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Abstract: Catalytic oxidative desulfurization (ODS) of fuel oils is considered one of the most promis-
ing non-hydrodesulfurization technologies due to the advantages of mild reaction conditions, low
cost and easy removal of aromatic sulfur compounds. Based on this reason, the preparation of
highly efficient ODS catalysts has been a hot research topic in this field. Recently, metal-organic
frameworks (MOFs) have attracted extensive attention due to the advantages involving abundant
metal centers, high surface area, rich porosity and varied pore structures. For this, the synthesis
and catalytic performance of the ODS catalysts based on MOFs materials have been widely studied.
Until now, many research achievements have been obtained along this direction. In this article, we
will review the advances in oxidative desulfurization of fuel oils over MOFs-based heterogeneous
catalysts. The catalytic ODS performance over various types of catalysts is compared and discussed.
The perspectives for future work are proposed in this field.

Keywords: oxidative desulfurization; MOFs; porous material; fuel oils; dibenzothiophene

1. Introduction

Fuel oils are widely used in human life and are the main energy consumption products
in the world [1]. With the continuous growth of the world population and the gradual
development of industrial levels, the energy crisis and environmental protection have at-
tracted more and more attention [2,3]. It is well known that there are some sulfur-containing
molecules in fuel oils. The combustion of such molecules releases SOx compounds, which
not only greatly hinders the processing and production but also brings about serious envi-
ronmental problems [4]. The composition of sulfur-containing molecules is complex and
includes thiols, sulfides, disulfides and thiophene compounds [5]. In particular, thiophene
compounds such as thiophene (T), benzothiophene (BT), dibenzothiophene (DBT) and
their alkyl derivatives account for a relatively high proportion of the sulfides in fuel oils.
The removal of these compounds is of great significance to protect the environment and
produce clean fuel oils.

Nowadays, countries around the world have imposed strict restrictions on the sul-
fur content in fuel oils. Many have demanded that the sulfur level be below 10 ppm.
This means that the sulfur-containing molecules like 4,6-dimethyldibenzothiophene (4,6-
DMDBT) must be desulfurized. However, it is very difficult to realize this process by
industrial hydrodesulfurization (HDS) technology. This drives researchers to develop
new desulfurization techniques. Indeed, several non-hydrodesulfurization technologies
including adsorption desulfurization (ADS) [6], extraction desulfurization (EDS) [7], bio-
logical desulfurization (BDS) [8] and oxidative desulfurization (ODS) have been widely
investigated. Therefore, ODS technology is considered one of the most promising non-
hydrodesulfurization technologies due to advantages such as mild reaction conditions, low
cost and easy removal of aromatic sulfur compounds. Thus, the development of highly
efficient ODS heterogeneous catalysts has been pursued.
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Currently, various types of heterogeneous catalysts involving metal oxides [9], boron
nitride [10], reduced graphene oxide (rGO) [11], Ti-containing porous materials [12,13]
and metal-organic frameworks (MOFs) [14,15] have been attempted for ODS reactions of
fuel oils. Among them, MOFs have received much attention due to advantages such as
abundant metal centers, high surface areas and varied pore structures, which are com-
posed of secondary building units (SBUs) connected by organic linkers to form crystalline
porous materials. Such materials possess both the rigidity of inorganic materials and the
flexibility of organic materials. Moreover, rich metal centers in the structure of MOFs
could be catalytic active sites for some chemical reactions [16]. For this, the synthesis and
catalytic performance of the ODS catalysts based on MOFs materials have been widely
studied [17–19]. Among this research work, MOFs have been used mainly as ODS catalysts
or composite catalysts with additional active species or sacrificial templates producing
ODS active centers. The ODS performance of catalysts has mostly been evaluated by the
catalytic oxidation reactions of BT, DBT and 4,6-DMDBT. In the reaction system, the used
oxidants involve H2O2, tert-butyl hydroperoxide (TBHP), cumene hydroperoxide (CHP),
O2 and air. The reaction temperature is generally below 80 ◦C, although the oxidation
temperature is used up to 150 ◦C in the case of O2 or air as an oxidant.

In this review, we will summarize the advances in oxidative desulfurization of fuel oils
over MOFs-based heterogeneous catalysts. The catalytic ODS performance over various
types of catalysts is compared and discussed. The opportunities and challenges for future
work are proposed in this field.

2. MOFs as ODS Catalysts
2.1. Ti-MOFs as ODS Catalysts

In the earlier studies, the Ti species in titanium-containing zeolites and mesoporous
silica have been demonstrated to be active in the ODS reactions of sulfur-containing
compounds [20,21]. However, the content of the introduced Ti species into the framework
is low (<5 wt.%) due to the limitation of the structure. Compared with these Ti-containing
porous materials, Ti-MOFs are promising candidates for ODS reactions due to the presence
of rich Ti sites in their structure. As a member of Ti-MOFs, MIL-125(Ti) is attractive. In
its structure, the basic unit of MIL-125(Ti) is Ti8O8(OH)4-(O2C-C6H5-CO2)6 and a cyclic
octamer is composed of titanium octahedral units shared by corners or edges. These cyclic
octamers are connected to the other 12 cyclic octamers through BDC linkers to form a
porous three-dimensional periodic array with two types of cages. One type of cage is an
octahedron (12.5 Å) and the other is a tetrahedron (6 Å) [22].

In 2013, Se-Na Kim and coworkers first reported that MIL-125(Ti) was active in the
oxidative desulfurization of DBT [23]. In this work, the catalytic ODS performance of
MIL-125(Ti) was evaluated and compared with traditional microporous and mesoporous
titanium silicates. The results showed that the order of DBT conversion under the same
reaction conditions was Meso-TS-1 > MIL-125(Ti) > Micro-TS-1 (Table 1), which is in
accordance with the window size in porous materials. This result suggests that pore
size also plays an important role in the ODS reactions of sulfur compounds besides Ti
species. To overcome the limitation of micropore size, meso-MIL-125(Ti) with mesopores
was synthesized in the presence of surfactant by vapor-assisted crystallization method [24].
The catalytic results further demonstrate that the introduction of mesopores could improve
the catalytic ODS performance of MIL-125(Ti). Additionally, Li et al. investigated the
catalytic performance of MIL-125(Ti) and NH2-MIL-125(Ti) with different crystal sizes;
MIL-125(Ti)-L with large crystal size showed the best catalytic performance when H2O2
was used as oxidant [25]. It is thought that MIL-125(Ti) with large crystal size hould possess
more coordination-unsaturated Ti(IV) sites, which is more favorable for catalytic oxidative
desulfurization. Although some progress on MIL-125(Ti) has been made, its structural
stability is still an issue during the ODS reactions.
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Table 1. Comparison of catalytic performance over various Ti-MOFs in the ODS reactions of model fuel oil.

