
catalysts

Article

Elucidating the Influence of Electric Fields toward CO2
Activation on YSZ (111)

Nisa Ulumuddin 1, Fanglin Che 2, Jung-Il Yang 3, Su Ha 1 and Jean-Sabin McEwen 1,4,5,6,7,*

����������
�������

Citation: Ulumuddin, N.; Che, F.;

Yang, J.-I.; Ha, S.; McEwen, J.-S.

Elucidating the Influence of Electric

Fields toward CO2 Activation on YSZ

(111). Catalysts 2021, 11, 271. https://

doi.org/10.3390/catal11020271

Academic Editors: Roger Rousseau,

Vassiliki-Alexandra Glezakou,

Jamie Holladay, Kelsey Stoerzinger,

Olivier Gutierrez and

Juan Lopez-Ruiz

Received: 27 January 2021

Accepted: 11 February 2021

Published: 18 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University,
Pullman, WA 99164, USA; nisa.ulumuddin@wsu.edu (N.U.); suha@wsu.edu (S.H.)

2 Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA;
Fanglin_Che@uml.edu

3 Clean Fuel Laboratory, Korea Institute of Energy Research, Daejeon 34129, Korea; yangji@kier.re.kr
4 Pacific Northwest National Laboratory, Institute for Integrated Catalysis, Richland, WA 99352, USA
5 Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA
6 Department of Chemistry, Washington State University, Pullman, WA 99164, USA
7 Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
* Correspondence: js.mcewen@wsu.edu

Abstract: Despite its high thermodynamic stability, the presence of a negative electric field is known
to facilitate the activation of CO2 through electrostatic effects. To utilize electric fields for a reverse
water gas shift reaction, it is critical to elucidate the role of an electric field on a catalyst surface
toward activating a CO2 molecule. We conduct a first-principles study to gain an atomic and
electronic description of adsorbed CO2 on YSZ (111) surfaces when external electric fields of +1 V/Å,
0 V/Å, and −1 V/Å are applied. We find that the application of an external electric field generally
destabilizes oxide bonds, where the direction of the field affects the location of the most favorable
oxygen vacancy. The direction of the field also drastically impacts how CO2 adsorbs on the surface.
CO2 is bound by physisorption when a +1 V/Å field is applied, a similar interaction as to how it
is adsorbed in the absence of a field. This interaction changes to chemisorption when the surface
is exposed to a −1 V/Å field value, resulting in the formation of a CO3

− complex. The strong
interaction is reflected through a direct charge transfer and an orbital splitting within the Olattice

p-states. While CO2 remains physisorbed when a +1 V/Å field value is applied, our total density
of states analysis indicates that a positive field pulls the charge away from the adsorbate, resulting
in a shift of its bonding and antibonding peaks to higher energies, allowing a stronger interaction
with YSZ (111). Ultimately, the effect of an electric field toward CO2 adsorption is not negligible,
and there is potential in utilizing electric fields to favor the thermodynamics of CO2 reduction on
heterogeneous catalysts.

Keywords: CO2 reduction; electric field; catalysis; density functional theory; yttria stabilized zirconia

1. Introduction

Global energy demand has rapidly increased over the past decades due to the increase
in world population and rapid economic development of developing countries [1,2]. It
is expected that this increasing trend in the world energy demand will continue in the
foreseeable future. In order to meet this energy demand, the consumption of fossil fuels
has dramatically increased and is predicted to continuously increase as well [3]. Because
fossil fuels produce large quantities of CO2 when burned, their large consumption has
negatively impacted our environments (e.g., global warming due to CO2 accumulation
in the atmosphere) [4,5]. Among various alternative and renewable energy technologies,
hydrogen-based technologies are considered as one of the most promising strategies
to replace conventional fossil fuel-based energy technologies because it only produces
H2O byproducts when it combusts [6,7]. However, the majority of hydrogen is currently
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produced via steam methane reforming (SMR). Thus, current hydrogen production is still
bounded to non-renewable sources and generates a large amount of CO2 emissions (e.g.,
~380–420 kgCO2

