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As part of the Glasgow Climate Pact, at COP27 in 2021, world leaders of 197 countries
agreed to cut carbon dioxide emissions to prevent a “climate catastrophe”. The goal is
to limit global temperature rise to 1.5 degrees relative to pre-industrial times. To reach
this goal, the use of fossil fuels as the dominant global energy must decline globally by
3 per cent each year until 2050 [1]. However, decarbonising the energy supply may increase
energy demand [2]. Therefore, additional effort is required to limit global CO2 emissions
to net-zero, and some alternative reliable and cheap energy must be found.

Recently, the application of metal-based nanocatalysts has gained attraction for ad-
dressing environmental issues and energy demand. As an example of alternative energy,
Fischer–Tropsch synthesis is a promising route for clean and reliable fuel production [3].
This technology involves syngas production (mixture of hydrogen and carbon monoxide)
from methane mainly through metal-supported nanocatalysts, converting the syngas to
C1-C100 hydrocarbons using heterogeneous metal-based nanocatalysts and refining [3].
The production of syngas from methane is currently carried out using three processes:
steam reforming, partial oxidation, autothermal reforming, and a combination of these
processes. Some other methods, such as dry and tri-reforming of methane, are still under
research [4]. Additionally, some other methods are suggested to reduce emissions and
utilise CO2, such as H2 generation by ethanol steam reforming, CO2 methanation, or CO2
hydrogenation to methanol [5–8].

All of the above processes break strong chemical bonds of the reactant molecules
(e.g., C-H or C-C). To overcome the energy barrier of strong bond breakage, metal-based
catalysts are needed. Therefore, intensive efforts have been devoted by numerous research
groups to the development of catalysts that can achieve high catalytic activity and stability.
Most researches have focused on investigating the role of metals, bimetal and synergies,
supports, promoters, and preparation methods on activity and stability of catalysts.

The most crucial element of each catalyst is the active component that can adsorb
and active CH4. Over the past few decades, researchers have examined and reported
various active components for catalysing these reactions. A vast range of supported and
unsupported catalysts, such as different types of metals, metal oxides, carbides, sulphides,
and carbon, have been investigated [9].

Many researchers have investigated the simultaneous presence of two metals to
modify the primary catalyst with a second metal [10]. Chen et al. showed that pre-reaction
reduces the partial deactivation behaviour of the Ni catalyst and the sintering of the Ni
nanoparticles [5].

The metal only adsorbs CH4, but the CO2 activation step can take place on the support;
therefore, the role of support in catalytic activity is vital [11,12]. Ding et al. reported that
well-ordered Ni-MCM-41 catalysts might be a promising candidate with anti-sintering and
coking ability in partial oxidation of methane [13]. Additionally, Tang et al. demonstrated
that the Ni catalyst supported on mesoporous La2O3 exhibits higher activity and selectivity
in CO2 methanation than the Ni–La2O3 catalyst prepared by a conventional solution
combustion method [8]. Amin [14] synthesised a novel tri-modal porous silica (TMS) as a
support for a nickel catalyst, which gave excellent activity and stability in comparison to
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the Ni catalysts supported on a classically ordered mesoporous silicates support reported in
the literature at a relatively low temperature (700 ◦C). It was found that the morphology of
mesoporous supports plays a substantial role in determining catalytic performance. Some
researchers, such as Li et al., reported that Ni/C nanocatalysts possessed high catalytic
activity and stability in dry reforming of methane [15].

Recently, approaches to achieving improvements in the activity and stability of cata-
lysts have focused mostly on discovering suitable promoters [16,17]. The types of promoters
that have been studied include alkali, alkaline earth, transition, and rare earth metal ox-
ides [18,19]. For example, Al-Najar et al. studied the effect of La2O3 as a promoter on
the Pt-Pd-Ni/MgO catalyst in dry reforming of methane, which exhibited the highest
activity [20].

This Special Issue’s findings will help researchers develop more active catalysts for
addressing environmental issues and energy demand. However, more research is still
needed to find low-cost, sustainable, and energy-efficient ways to convert existing fossil
fuels to carbon-free fuels.
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