Catalyst Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

MIL-125(Ti) DBT (200 ppm)
4-MDBT (200 ppm)

4,6-DMDBT (200 ppm)

CHP 15 80 180 36
15
12

0.30
0.12
0.10

[23]

meso-MIL-125(Ti) DBT (500 ppm) TBHP 10 80 - - (22.9) a [24]
MIL-125(Ti)-L DBT (240 ppm) H2O2

TBHP
8
8

60
60

30
30

95.3
44.9

1.0
0.5 [25]

COK-47S(Ti) DBT (3601 ppm) TBHP 2.5 60 120 99 (41.1) a [26]
Ti-BDC-180 DBT (1000 ppm) H2O2 6 60 20 99.8 18.7 [27]
Ti-BDC-A DBT (500 ppm) CHP 6 25 10 100 21.9 [28]

Activity (mmol·g−1·h−1): millimole number of converted substrate/(reaction time × mass of catalyst). a: kinetic constant [(min−1) × 10−3],
data from literature.

Recently, Simon Smolders et al. synthesized a new type of Ti-MOF (COK-47) [26]. This
material used the composite layer of TiO6 octahedron as two-dimensional secondary struc-
tural units to form a three-dimensional framework through a bpdc2− linkers connection.
The catalytic results showed that 99% DBT over COK-47S was oxidized in 120 min at 60 ◦C
by TBHP as an oxidant. Such catalytic performance could be attributed to the presence of
many methoxy groups (Me-O-Ti) and open-metal Ti sites. Moreover, the catalyst remained
structurally stable after three recycles.

More recently, Sun and coworkers reported that new porous titanium terephthalates
with hierarchical porosity (Ti-BDC) and amorphous nature have been successfully syn-
thesized for deep oxidative desulfurization of fuel oil [27]. The catalytic results indicate
that Ti-BDC exhibited superior catalytic activity in the ODS reactions of BT, DBT and
4,6-DMDBT than MIL-125(Ti) and meso-MIL-125(Ti), which might be attributed to the in-
troduction of partial mesopores and abundant coordination-unsaturated Ti sites. Especially
in the above synthetic system, a novel porous titanium terephthalate (Ti-BDC-A) with more
defective Ti sites and higher surface area was produced with the assistance of acetic acid
(Figure 1). When the material is used as an ODS catalyst, DBT (500 ppm) in model fuel oil
can be completely oxidized in 10 min at room temperature [28].

Figure 1. Imaginative diagram of the formation process of Ti-BDC-A and proposed reaction mecha-
nism of the catalytic ODS of DBT over Ti-BDC-A (reproduced from Ref. [28], copyright 2020 American
Chemical Society).
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2.2. Zr-MOFs as ODS Catalysts

It is generally well known that Zr-MOFs possess high structural stability compared
with other metal-based MOFs. One example is UiO-66 (Zr), whose structure composed of
Zr6O4(µ3-OH)4 clusters in coordination with 12 terephthalic acids [29]. In 2015, Granadeiro
et al. first reported that UiO-66(Zr) as a heterogeneous catalyst was used in the ODS of
diesel. In this work, UiO-66(Zr) samples were prepared by different synthesis methods
and their catalytic ODS performance were evaluated [30]. It is noted that the catalytic
performance had a close relationship with the crystallinity degree and linker defects in
UiO-66 (Zr). The samples with low crystallinity displayed superior catalytic performance.
Meanwhile, the good catalytic activity can be kept in the dual phase catalytic system with
H2O2 as an oxidant and acetonitrile as an extractant for the ODS of model and real diesel.
Similarly, some researchers obtained UiO-66(Zr) with lower crystallinity by shortening the
synthesis time, but not surprisingly its reusability was poor [31]. A detailed comparison of
catalytic performance over various Zr-MOFs is shown in Table 2.

In general, the defects in crystal materials are closely related to their properties. Thus,
it is of great importance to prepare the defective crystal materials [32–40]. As for UiO-
66(Zr), some methods have been developed to fabricate defective UiO-66(Zr). For example,
Sun et al. adopted solvent-free synthesis to produce defective UiO-66(Zr) [34]. The catalytic
data indicate that UiO-66(Zr) free with rich defects exhibited much better catalytic activity
than UiO-66(Zr) solvent with high crystallinity prepared by conventional solvothermal
route in the ODS reactions. Such catalytic performance has a good correlation with the
number of Lewis acid sites in UiO-66(Zr) because the defects that resulted from the loss of
organic linkers may promote the formation of Lewis acid sites [35,36]. Based on this study,
this research group synthesized defective amino- and nitro-functionalized UiO-66(Zr) by
solvent-free method. The results showed that nitro-functionalized UiO-66(Zr) exhibited
excellent catalytic activity in the oxidative desulfurization of DBT and 4,6-DMDBT. The
ODS activity could almost be kept after five cycles [17]. The possible reason is that the
introduction of electron-withdrawing groups reduces the electron density around Zr and
enhances its electron-withdrawing ability [37,38]. On the other hand, most of MOFs are
microporous materials, which would limit the mass transfer of reactants and hinder the
accessibility of catalytic active sites in the pores [41]. For this, Hao et al. synthesized
hierarchical porous UiO-66(Zr) (HP-UiO-66(Zr) and evaluated its ODS performance. The
results showed that HP-UiO-66(Zr) could complete the oxidation of DBT and 4,6-DMDBT
at room temperature at a low oxidant dosage (O/S = 4) [42].