/Nm3
H2

) [8].
Biogas is considered a viable renewable source to produce hydrogen, as described in

Figure 1. To produce green hydrogen from biogas at an economically feasible price (e.g.,
DOE target of US $4/kg of H2), the raw biogas needs to be reformed without the CO2
gas separation step. One of the technical challenges with reforming the raw biogas is its
high tendency for coke formation, which eventually deactivates the catalyst [9]. In order
to mitigate this coking issue, one can increase the steam-to-carbon (S/C) ratio for the raw
biogas reforming process [8,9]. However, this high (S/C) operation increases the overall
operating energy consumption requirement and cost to produce the hydrogen gas. Thus, it
is highly desired to find new reforming technologies that can process raw biogas without
using a large amount of steam and at a lower operating reaction temperature.
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Figure 1. Schematic of biogas energy cycle.

Recently, electric-field-assisted fuel reforming has been investigated in an attempt
to prevent coking and to reduce the reaction temperature for the conventional steam
methane reforming reaction [10–12]. By applying an external electric field, it is possible to
manipulate both the thermodynamic (e.g., equilibrium constant) and kinetic (e.g., molecular
orientation and electronic interaction between the reactive species and the catalyst) aspects
of the steam methane reforming reaction [11]. For example, when a positive electric field is
applied to the Ni catalyst surface during the steam methane reforming reaction, one can
increase the adsorption rate of water molecules over the catalyst surface by aligning its
dipole moment with the orientation of the external electric field that is applied [10,13]. As
the local concentration of water molecules at the catalyst surface increases with the electric
field strength, the formation of coke can be significantly mitigated even at the low S/C
ratio of 2 [10]. Furthermore, methane conversion increases when the positive electric field
is applied over the Ni catalytic surface by affecting the energetics of its key intermediates
to influence its reaction pathways [11,12].

In addition to influencing the CH4 and H2O chemistries during the raw biogas steam
reforming process under the surface electric field condition, one also needs to efficiently
convert CO2 into CO so that they can be further converted to valuable chemicals and
fuels. Various pathways exist for the reduction of CO2 to CO. The redox-mechanism,
where the reduction of CO2 and oxidation of the catalyst occurs simultaneously, has been
proposed for various catalysts [14,15]. Other well-known pathways are categorized as the
association mechanism, where CO2 adsorbs on the catalyst and reacts with protons to form
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intermediate species such as formate, carboxyl, carbonate, and bicarbonate [16,17]. Either
routes can occur on reducible oxides [18–20]. Regardless of the mechanism, however, the
activation of CO2 is consistently an energetically costly step, as it requires the transfer of
an electron to the CO2 adsorbate, forming a radical anion [21].

Recent work by Xiao et al. [22] has shown how the oxidation state of Cu influences
the adsorption strength of CO. Furthermore, since water has a permanent dipole moment
that either aligns or anti-aligns with the electric field vector (resulting in an increased or
decreased adsorption strength, respectively) [13], we co-adsorbed water in the vicinity
of a CO2 molecule to see if one can find a similar enhancement effect of the electric field
with regard to the adsorption of CO2. This would facilitate its dissociative adsorption
into CO and O adspecies as suggested by Xiao et al. [22]. Unfortunately, our preliminary
work shown in Figure 2 demonstrates that electric field effects were negligible toward CO2
adsorption on Ni (111), as its adsorption energy remained weak between −0.16 eV and
−0.04 eV. The adsorption of CO2 is typically enhanced in the presence of active O, which can
be provided by oxide-supported catalysts [16,20,23]. However, despite the high selectivity
(90–99%) for CO2 reduction, most conversion rates for the reversed water gas shift reaction
are limited to below 20% over oxide-supported catalysts [16]. The potential for enhancing
CO2 activation using electric fields has been explored by Oshima et al. [24]. Further, recent
field emission studies by Lambeets et al., where a high electric field is applied at the apex
of a field Rh emitter tip, have also shown evidence of CO2 activation [25]. This shows that
even though CO2 is a very stable molecule with no permanent dipole moment, it can be
polarized under the applied electric field [26]. However, a theoretical study specifically
investigating changes upon the catalyst’s electronic structure induced by the electric field
has not been done yet.
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Figure 2. Illustration how an external electric field affects the adsorption strength of CO2 when water
is co-adsorbed on a Ni (111) surface. Red, brown, white, and grey spheres and O, C, H, and Ni
atoms, respectively. The yellow or blue areas represent a gain or a loss of electrons at an isosurface of
0.001 electrons/Bohr3.

