thermo
Scientific, Milan, Italy) coupled to the PrismaPlus quadrupole mass spectrometer (Pfeiffer
Vacuum, Asslar, Germany). Temperature influence on the catalytic activity was investigated
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in the 30–350 ◦C range by temperature programmed reactions (TPRea, 2 ◦C/min), while
stability tests were performed at 280 ◦C. Catalyst samples of 0.1 g were placed in a fixed-bed
quartz reactor (i.d. 10 mm) between two alumina wool pads. In order to ensure the same
flow conditions for each catalytic run, that is the same height of the catalytic bed, catalyst
samples based on MIL-53–Al2O3 composite were diluted with alumina as necessary. The
total flow of the inlet gases was set to 31 mL/min (GHSV = 4650 h−1), with a composition
of 6.6% CO2, 34.5% H2, and Ar as balance gas (CO2:H2 = 1:5.2). For comparative reasons,
these reaction conditions are identical to the ones used for the previously reported Ni/MIL-
101–Al2O3 and Ni/MIL-101 catalysts [45]. The dry effluent gases (reactants and products)
were analyzed by the coupled MS by monitoring the following components: H2 (m/z = 2),
CH4 (m/z = 15), H2O (m/z = 18), CO (m/z = 28), and CO2 (m/z = 44). Interference with other
species was avoided in case of methane by selecting mass number 15 instead of 16 [56].
Catalytic activity parameters such as CO2 conversion and CH4 selectivity were calculated
using the output MS signals for the species of interest, considering that the intensity of the
signals is proportional to the concentration of each species in the analyzed mixture. Thus,
the following relationships were used (with the signal for mass number 28 corrected in
order to eliminate the contribution of CO2, and of the residual air, and therefore to account
only for CO):

XCO2 =

(
1 −

Iout
CO2

Iout
CO2

+ Iout
CH4

+ Iout
CO

)
× 100, (%) (1)

YCH4 =
Iout
CH4

Iout
CO2

+ Iout
CH4

+ Iout
CO

× 100, (%) (2)

SCH4 =
YCH4

XCO2
× 100, (%) (3)

4. Conclusions

MIL-53(Cr), a MOF structure from the benzenedicarboxylates family with better
thermal and chemical stability than MIL-101 in the same family, was immobilized on
commercial alumina pellets using a solvothermal method involving only water as the
solvent, besides CrCl3 and benzene-1,4-dicarboxylic acid as reagents. The obtained MIL-
53–Al2O3 composite, which combines the porosity characteristics of both MIL-53 and
alumina, was used as a catalytic support for the deposition of Ni nanoparticles using an
impregnation method with two solvents. The Ni/MIL-53–Al2O3 catalyst was compared to
its homologue Ni/MIL-53 in terms of structural and morphological properties, as well as
the catalytic activity in the methanation of CO2.

Ni nanoparticle deposition on both MIL-53 and MIL-53–Al2O3 leads to a relatively
uniform dispersion of metallic particles, both larger (10–30 nm) and smaller (≤10 nm) ones.
The structure of MIL-53 or the MIL-53–Al2O3 composite is retained after the deposition
of Ni nanoparticles, while the thermal stability of both the MIL-53–Al2O3 composite and
Ni/MIL-53–Al2O3 catalyst outperforms that of the MIL-53 counterparts.

Catalytic activity tests performed under plug flow conditions in TPRea experiments
in the 30–350 ◦C temperature range showed that Ni/MIL-53 presents better performances
in terms of CO2 conversion, CH4 selectivity, or TOF value at reaction temperatures below
300 ◦C, while above this temperature Ni/MIL-53–Al2O3 is superior. However, under
steady-state conditions during stability tests at 280 ◦C, Ni/MIL-53–Al2O3 shows a CO2
conversion of 52% (2.5 times higher than in the case of Ni/MIL-53), with a corresponding
CH4 selectivity of 97%. Moreover, the structure and crystallinity of MIL-53 are preserved
in all samples after stability tests. It may be concluded that Ni/MIL-53–Al2O3 is more
active in the methanation of CO2 than its counterpart Ni/MIL-53. Thus, Ni/MIL-53–Al2O3
proves once more the potential of using MOFs for catalytic applications by immobilization
on cheap and more mechanically stable supports such as alumina.
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