Based on the structure of UiO-66(Zr), bimetal-centered UiO-66(Zr) materials were
also prepared. Sun et al. firstly reported Ti-UiO-66(Zr) obtained by ion-exchange method
for ODS reactions [43]. It is well known that Ti ions have stronger oxidation ability than
Zr ions [44]. Consequently, Ti-UiO-66(Zr) showed better catalytic ODS performance than
the parent UiO-66(Zr). In addition, Ye et al. prepared Hf-incorporated UiO-66(Zr) under
solvent-free conditions [45]. In the structure of this material, 0.7 Zr atoms are replaced by
Hf atoms to form Zr-Hf-oxo clusters with a considerable number of Zr/Hf-OH active sites
(Figure 2). The obtained catalyst may complete the oxidation of 4,6-DMDBT (1000 ppm)
from model oil within 15 min at room temperature. Theoretical studies indicate that the
exposed Hf-OH centers can easily react with H2O2 to form Hf-OOH intermediates and
thus control the reactivity.

Besides UiO-66(Zr), other research works about Zr-MOFs involve two-dimensional
layered UMCM-309(Zr) and three-dimensional porous MOF-808(Zr) with the same sec-
ondary structure units [Zr6O4(OH)4(−COO)6]6+. The study from Fu et al. showed that
MOF-808(Zr) had better ODS activity than UMCM-309(Zr). Further, the catalytic activity
over MOF-808(Zr) can be greatly improved after the removal of partial formic acid in
its structure because more open metal sites are generated [46,47]. Some studies suggest
that the order of catalytic ODS activity over different Zr-MOFs is MOF-808(Zr) > UiO-
67(Zr) > NU-1000(Zr) > UiO-66(Zr), which coincides with the number of Lewis acid sites
(Figure 3) [48,49]. Moreover, the studies on NU-1000(Zr) and MOF-808(Zr) revealed that
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mesoporous structure and Lewis acidity played an important role on the ODS activity of
Zr-MOF materials [50–52].

Figure 2. Schematic illustration about the synthetic process of UiO-66(0.13Hf-Zr) and proposed ODS
reaction mechanism over UiO-66(0.13Hf-Zr) (adapted from Ref. [45], copyright 2021 Elsevier).

Figure 3. The structure of various Zr-MOFs and their catalytic oxidation performance (adapted from Ref. [48], copyright
2019 American Chemical Society).

Table 2. Comparison of catalytic performance over various Zr-MOFs in the ODS reactions of model fuel oil.

Catalyst Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

UiO-66(Zr)
UiO-66(Zr)mod

UiO-66(Zr)HCl,mod
UiO-66(Zr)HCl

DBT, 4-MDBT
and 4,6-DMDBT

(500 ppm for each)
H2O2 12 50 30

99.6
71.2
59.9
36.9

- [30]

UiO-66(Zr)-1h DBT (1000 ppm) H2O2 ≈11 60 60 97 8.5 [31]
UiO-66(Zr)-solvent

UiO-66(Zr)-free

DBT (1000 ppm)
4,6-DMDBT (500 ppm)

DBT (1000 ppm)
4,6-DMDBT (500 ppm)

H2O2

H2O2

6

6

60

60

120

120

80.5
52.5
99.6
98.1

2.5
0.82
3.1
1.5

[34]

UiO-66(Zr) DBT (500 ppm) H2O2 12 60 150 100 - [36]
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Table 2. Cont.

Catalyst Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

UiO-66(Zr)-NO2-green

UiO-66(Zr)-NH2-green

UiO-66(Zr) –green

DBT (1000 ppm)
4,6-DMDBT (500 ppm)

DBT (1000 ppm)
4,6-DMDBT (500 ppm)

DBT (1000 ppm)
4,6-DMDBT (500 ppm)

H2O2

H2O2

H2O2

6

6

6

60

60

60

30

30

30

99.6
99.6
62.6
45.6
90.3
94.2

- [17]

UiO-66(Zr)-S1
UiO-66(Zr)-MW2

1-BT, DBT, 4-MDBT
and 4,6-DMDBT

(500 ppm for each)

H2O2 13 50 180 99.5
96 - [39]

UiO-66(Zr)-ZrCl4
UiO-66(Zr)

BT, DBT, 4-MDBT
and 4,6-DMDBT

(500 ppm for each)
H2O2 13 50 60 97

62 - [40]

HP-UiO-66(Zr) DBT (1000 ppm)
4,6-DMDBT
(1000 ppm)

H2O2 4 30 30
60

94.3
99.3

19.6
10.3 [42]

Ti-UiO-66-D
UiO-66-D

Ti-UiO-66-H
UiO-66-H

DBT (1000 ppm)

DBT (1000 ppm)

H2O2

H2O2

6

6

60

60

120

120

91.7
50.7
66.3
5.6

2.9
1.6
2.1

0.17

[43]

UiO-66(0.13Hf-Zr) DBT (1000 ppm)
BT (1000 ppm)

4,6-DMDBT
(1000 ppm)

H2O2 4 30 15 99.8
70.8
100

17.5
-
-

[45]

UiO-66(Zr)
UiO-67(Zr)

NU-1000(Zr)
MOF-808(Zr)

DBT (1000 ppm)
DBT (1000 ppm)
DBT (1000 ppm)
DBT (1000 ppm)

H2O2
H2O2
H2O2
H2O2

5
5
5
5

50
50
50
50

5
5
5
5

8.8
20.8
11.1
100

- [48]

NU-1000(Zr)

DBT (1000 ppm)
BT (500 ppm)

3-MDBT (500 ppm)
4,6-DMDBT (500 ppm)

H2O2 6 60 180 100
≈62
≈81
67.6

2.6
-
-
-

[50]

UMCM-309(Zr)

MOF-808(Zr)-M

DBT (4319 ppm)
BT (4378 ppm)

4,6-DMDBT
(4303 ppm)

BT, DBT and
4,6-DMDBT

(500 ppm for each)

TBHP

TBHP

2.5

2.5

60

60

480

60

96
49
30
68

2.5
1.3
0.79
9.2 [46]

MOF-808(Zr)-H
DBT (1000 ppm)
BT (1000 ppm)

4,6-DMDBT (500 ppm)
CHP 3 50 20

93
≈34
≈17

17.4
-
-

[52]

2.3. Other Metal-Centered MOFs as ODS Catalysts

The other metal-centered MOFs mainly include the studies of V-MOFs, Co-MOFs and
MIL-101(Fe/Cr) for ODS reactions. A detailed comparison of catalytic performance over
other metal-centered MOFs in the ODS reactions of model fuel oil is shown in Table 3.