The first step in overcoming the energetic costs of CO2 reduction on heterogeneous
catalysts is the activation of CO2. In this study, we investigated the effect of applying an
electric-field over YSZ (111) on CO2 adsorption using density functional theory (DFT)-based
calculations. Ultimately, by understanding how both the thermodynamics and kinetics of
CO2 reduction chemistry are influenced by the surface electric field and combining this
knowledge with existing knowledge on the applied field effect over CH4 steam reforming
chemistry, we can develop an economically feasible surface electric-field-assisted raw
biogas reforming technology that could operate at a lower temperature and S/C ratio than
the conventional raw biogas reforming technology.
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2. Results and Discussion
2.1. Field-Assisted Oxygen Vacancy Formation on YSZ (111)

An electric field induces charge polarization within the system, which in turn affects
the chemical properties of the surface. On the clean YSZ (111) surface, a negative electric
field induces charge accumulation toward the surface, while the opposite effect occurs
when a positive electric field is applied. We probed the surface reducibility through a water
formation reaction, as detailed in the Methods section. The presence of an external electric
field was found to decrease the vacancy formation energy values, as compared to when
the electric field was absent, by 0.3 and 0.5 eV when we applied a field value of −1 V/Å
and +1 V/Å, respectively. This indicates that regardless of the field direction, its presence
destabilizes the surface ions. Interestingly, the most favorable oxygen vacancy forms in the
Oterminal site in the absence of field and in the presence of a −1 V/Å field value, but forms
on the Osublattice site for the +1 V/Å field case, as shown in Figure 3.
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Figure 3. Illustration of the most favorable oxygen vacancy sites (Ov) when a field value of −1, 0,
and +1 V/Å is applied. Under the −1 and 0 V/Å field values, Ov occurs on a terminal-O. Under a
+1 V/Å field value, Ov occurs on a sublattice-O (2nd atomic layer).

To aid our understanding on the effects of field direction toward the reducibility of
YSZ (111), we investigated electronic structure analysis through a partial density of states
(PDOS) analysis of the underlying 2 oxygen anions (Oterminal and Osublattice) and the Y-
cation that lies in between these two anions, as shown in Figure 4. The PDOS of the Y-cation
d-state produces a shallow broad peak between −5 eV and the Fermi level (Figure 4a) with
similar fillings of 0.94, 0.98, and 1.22 for the 0 V/Å, +1 V/Å, and−1 V/Å cases, respectively
(Table 1). Our Bader charge analysis shown in Table 2 corroborates this calculation, as
the partial charge of the Y-cation remains the same for all three cases at ~2.20 electrons,
indicating that the oxidation state of the cation is unchanged in the presence of an external
field. As compared to when the electric field is absent, an applied field of +1 V/Å smears
the bonding d-states (Figure 4a.2), while a negative field value of −1 V/Å shifts both the
bonding and the antibonding d-states to slightly lower energy values (Figure 4a.3). We
additionally see an increase of antibonding states for the −1 V/Å case, where the U/Nd
ratio increases from 0.74 to 0.76 as compared to when the field is absent (see Table 1).
We thus hypothesize that the presence of the electric field causes intra-atomic transitions
within the Y-cation d-states, which is a common finding for partially filled d-bands [27].
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Table 1. Quantification of the bonding (below the Fermi energy) and antibonding (above the Fermi
energy) PDOS d-states of a Y-cation for applied electric field values of 0, +1, and −1 V/Å.

Applied Electric
Field, V/Å

Bonding d-States (F),
Electrons/vol

Antibonding d-States (U),
Electrons/vol U/(Nd) Ratio

0 0.94 2.73 0.74
1 0.98 2.45 0.71
−1 1.22 3.81 0.76

Table 2. Partial charge assignments of the Y-cation, the Oterminal, and the Osublattice sites as calculated
using the Bader charge approach for the three electric field cases: 0, +1, and −1 V/Å.

Electric Field, V/Å
Bader Partial Charge = Valence − Bader Charge

Y Oterminal Osublattice

0 2.19 −1.29 −1.33
1 2.20 −1.30 −1.33
−1 2.20 −1.28 −1.33

Figure 4b,c display the PDOS of the p-states of Oterminal and Osublattice, where the
bonding states correlate with the peaks between −5 and 0 eV. A lowering of the U/Np

ratios in Table 3 indicate that the +1 V/Å and −1 V/Å field values induce a higher
occupancy of the bonding states. We hypothesize that one of the ways the +1 V/Å field
value enhances the surface reducibility is by rearranging the p-states to higher energies.
The highest-energy state at −0.5 eV intensifies when a field value of +1 V/Å is applied,
resulting in weaker bounded states and a lower gap between the occupied and the non-
occupied states (Figure 4b.2). We qualitatively could see the same effects with regard to
Oterminal when a field value of +1 V/Å is applied. We hypothesize that the Osublattice site is
more easily reducible than Oterminal under the +1 V/Å field due to a charge accumulation
at the Osublattice site (5.24 vs. 3.28 electrons/vol in Table 3), destabilizing the O-anion. When
a field value of −1 V/Å is applied, we can see a general shift of the O-anion p-states to
lower energies, similar to the Y-cation d-states (Figure 4b.3,c.3). While Oterminal remains the
most reducible O-anion when a field value of −1 V/Å is applied, its higher-intensity peak
at −2 eV shown in Figure 4b.2 weakens the binding of the O-anion with respect to the case
when the field is absent.
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Table 3. Analysis of PDOS d-states at the Oterminal and the Osublattice sites for applied field values of 0, +1, and −1 V/Å.

Applied Electric
Field, V/Å

Oterminal Osublattice

U/Np Ratio (p-States) Total Bonding States
(s + p), Electrons/vol U/Np Ratio (p-States) Total Bonding States

(s + p), Electrons/vol

0 0.14 4.36 0.08 4.74
1 0.10 3.28 0.06 5.24
−1 0.11 4.50 0.06 5.31

In summary, the presence of an external electric field results in a rearrangement of the
bonding states and affects the total number of available states at the ionic sites as well. As
a result, the reducibility of YSZ (111) increases in the presence of an electric field, where a
positive field value destabilizes the surface O-anions most strongly.

2.2. Elucidating the Influence of an Electric Field toward CO2 Activation on YSZ (111)

We tested 10 distinct sites for the adsorption of CO2 as detailed in the Methods section.
Generally, CO2 bonded more strongly in a Y-cation site, as seen in the Supplementary
Materials Figures S1–S3. The adsorption energies of CO2 in the absence of an electric
field were weak, the strongest being −0.21 eV at Site B2 as depicted in the Supplementary
Materials Figure S1. The most favorable adsorption configuration is presented again in
Figure 5, where the binding is correlated with a differential charge visualization. All
evidence points that in the absence of an electric field, no direct charge transfer occurs
between CO2 and the Y-cation. As seen by the charge distribution of the CO2 molecule
and the 3 Å bond length to the YSZ (111) surface, the bonding predominantly comes from
a weak dipole–dipole interaction with CO2. The larger ionic radius of the Y-dopant is
hypothesized to induce strain and weaken electronic binding within the surface, making
the vicinity of the dopant more strongly bonded to the CO2 reactant.
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The orientation of the electric field evidently plays a crucial role toward the capability
of the YSZ (111) surface to activate CO2. We find that the binding configuration of CO2
drastically changes when an external electric field of −1 V/Å is applied, where its well-
known linear shape changes to a trigonal planar configuration with a bending angle
of ~128◦ (Figure 5). Here, CO2 bonds to a lattice O, which acts as a Lewis base center
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as charge accumulates on the surface ions [17]. The configuration alone indicates that
the CO3