MIL-47(V) is the first example of non-Zr- and Ti-based MOFs for ODS reactions. In this
work, the catalytic performance of MIL-47(V) was compared with that of MIL-125(Ti) by the
oxidation reactions of T, BT and DBT [53]. The results show that MIL-47(V) exhibited better
catalytic ODS performance than MIL-125(Ti) in the oxidation of DBT. Meanwhile, MIL-47(V)
is more suitable for the catalytic oxidation of DBT at relatively low reaction temperatures,
which should be related to the pore size of the material. Under the same reaction conditions,
the removal efficiency of BT over MIL-47(V) is not as good as that of DBT. A reasonable
explanation is that the electron density of sulfur atoms in DBT is higher, while the sulfur
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species with higher electron density have higher catalytic activity [54,55]. Notably, MIL-
47(V) exhibited unusual catalytic activity in the oxidation of thiophene, suggesting that
metal centers in MOFs have a great influence on the ODS reactions. Although the catalytic
ODS performance of MIL-47(V) is better than that of MIL-125(Ti), its structural stability
is poor.

Another interesting study about V-MOFs is the study on MFM-300(V). Li et al. found
that MFM-300(V) can carry out the ODS reaction by ambient air as the oxidant, and the
removal of DBT and 4,6-DMDBT reached 99.6% and 98.1%, respectively [56]. The bridging
oxygen atoms in the structure exist on the corner of pores and make MFM-300(V) surface
of pores locally electron-rich, which is conducive to capturing protons from hydrocarbons
and activating oxygen in the air [57].

Masoomi et al. reported that Co-MOF materials (TMU-10 and TMU-12) were success-
fully synthesized and their catalytic performance in ODS reactions was evaluated [58]. The
removal of DBT (500 ppm) over TMU-12(Co) was 75.2% at 60 ◦C. Additionally, Abazari
et al. studied the catalytic ODS performance over another type of Co-MOF (NH2-TMU-53).
The results showed that the sulfur content in a model oil for DBT removal can be reduced
from 500 ppm to 103 ppm at 60 ◦C after 2 h [59]. Meanwhile, it is noted that the introduction
of amino functional groups may significantly improve the adsorption ability for DBT, and
the oxidation rate of DBT increased with adsorption amount.

MIL-101 is an important class of MOFs, which generally possess high surface area
and large pore openings. Adrián Gómez-Paricio et al. first investigated the catalytic perfor-
mance of MIL-101(Fe) and MIL-101(Cr) in ODS of DBT with oxygen as the oxidant [60].
During the reaction, an obvious induction period of 6 h was observed. Further studies
disclosed that the induction period of the reaction was related to solvent diffusion and
the formation of the first reactive oxygen species. The catalytic results showed that MIL-
101(Cr) had better catalytic activity and cycle stability than MIL-101(Fe). Subsequently, the
catalytic performance of functionalized MIL-101(Cr) was also studied. It was found that
nitro-functionalized MIL-101(Cr) had better ODS activity for DBT in fuel oil [61], which is
in agreement with the case of functionalized UiO-66(Zr).

Table 3. Comparison of catalytic performance over other metal-centered MOFs in the ODS reactions of model fuel oil.

Catalyst Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

MIL-47(V)
DBT (15691 ppm)

T (7165 ppm)
BT (11428 ppm)

TBHP 2.15 80
- -

(29) a

(1.3) a

(9.9) a
[53]

TMU-10(Co)
TMU-12(Co)

DBT (500 ppm)
DBT (500 ppm)

TBHP
TBHP

3
3

60
60

360
360

40.5
75.2

0.17
0.32 [58]

NH2–TMU(Co)-53 DBT (500 ppm) H2O2 3 60 120 79.4 (10.6) a [59]
MIL-101(Cr) DBT (1534 ppm) O2 - 120 1260 99.6 - [60]

MIL-101(Cr)-NO2 DBT (200 ppm) O2 - 140 ≈270 ≈100 - [61]

MFM-300(V)
DBT (200 ppm)
BT (200 ppm)

4,6-DMDBT (200 ppm)
Air - 120 300

99.6
18.0
98.1

0.62
-
-

[56]

a: kinetic constant [(min−1) × 10−3], data from literature.

3. Composites of MOFs and Additional Active Phases as ODS Catalysts

Although MOFs generally have the advantages of high surface area, rich porosity
and varied pore structures for catalytic reactions, it is a fact that the number of catalytic
active sites in MOFs is limited because most metal centers are in a state of coordination
saturation. To remedy this shortcoming, some composite catalysts of MOFs and additional
active phases have been designed and synthesized by various strategies. The studied MOFs
mostly referred to the MIL family, Zr-MOFs and MOF-199 with good structural stability.



Catalysts 2021, 11, 1557 8 of 20

The active phases were mainly focused on various types of polyoxometalates and some
metal oxides.

3.1. Composites of MOFs and Polyoxometalates

Polyoxometalates (POMs) have been widely studied as the active centers of ODS cata-
lysts because their acidic and redox properties can be effectively designed and controlled
through changing their compositions and structures at atomic or molecular scale [62,63].
However, it is well known that POMs are easily soluble in organic medium, which is not
beneficial for the recycling and reuse of heterogeneous catalysts. Thus, the composites of
encapsulating POMs into MOFs can be an efficient approach to solve this problem. Table 4
shows a detailed comparison of catalytic performance over the composites of MOFs and
POMs in the ODS reactions of model fuel oil.