− orbitals are sp2 hybridized. As a result, the binding of CO2 is significantly
strengthened from−0.21 eV (in the absence of a field) to−0.93 eV at Site T3 as shown in the
Supplementary Materials Figure S2. The chemisorption of CO2 is in turn accompanied by a
lengthening of the C–O bond length by 0.1 Å. This also results in a Bader charge change of
−0.06 electrons (Figure 5) with respect to when the field was absent and demonstrates that
a field value of −1 V/Å transfers charge from the surface to the adsorbed CO2 molecule,
in agreement with the characteristics of an activated CO2 molecule [16,21]. These results
present the potential of harnessing electric fields to tune the thermodynamic conditions for
CO2 activation.

When a +1 V/Å field was applied, the bonding between CO2 and YSZ (111) remains
limited due to the dipole–dipole interaction, as shown in Figure 5. Our calculations show,
however, that the effect of a positive field value is non-negligible, since it enhances the ad-
sorption strength of CO2 to −0.43 eV at the same adsorption site (Site B2 in Supplementary
Materials Figure S3). All adsorption configurations in the presence of an external field are
displayed in Supplementary Materials Figures S2 and S3. We can see that the interaction
between the molecule and the surface remained negligible within the vicinity of the Zr
cation sites.

A density of states analysis of the adsorption of CO2 on YSZ (111) is shown in Figure 6a.
In the absence of an electric field, the bonding and the antibonding states are present as
the −3.6 and 4.8 eV peaks, respectively (Figure 6a.1). When an electric field of +1 V/Å is
applied, the peaks shift to higher energies, along with a decrease in the total number of
states, illustrated by the shallow peaks in Figure 6a.2. We hypothesize that applying a field
of +1 V/Å pulls electrons away from the CO2 molecule, resulting in the destabilization of
the CO2 molecular orbitals to higher energies. The weakened binding of electrons within
CO2 thus allows for the stronger interaction with YSZ (111). The partial density of states
of the Y-d states in Figure 6b display negligible changes upon the application of a +1 V/Å
field strength. This further supports that the stronger adsorption induced by the +1 V/Å
field indeed mainly stems from the response of CO2 when a field is applied.
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On the other hand, when a negative electric field is applied, strong chemisorption of
CO2 occurs, which is also consequently reflected in its total density of states. As shown
in Figure 6a.3, the bonding of CO2 to the lattice O results in a lowering of the bonding
states in the presence of a negative electric field. In addition, the antibonding states are
now below the Fermi energy. Charge transfer occurs from the lattice O, which was also
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evident by the increased total number of bonding states within CO2, from 3.76 electrons to
9.22 electrons/vol, with respect to when the field is absent. We also observe a smearing of
the CO2 states within the −5 and 0 eV range, which implies that the electronic state energy
levels were now more closely spaced.

The partial density of states of the p-states within the CO2-bounded lattice O high-
lighted in yellow (Obind) is given in Figure 6c. We can see that the electronic states of Obind
lie between −5 and 0 eV in the absence of a field (Figure 6c.1). Upon the chemisorption
of CO2 when a −1 V/Å field was applied, a splitting of the p-orbitals occurs, as revealed
by the emergence of a new peak at −6.24 eV (Figure 6c.2). Ultimately, the chemisorption
between Obind and the CO2 molecule is reflected through changes within their density
of states.

3. Computational Methods

Electronic structure calculations were done under the density functional theory frame-
work using the Vienna Ab initio Software Package (VASP) [28,29]. We used a planewave
basis, through the Projector Augmented Wave (PAW) approach, using the PAW potentials
that were released in 2015 [30], to expand the one-electron orbital wavefunctions for the
electron density [31]. The kinetic cutoff energy for the planewave basis was 500 eV. The
exchange-correlation function employed was the Perdew, Burke, and Ernzerhof (PBE)
model within the generalized gradient approximation (GGA) level of theory [32]. Spin-
polarized calculations were conducted to provide degrees of freedom for the electron filling.
The Gaussian smearing method was used to treat the Fermi level with a width of 0.1 eV.
The optimization criterion for the self-consistent field (SCF) cycle and ionic relaxation were
10−6 eV and 10−2 eV/Å, respectively. As previously reported, the optimized bulk lattice
constant of ZrO2 was 5.12 Å [33].