One of the research focuses is the synthesis and catalytic ODS performance of the
composite of POMs and MOFs from the MIL family. Hu et al. first reported the encapsu-
lation of phosphotungstic acid (PTA) into the cages of MIL-101(Cr) by using the strategy
of “bottle around ship” under static conditions [64]. The obtained material exhibited the
order of oxidation activity (DBT > 4,6-DMDBT > BT) for different sulfur compounds. After
four consecutive reaction cycles, the catalytic performance decreased by about 4% and
PTA loading in the composite reduced by about 5%, indicating that such encapsulation
could greatly inhibit the loss of PTA into organic medium. Based on this methodology,
some similar POMs [65–68] were also used as active centers encapsulated in the cages
of MIL-101(Cr). For instance, Ribeiro et al. utilized [Tb(PW11O39)2]11− (abbreviated as
Tb(PW11)2) and TBA3PW12O40 (abbreviated as PW12) as the active centers of composite
catalysts for ODS reactions [65,66]. The catalytic results showed that DBT in model oil was
almost completely oxidized over both catalysts and could be reused well. The difference is
that the former uses acetonitrile as the extractant and the latter is ionic liquids BMIPF6. It
was found that ionic liquids can promote the generation of reactive oxygen species and
avoid the decomposition of PW12, which is an effective co-catalyst. In addition to the
abovementioned Keggin-type POMs, the Weakley-type Na7H2LaW10O36 (abbreviated as
LaW10) was also investigated because its molecular size matches well with the window size
of MIL-101(Cr) [69]. Lu et al. coated and dispersed it into the nanocages of MIL-101(Cr)
at the single molecular level (Figure 4) [70]. The resultant material exhibited excellent
reusability due to the limiting effect of the coordination interaction from Cr···O=W bonds
and good size matching. Notably, when phosphotungstic acid (H3PW12O40, PTA) was
used as the active species, NH2-functionalized MOFs could be considered to make the
composite catalysts. Due to the electrostatic interaction between the [PW12O40]3− ion
and -NH3+ groups from NH2-MOFs, the structural stability of PTA@MOFs was enhanced
and PTA loading increased. The typical examples are the combination of POMs with
NH2-MIL-53(Al) and NH2-MIL-101(Cr) [71–79].

Figure 4. The LaW10 guests were dispersed homogeneously in MIL-101(Cr) nanocages at molecular
level and used as ODS catalyst (reproduced from Ref. [70], copyright 2021 Elsevier).
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Another research hot spot is the combination of POMs and MOF-199(Cu). MOF-199(Cu)
is welcomed mainly because its pore size closely matches with the size of POMs [80,81].
Rafiee et al. first synthesized three composites of POMs and MOF-199(Cu) and demon-
strated their potential in ODS reactions [82]. Further, a series of such composites (including,
but not limited to, POM@MOF-199@MCM-41, C-POM@MOF-199@MCM-41, HPA@MOF-
199@CA, CNTs@MOF-199-Mo16V2) were prepared for ODS reactions with O2 as the ox-
idant [83–91]. The catalytic results indicated that the combination of POM and MOF-
199(Cu)@MCM-41 might be helpful for the enhancement of ODS performance under the
reaction condition of O2 as the oxidant. Based on the combination of the same active
species with different MOFs, Wang et al. made a comparison on the catalytic ODS activ-
ity of PTA@MIL-100(Fe), PTA@UiO-66(Zr), and PTA@ZIF-8(Zn). The results suggested
that MOFs with large window size could be more suitable for the encapsulation of active
species [92]. In addition, to facilitate the recovery of catalyst, Si-Wen Li et al., synthesized
Fe3O4@MOF-PMoW (FeMP, M = Cr, Cu, Zr) with magnetism by the one-pot method [19].
It has been proposed that this kind of catalyst has a unique spinous structure similar to the
virus, which is beneficial for enhancing the catalytic performance by increasing the contact
area with sulfur substrate (Figure 5).

Figure 5. The scheme route to synthesis spinosus FeMP catalyst (reproduced from Ref. [19], copyright
2021 Elsevier).

The other cases mainly involved the composites of POMs and Zr-MOFs, such as UiO-
66(Zr) [92–97], UiO-67(Zr) [98] and MOF-808(Zr) [99]. Zhang and coworkers encapsulated
H3PMo12O40 (PMA) into the pores of UiO-66(Zr) and evaluated its catalytic performance
by the oxidation of DBT (500 ppm) in model oil by using TBHP as an oxidant [93]. The
excellent catalytic performance was attributed to the synergistic effect between UiO-66(Zr)
and PMA. The lack of lattice oxygen and electron transfer led to the easier generation
of oxygen vacancies and Mo5+ on PMA@UiO-66(Zr), which can promote the formation
of active free radicals and thus improve its ODS performance. In addition, it has been
demonstrated that unsaturated metal sites or defect sites in MOFs are closely related
to the catalytic performance of materials [26,31]. For example, Chang et al. introduced
thiourea and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) into the synthetic system
of PMA@UiO-66(Zr) to construct more unsaturated metal sites in UiO-66(Zr). As a result,
the enhancement of catalytic ODS performance was observed [94]. Sun et al. reported that
UiO-66(Zr) with abundant defect sites can be synthesized by the solvent-free method [34].
Based on this work, a composite material of HPW and UiO-66(Zr) (PW/UiO-66(Zr)-green)
was produced (Figure 6) [96]. It should be emphasized that the catalyst synthesized by
this method possesses hierarchical pores and double active sites and displays excellent
catalytic activity to oxidize DBT and 4,6-DMDBT at room temperature when H2O2 is used
as the oxidant.
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Figure 6. Diagram of the synthetic processes of PW/UiO-66(Zr)-solvent and PW/UiO-66(Zr)-green
(reproduced from Ref. [96], copyright 2020 Royal Society of Chemistry).

Table 4. Comparison of catalytic performance over the composites of MOFs and POMs in the ODS reactions of model
fuel oil.

Catalyst Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

50%PTA@MIL-101(Cr) DBT (≈912 ppm) H2O2 50 45 180 91 - [64]

Tb(PW11)2@MIL-
101(Cr)

1-BT (500 ppm)
DBT (500 ppm)

4,6-DMDBT (500 ppm)
H2O2 30 50 120

95
100
96

0.064
0.067
0.065

[66]

PW12@MIL-101(Cr) DBT (500 ppm) H2O2 10 50 60 100 0.32 [65]

PW9@MIL-101(Cr)
1-BT (500 ppm)
DBT (500 ppm)

4,6-DMDBT (500 ppm)
H2O2 ≈89 50 60

98.6
100
98.9

0.088
0.089
0.088

[67]

PW11Zn@MIL-101(Cr)
1-BT (500 ppm)
DBT (500 ppm)

4,6-DMDBT (500 ppm)
H2O2 8 50 120

100
100
100

- [68]

LaW10@ MIL-101(Cr)
BT (500 ppm)

DBT (500 ppm)
4,6-DMDBT (500 ppm)

H2O2 6 60 180
87.4
99.1
94.5

0.40
0.45
0.43

[70]

PTA@MIL-101(Cr)-NH2

BT (950 ppm)
DBT (950 ppm)

4,6-DMDBT (950 ppm)
H2O2

10
4

10
50

240
60
240

70.5
100
88.2

(76) a [71]