To examine the effects of the external electric field toward CO2 adsorption, we used a
35-atom (1 × 1) YSZ (111) surface consisting of 3 stoichiometric layers, based on the unit
cell proposed by Shishkin and Ziegler displayed in Figure 7 [34]. In this calculational setup,
the bottom two stoichiometric layers were fixed at their bulk positions, while the first top
layer was allowed to relax. The elementary building unit of YSZ closely resembles 9 mol%
concentration of Yttria, where an oxygen vacancy compensates the charge imbalance
induced from substituting a single formula unit of Y2O3 into a cubic ZrO2 lattice [34]. A
Monkhorst-Pack [35] mesh with a grid of (4 × 4 × 1) k-points was chosen for the Brillouin
zone integration for the 7.24 × 6.27 Å unit cell. The level of the theory of the model was
justified from previous studies, as the choice between PBE and DFT + U did not change
trends induced by external electric fields [33,36].

Catalysts 2021, 11, 271 8 of 13 
 

 

On the other hand, when a negative electric field is applied, strong chemisorption of 
CO2 occurs, which is also consequently reflected in its total density of states. As shown in 
Figure 6a.3, the bonding of CO2 to the lattice O results in a lowering of the bonding states 
in the presence of a negative electric field. In addition, the antibonding states are now 
below the Fermi energy. Charge transfer occurs from the lattice O, which was also evident 
by the increased total number of bonding states within CO2, from 3.76 electrons to 9.22 
electrons/vol, with respect to when the field is absent. We also observe a smearing of the 
CO2 states within the −5 and 0 eV range, which implies that the electronic state energy 
levels were now more closely spaced. 

The partial density of states of the p-states within the CO2-bounded lattice O high-
lighted in yellow (Obind) is given in Figure 6c. We can see that the electronic states of Obind 
lie between −5 and 0 eV in the absence of a field (Figure 6c.1). Upon the chemisorption of 
CO2 when a −1 V/Å field was applied, a splitting of the p-orbitals occurs, as revealed by 
the emergence of a new peak at −6.24 eV (Figure 6c.2). Ultimately, the chemisorption be-
tween Obind and the CO2 molecule is reflected through changes within their density of 
states. 

3. Computational Methods 
Electronic structure calculations were done under the density functional theory 

framework using the Vienna Ab initio Software Package (VASP) [28,29]. We used a 
planewave basis, through the Projector Augmented Wave (PAW) approach, using the 
PAW potentials that were released in 2015 [30], to expand the one-electron orbital wave-
functions for the electron density [31]. The kinetic cutoff energy for the planewave basis 
was 500 eV. The exchange-correlation function employed was the Perdew, Burke, and 
Ernzerhof (PBE) model within the generalized gradient approximation (GGA) level of 
theory [32]. Spin-polarized calculations were conducted to provide degrees of freedom 
for the electron filling. The Gaussian smearing method was used to treat the Fermi level 
with a width of 0.1 eV. The optimization criterion for the self-consistent field (SCF) cycle 
and ionic relaxation were 10−6 eV and 10−2 eV/Å, respectively. As previously reported, the 
optimized bulk lattice constant of ZrO2 was 5.12 Å [33]. 

To examine the effects of the external electric field toward CO2 adsorption, we used 
a 35-atom (1 × 1) YSZ (111) surface consisting of 3 stoichiometric layers, based on the unit 
cell proposed by Shishkin and Ziegler displayed in Figure 7 [34]. In this calculational 
setup, the bottom two stoichiometric layers were fixed at their bulk positions, while the 
first top layer was allowed to relax. The elementary building unit of YSZ closely resembles 
9 mol% concentration of Yttria, where an oxygen vacancy compensates the charge imbal-
ance induced from substituting a single formula unit of Y2O3 into a cubic ZrO2 lattice [34]. 
A Monkhorst-Pack [35] mesh with a grid of (4 × 4 × 1) k-points was chosen for the Brillouin 
zone integration for the 7.24 × 6.27 Å unit cell. The level of the theory of the model was 
justified from previous studies, as the choice between PBE and DFT + U did not change 
trends induced by external electric fields [33,36]. 