2PTA/NH2-MOF(Al) DBT (500 ppm) H2O2 20 65 240 ≈100 0.39 [72]

POM/MIL(Cr)
POM/MIL(Al)

T, 1-BT, DBT, 4-MDBT
and 4,6-DMDBT

(500 ppm for each)
H2O2 23 70 120 82.0

99.9 - [73]

PMo12@NH2-MIL-
101(Cr)

BT, DBT, 4-MDBT
and 4,6-DMDBT

(500 ppm for each)
H2O2 6 50 120 95 - [77]

PTA@MIL-
101(Cr)@diatomite DBT (500 ppm) H2O2 5 60 120 98.6 0.32 [78]

PMo@HKUST-1(Cu) T (250 ppm)
DBT (500 ppm) H2O2 6 65 120 90

95 - [82]

PW/UiO-66(Zr)-green
BT (1000 ppm)

DBT (1000 ppm)
4,6-DMDBT (500 ppm)

H2O2 6 25 25
81

99.7
99.8

12.1
14.9
7.5

[96]

[mim(CH2)3COO]3PW
@UiO-66(Zr) DBT (1000 ppm) H2O2 5 70 60 100 2.7 [97]
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Table 4. Cont.

Catalyst Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

PTA@MIL-100(Fe)

PTA@UiO-66(Zr)

PTA@ZIF-8(Zn)

BT (950 ppm)
DBT (950 ppm)

4,6-DMDBT (950 ppm)
BT (950 ppm)

DBT (950 ppm)
4,6-DMDBT (950 ppm)

BT (950 ppm)
DBT (950 ppm)

4,6-DMDBT (950 ppm)

H2O2

H2O2

H2O2

4

4

4

70

70

70

60

60

60

61.8
100
92.8
94.8
100
39.1
9.1

28.6
25.7

- [92]

PW12@UiO-67(Zr)

BT (1000 ppm)
DBT (1000 ppm)

4,6-DMDBT
(1000 ppm)

H2O2 13 70 60
75

99.5
80

- [98]

42%PTA@MOF-808(Zr)-
A DBT (1000 ppm) H2O2 5 60 30 100 7.1 [99]

PTA@TMU-17(Zn)-NH2

BT (169 ppm)
DBT (124 ppm)

4,6-DMDBT (107 ppm)
H2O2 2 - 15

71
98
87

2.6
2.7
2.0

[79]

PMo6W6O40@MOF-
199(Cu) @MCM-41
PMo6W6O40@MOF-

199(Cu)

DBT (2000 ppm) O2 - 85 180
98.5

61.4
- [83]

Cs-POM@MOF-199(Cu)
@MCM -41 DBT (2000 ppm) O2 - 80 180 99.6 (104.5) a [84]

C-POM@MOF-199(Cu)
@MCM-41 DBT (2000 ppm) O2 - 50 90 100 29.2 [85]

SRL-POM@MOF-
199(Cu)

@MCM-41
DBT (2000 ppm) O2 60 150 100 - [86]

POM@MOF-199(Cu)
@ZSM-5

POM@MOF-199(Cu)
@MCM-41

DBT (2000 ppm) O2 - - -

91.2

83.5 - [88]

POM@MOF-
199@LZSM-5 DBT (2000 ppm) O2 - 60 120 100 (44.6) a [89]

1.5HPA@MOF-199(Cu)
@CA-4 T (1000 ppm) O2 - 40 180 99.23 (27.6) a [87]

CNTs@MOF-199(Cu)-
Mo16V2

DBT (2000 ppm) O2 - 80 180 98.3 (21.0) a [90]

Fe3O4@MIL-101(Cr)-
PMoW

Fe3O4@MOF-199(Cu)-
PMoW

Fe3O4@UiO-66(Zr)-
PMoW

DBT (2000 ppm) Air -

40
40

60

60
75

75

100
97.0

91.6

93.8
72.8

68.8

[19]

PMA@UiO-66(Zr) DBT (500 ppm) TBHP 3 80 55 100 3.4 [93]
[Bmim]3PMo12O40/UiO-

66(Zr)
PMA/Thiourea/UiO-

66(Zr)

DBT (500 ppm) TBHP 3 80
50

30

100

100

3.7

6.2
[94]

TiF4-PU-200 DBT (500 ppm) TBHP 3 80 30 ≈100 - [95]
a: kinetic constant [(min−1) × 10−3], data from literatures.
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3.2. Composites of MOFs with Other Active Species

It is well known that some metal oxides such as MoO3, WOx, MnO2, VOx can be
active phases in the ODS reactions of sulfur compounds. Minoo Bagheri et al. prepared the
composite of MOFs and MoO3 by the combination of Zn-MOF (TMU-5) and MoO3 [100,101].
The obtained material was used for aerobic photooxidation of DBT under UV light, resulting
in 95.6% oxidation rate of DBT (Table 5). However, the leaching of molybdenum ions
would occur after reuse. Comparatively, a new magnetic catalyst Fe3O4@MoO3@MOF-
199(Cu) obtained by the combination of MOF-199(Cu) with the magnetic core MoO3@Fe3O4
displayed good recycle performance [102]. The catalysts can be collected by magnetic field
and recycled 15 times. In the same way, Fe3O4@W-MoO3@MOF-199(Cu) with core-shell
structure was also prepared by replacing MoO3 with W-MoO3 [103].

On the basis of UiO-66(Zr), various types of active species including MnO2 [104],
MoO3 [105], WOx [106] and 1-methylimidazolium-3-propylsulfonate hydrosulfate (ab-
breviated as PSMIMHSO4) [107] were introduced into the pore channels or grafted on
the framework of UiO-66(Zr). Therefore, W/UiO-66(Zr) prepared by in-situ injection of
a single W site on the node of the defective UiO-66(Zr) structure by forming a Zr-O-W
bond under solvent-free conditions exhibited excellent catalytic performance in the ODS
reactions of DBT and 4,6-DMDBT. Such performance was attributed to the presence of
single-atom W sites [106].

1-Sulfopropyl-3-methylimidazolium hydro-sulphate (expressed as ILs) was loaded in
the mesoporous structure of MIL-100(Fe), and the DBT (50 ppm) removal rate of 99.31%
was obtained under a high O/S ratio of 25 [108]. However, the performance of the material
decreased by about 21% after five reuses. Recently, Qi et al. designed IL@MOF composites
by post-synthetic ligand exchange method using carboxyl functionalized ionic liquids
as raw materials, and the obtained materials could remove more than 99% DBT under
optimized conditions [109]. The improvement of catalytic performance was attributed to
the introduction of ionic liquids to enhance the adsorption capacity of materials, which is
more conducive to the contact between reactants and active sites.