 

Figure 7. Schematic of the (1 × 1) YSZ (111) model used in the study. The inherent vacancy site
annotated on the top view is created upon charge balancing the doping of Y2O3 into ZrO2. Annotated
by the black arrow on the side view is the direction of a negative field.
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A uniform electric field was applied in our DFT-based model using the approach
proposed by Neugebauer and Scheffler [37]. The method consists of modeling an artificial
dipole sheet in the vacuum center. A 15 Å vacuum was introduced to the unit cell to avoid
“charge sloshing” from the interaction between periodic unit cells [38]. We considered three
electric field scenarios in our system: −1.0, 0.0, and +1.0 V/Å. The direction of the negative
electric field was defined to point perpendicularly toward the surface, causing charge to be
accumulated on the surface, as annotated in Figure 7. The reverse convention is true for
the positive electric field.

Charge polarization within the slab induced by an external electric field is bound to
change the chemical properties of the surface. The effect of an external electric field on

YSZ (111) was applied perpendicularly to its surface,
→
F = Fẑ. The surface reducibility was

probed using the water formation reaction, with the reaction energy defined in Equation (1):

Evac(
→
F ) = EYSZ(111)+vac(

→
F ) + EH2O(g)(

→
F )− EYSZ(111)(

→
F )− EH2(g)(

→
F ) (1)

where EYSZ(111)+vac(
→
F ) and EYSZ(

→
F ) are the field-dependent total energies of the clean YSZ

(111) slab with and without an additional oxygen vacancy, respectively, and EH2O(g)(
→
F )

and EH2(g)(
→
F ) are total energies of isolated gas-phase water and hydrogen molecules,

respectively, with an orientation that is perpendicular to the externally applied electric
field. A negative vacancy formation energy means that the reaction is exothermic, and a
positive value indicates the reverse.

To investigate effects of the electric field toward the adsorption of CO2 on YSZ (111),
we compared their adsorption energies as defined in Equation (2):

Eads(
→
F ) = ECO2/YSZ(111)(

→
F )− (ECO2(g)(

→
F ) + EYSZ(111)(

→
F )) (2)

where ECO2/YSZ(111)(
→
F ) and EYSZ(111)(

→
F ) are field-dependent total energies of the CO2-

adsorbed and clean YSZ (111) surfaces, respectively. ECO2(g)(
→
F ) is the field-dependent total

energy of CO2 in the gas phase. A negative value of Eads(
→
F ) indicates stronger binding of

the molecule with the surface, while a positive value points to a repulsive interaction. The
adsorption sites tested in this study are labeled in Figure 8, consisting of the various top
(T), bridge (B), and hollow (H) sites.
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Charge exchange upon the adsorption of CO2 on YSZ (111) was visualized in VESTA
by calculating the frozen charge density difference at the optimized bonding geometry,
described in Equation (3). In this paper, we refer to this as the differential charge analysis.

∆n(
→
F ,
→
r ) = nCO2/YSZ(111)(

→
F ,
→
r )− (nCO2(g)(

→
F ,
→
r ) + nYSZ(111)(

→
F ,
→
r )) (3)

where nx is the notation for charge distribution of an optimized structure indicated by
the subscripts. Within the visualization, a negative charge accumulation is displayed by a
yellow electron density cloud, and charge loss is signified in blue. Quantification of the
partial charge transfer is then conducted through a Bader charge analysis employing the
algorithm proposed by Henkelman et al. [39]. A negative Bader charge is associated with
negatively charged ions. It must be noted that while Bader charge correlates directly to
oxidation number, it has also been established that the Bader charge alone cannot determine
the exact oxidation state of the ion [40].

We also investigated the changes within the surface electronic structures through the
analysis of their density of states. The ratio of antibonding/total states and total number of
electronic states can be calculated using Equations (4) and (5), respectively, where the latter
is simply an integration under the curve [41]:

U/N =

∫ +∞
EFermi

ρ(E)dE∫ +∞
−∞ ρ(E)dE

(4)

N =
∫ +∞

−∞
ρ(E)dE (5)

where E is the energy level, ρ(E) is the density of electronic states at a given energy, and
EFermi is the Fermi energy.

Finally, the computational setup for the calculations shown in Figure 2 on Ni (111)
was previously reported in our previous work [42]. These calculations were performed in
a p (3 × 3) supercell. A Monkhorst-Pack [35] mesh with a grid of (4 × 4 × 1) k-points was
chosen for the Brillouin zone integration. The adsorption energy as plotted is defined as

Eads(
→
F ) = E(CO2+H2O)/Ni(111)(

→
F )− EH2O/Ni(111)(

→
F )− ECO2(

→
F ) (6)

where E(CO2+H2O)/Ni(111)(
→
F ) is the field-dependent total energy of the CO2 and H2O co-

adsorbed surface on Ni (111), EH2O/Ni(111)(
→
F ) is the field-dependent total energy of the

water-covered Ni (111) surface, and ECO2(
→
F ) is the field-dependent total energy of a CO2

molecule in the gas phase.

4. Conclusions

To harness electric fields for enhancing CO2 reduction, we first need an understanding
of its effects toward CO2 activation. As CO2 is inherently inert, chemisorbing CO2 is
typically one of the most energetically costly processes for heterogeneous catalysts [17].
We conducted a DFT study focusing on the electronic interactions between CO2 and YSZ
(111) under the influence of a positive (+1 V/Å) and a negative electric field (−1 V/Å) and
compared our results to when the field is absent.

By comparing the oxygen formation energies within these three cases, we found that
an electric field destabilizes surface O-ions on YSZ (111), where a +1 V/Å field value
increases the reducibility of the surface by the largest extent. Destabilization was further
reflected in a surface ion PDOS analysis by either increasing the density of higher-energy
bonding states or by shifting bonding states closer to the Fermi energy. We also found that
by inverting the direction of the electric field vector toward the surface (i.e., applying a
−1 V/Å field value), the most favorable oxygen vacancy site changes from the O anion in
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the first layer (Oterminal) to O in the second atomic layer (Osublattice). Ultimately, our studies
show that an external electric field influences the surface states of YSZ (111).

Upon the adsorption of CO2 on YSZ (111), we generally found that it binds more
favorably within the vicinity of the Y-cation. Without the presence of an electric field, CO2
binds with the surface through a weak dipole–dipole interaction. When a −1 V/Å field
value is applied, CO2 becomes chemisorbed to the surface and forms a CO3

− complex
with the surface O. The strong interaction is reflected upon the direct charge transfer to
the adsorbate (through the gain of 0.06 electrons) and the orbital splitting observed within
the Olattice p-states. While CO2 remains physisorbed when a +1 V/Å field value is applied,
our total density of states analysis indicates that a positive field pulls charge away from
the adsorbate resulting in a shift of its bonding and antibonding peaks to higher energies,
allowing a stronger interaction with YSZ (111). This explains why the adsorption energy of
CO2 was relatively stronger by 0.2 eV. Ultimately, the effect of an electric field toward CO2
adsorption is not negligible, and there is potential in utilizing electric fields to favor the
thermodynamics of CO2 reduction.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/2/271/s1; Figure S1: Comparison of CO2 adsorption sites and their corresponding adsorption
energies on YSZ (111) in the absence of an electric field. Highlighted in pink is the most favorable
adsorption site; Figure S2: Comparison of CO2 adsorption sites and their corresponding adsorption
energies on YSZ (111) when a −1 V/Å external electric field is applied. Highlighted in pink is
the most favorable adsorption site. The legend for each species is shown in Figure S1; Figure S3:
Comparison between the CO2 adsorption sites and their corresponding adsorption energies on YSZ
(111) when a +1 V/Å external electric field is applied. Highlighted in pink is the most favorable
adsorption site. The legend for each species is shown in Figure S1.
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