Jamali et al. prepared three composite catalyst-supported vanadium species on MIL-
101(Cr), A520(Al) and MOF-5(Zn), and vanadium(V) oxytributoxide was used as the
vanadium source [110]. The catalytic results showed that MIL-101(Cr) and A520(Al) loaded
with vanadium species could remove 98% of DBT (500 ppm) and the ODS reaction might
follow a non-radical reaction mechanism (Figure 7). Additionally, the combination of
layered double hydroxides (LDHs) with MOF-76(Tb) was made. The resultant composites
showed improved ODS activity compared with MOF-76(Tb) [111].

Figure 7. Proposed mechanism for ODS of DBT by OV(OtBu)3−x(OH)x@MIL-101(Cr) catalyst in the
presence of TBHP (reproduced from Ref. [110], copyright 2020 Wiley).



Catalysts 2021, 11, 1557 13 of 20

Table 5. Comparison of catalytic performance over the composites of MOFs and other active species in the ODS reactions of
model fuel oil.

Catalyst Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

5 wt.%
MoO3-TMU-5(Zn) DBT (521 ppm) Air - 20 60 95.6 10.9 [100]

Fe3O4@MoO3@MOF-
199(Cu) DBT (2000 ppm) Air - 50 45 100 125.1 [102]

Fe3O4@W-MoO3@MOF-
199(Cu) DBT (2000 ppm) Air - 40 60 100 - [103]

MnO2/UiO-66(Zr) DBT (347 ppm)
4,6-DMDBT (347 ppm) NaClO 4 25 5

100
94 - [104]

MoUiO-66(Zr) DBT (500 ppm) H2O2 2 25 50 95 0.89 [105]

W/UiO-66(Zr)-0.12
DBT (1000 ppm)

BT (500 ppm)
4,6-DMDBT (500 ppm)

H2O2 4

30
30
20 30

99.9
65.3
100

14.6
4.8

11.0
[106]

PSMIMHSO4@UiO-
66(Zr) BT (2000 ppm) H2O2 7 30 20 94.6 3.0 [107]

1.1-ILs@MIL-100(Fe) DBT (50 ppm) H2O2 25 60 180 99.31 0.073 [108]
[mim(CH2)3COO]FeCl4

@UiO-66(Zr) DBT (1000 ppm) H2O2 5 40 120 99.1 1.4 [109]

MOF-76(Tb)@LDH DBT (500 ppm) H2O2 3 60 25 100 13.2 [111]
OV(OtBu)3−x(OH)x@MIL-

101(Cr)
OV(OtBu)3−x(OH)x

@A520(Al)

DBT (500 ppm) TBHP 5 60 60
80

98
98

10.5
7.9 [110]

4. MOFs-Derived Materials as ODS Catalysts

Based on the advantages of high surface area, uniform and rich metal centers, MOFs
have been explored as the precursors of active ODS catalysts. For this, MOF-derived
materials with mixed nanostructures have been generated by designed synthesis and
pyrolysis. The adjustable metal content in MOF-derived materials and the possibility of
combining with highly active metal oxides or carbides make them attractive candidates for
efficient ODS catalysts. Table 6 shows a detailed comparison of catalytic performance over
MOFs-derived materials in the ODS reactions of model fuel oil.

Kim et al. proposed a strategy of high-temperature carbonization and carbon reduction
to prepare titanium oxide nanoparticles supported on amorphous carbon with nanoporos-
ity (abbreviated as Ti/NC) by using Ti(O-IPR)4-modified IRMOF-3(Zn) as a template and
evaluated its catalytic performance in the oxidation reaction of DBT [112]. The catalytic
results indicated that Ti/NC had high ODS reactivity (kapp = 3.4 × 10−3 min−1) and good
cycling stability compared with the materials synthesized by impregnation method. How-
ever, the introduced Ti content was low due to the limitation of pore volume by this strategy.
In order to overcome the shortage, this research group attempted a pyrolysis strategy using
hierarchical micro/meso-MIL-125(Ti) as a template and studied the properties of pyrolysis
products at different calcination temperatures [113]. The authors claimed that the titanium
content and phase in the final material could be controlled by changing the pyrolysis
temperature. The obtained material has higher porosity and catalytic activity for DBT
oxidation than that prepared by the pyrolysis of micropore-MIL-125(Ti). In particular, it has
been pointed out that more mesopores and smaller titanium nanoparticles in the material
are the main reasons for the improvement on catalytic activity. In the same way, a series
of V-based carbon catalysts were obtained by pyrolysis of MIL-47(V) at different tempera-
tures [114]. This series of catalysts have the advantages of high V loading (36–68 wt.%) and
high mesoporous ratio (0.84~0.91). The formation of active vanadium oxides or carbides
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can be controlled by adjusting the pyrolysis temperature. In addition, although MIL-47(V)
pyrolysis to form carbon catalysts could enhance their chemical resistance to TBHP, the
leaching of active species is still an issue.

Sarker et al., developed a new strategy to synthesize MOFs loaded with Ti precursors
inside/outside the pores by regulating the hydrophilic/hydrophobic relationship between
the MOFs and Ti precursor. The obtained materials were pyrolyzed at a high temperature
to prepare TiO2-integrated carbon materials [115]. The results showed that the oxidation
of DBT (1000 ppm) over such catalysts can reach 97.2% within 1 h at 80 ◦C. The authors
propose that the particle size of TiO2 is related to the position of Ti precursor. The pyrolysis
of MOF loaded with Ti precursor inside the pore can obtain smaller TiO2 particles and
higher porosity than those loaded outside the pore, which will lead to superior catalytic
activity. In addition, a chromium-titanium oxide hybrid nanocomposite was also reported,
which was obtained by the pyrolysis of Ti-modified MIL-101(Cr) [116]. When CHP was
used as oxidant, the removal of DBT (1000 ppm) in model oil could reach 90% within
30 min.

Besides the abovementioned strategies, there are other methods for preparing carbon
materials containing metal oxide nanoparticles involving the pyrolysis of MOF@MOF or
bimetallic MOF. Bhadra et al. reported porous carbon materials containing TiO2 nanoparti-
cles (MDC-P and MDC-C) synthesized by MIL-125(Ti)-NH2 and ZIF-8(Zn)@MIL-125(Ti)-
NH2 as pyrolysis templates [117]. It can be seen from catalytic data that MDC-C exhibited
good ODS activity with 99.5% removal of DBT (1000 ppm) within 2 h and can almost
maintain initial activity after five cycles. As an example of the pyrolysis from bimetallic
MOFs, Bhadra et al. prepared a series of MnO-loaded porous carbon materials (abbreviated
as MDNM) by the pyrolysis of Zn/Mn bimetallic MOF-74 [118]. It was found that the
porosity of MDNM increased with the Zn content while the size and content of MnO were
reduced, which might be related to the evaporation of Zn at high temperature. The cat-
alytic results show that the performance of MDNM(75Zn25Mn) is the best among materials
with different metal ratios. In addition, bimetallic MAF-6(Zn, Co) was also synthesized
and pyrolyzed to obtain Co-loaded N-doped porous carbon [119]. The material MDC-
6(75Zn25Co)-900 could give a conversion of 93.6% within 2 h in ODS of DBT. Further
studies suggest that such performance is attributed to high porosity, the synergistic effect
of Co-N-carbon, and the uniform dispersion of small size active Co nanoparticles, which is
beneficial for improving mass transfer and charge transfer process [120,121].

More recently, the composite of heteropoly acid and MOFs has also been used as
pyrolysis template that can produce nitride-loaded porous carbon materials. Mondol et al.
first reported the synthesis of Mo2N@C by high-temperature pyrolysis of phosphomolybdic
acid supported MAF-6(Zn) [122]. When Mo2N@C was used as an ODS catalyst, DBT
(1000 ppm) in model oil could be completely oxidized within 20 min at 60 ◦C. The oxidation
of DBT follows a non-radical reaction mechanism. The high catalytic activity is attributed
to the contribution of N in Mo2N, which leads to the easy formation of Mo-peroxides.
By similar synthesis strategy, W2N@C was successfully synthesized and exhibited good
catalytic ODS performance (Figure 8) [123].

Figure 8. Preparation process of Mela(x)PWA(15)@C material (reproduced from Ref. [123], copyright
2021 Elsevier).
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Table 6. Comparison of catalytic performance over MOFs-derived materials in the ODS reactions of model fuel oil.

Catalyst Precursor MOF Substrate
(S Content) Oxidant O/S

Ratio
Temp.
(◦C)

Time
(min)

Sulfur
Removal

(%)

Activity
(mmol·g−1·h−1) Ref.

Ti/NC IRMOF-3(Zn)/Ti DBT (4896 ppm) TBHP 2.14 100 35 ≈25 (3.4) a [112]

meso-1000 meso-MIL-
125(Ti) DBT (500 ppm) TBHP 10 80 3 - - [113]

C1000 MIL-47(V) DBT (4870 ppm) TBHP 2.15 104 14 ≈57 (61.9) a [114]
50%Ti-MIL-

101-550
50%Ti-MIL-

101(Cr) DBT (1000 ppm) CHP - 60 30 90 11.3 [116]

TiO2@M-6
TiO2@M-74

TiCl4@MAF-
6(Zn)

Ti(SO4)2@MOF-
74(Zn)

DBT (1000 ppm) H2O2 15 80 60 97.4
84.1

(50) a

(32) a [115]

MDC-C
ZIF-8@MIL-

125(Ti)
-NH2

DBT (1000 ppm) H2O2 15 80 120 99.5 5.5 [117]

MDNM
(75Zn25Mn)

MOF-74
(75Zn25Mn) DBT (1000 ppm) H2O2 20 80 120 ≈95 (58) a [118]

MDC-6
(75Zn25Co)-

900

MDC-6
(75Zn25Co) DBT (≈248 ppm) H2O2 15 70 120 93.6 (48) a [119]

Mo2N@C-3 PMA(3)@MAF-
6(Zn) DBT (1000 ppm) H2O2 10 60 20 100 (190) a [122]

Mela(10)
PWA(15)@C

Mela(10)
PWA(15)@
MAF-6(Zn)

DBT (2000 ppm) H2O2 7.5 60 15 98 20.8 [123]

a: kinetic constant [(min−1) × 10−3], data from literatures.

5. Summary and Outlook

In summary, the advances in oxidative desulfurization of fuel oils over MOFs-based
heterogeneous catalysts have been reviewed. As shown, many research works have been
done in the field. The studied ODS catalysts have mainly involved pure MOFs, composites
of MOFs and additional active phases and MOFs-derived materials. The reaction system
refers to the use of different oxidants including H2O2, TBHP, CHP, O2 and air. The reaction
temperature is used up to 150 ◦C, dependent on the reaction system. Generally, the reaction
temperature under the conditions of O2 or air as oxidant is higher than that under other
oxidants. In some cases, various extractants also had an influence on the catalytic ODS
performance. The opportunities and challenges in this field are summarized as follows.

1. As for MOFs as ODS catalysts, most of pure MOFs exhibited poor catalytic ODS
performance due to the lack of active sites. However, it has been demonstrated that
MOFs with defect sites may improve their performance, especially Zr-based and
Ti-based MOFs. Therefore, the design and synthesis of novel Zr-MOFs and Ti-MOFs
with abundant defect sites is still challenging.

2. As for composites of MOFs and additional active phases as ODS catalysts, most
research works have been focused on the combination of POMs and MOFs. Because
the type of POMs is varied, it is undoubted that such combination could supply
more chances to develop new catalysts for catalytic ODS of fuel oils, particularly for
aerobic ODS.

3. As for MOFs-derived materials as ODS catalysts, more active sites could be created
and well dispersed into final materials by this strategy. However, the stability of
active sites is still an issue. Meanwhile, high cost resulting from the collapse of MOFs
is not beneficial for industrial application. Certainly, such a study is meaningful for
the understanding of reaction mechanisms for basic research.

Researchers are still faced with many unsolved problems in the ODS field, although
some achievements have been made. Particularly the ODS processes of real fuel oils are
very complicated and challenging with air as an oxidant. However, the development of
novel MOFs catalysts may provide a good chance to meet the challenges.
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