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Abstract: Redox kinetics of lithium polysulfides (LiPSs) conversion and poor electrical conductivity of
sulfur during the charge-discharge process greatly inhibit the commercialization of high-performance
lithium-sulfur (Li-S) batteries. Herein, we synthesized CoSe, porous hollow flowers (CoSe,-PHF)
by etching and further selenizing layered double hydroxide, which combined the high catalytic
activity of transition metal compound and high electrical conductivity of selenium. The obtained
CoSey-PHEF can efficiently accelerate the catalytic conversion of LiPSs, expedite the electron transport,
and improve utilization of active sulfur during the charge-discharge process. As a result, with CoSe;-
PHF/S-based cathodes, the Li-S batteries exhibited a reversible specific capacity of 955.8 mAh g~ at
0.1 C and 766.0 mAh g~! at 0.5 C, along with a relatively small capacity decay rate of 0.070% per
cycle within 400 cycles at 1 C. Even at the high rate of 3 C, the specific capacity of 542.9 mAh g_lcan
be maintained. This work enriches the way to prepare porous composites with high catalytic activity
and electrical conductivity as sulfur hosts for high-rate, long-cycle rechargeable Li-S batteries.

Keywords: transition metal selenide; catalysis; electrical conductivity; lithium sulfur batteries

1. Introduction

Lithium-sulfur (Li-S) batteries are promising and have been intensively studied in
recent years. It gains popularity due to the following reasons: (1) Li-S batteries possess high
theoretical specific capacity (1675 mAh g~!) and energy density (2600 kW kg~!), which
are desired by advanced energy storage systems such as electric vehicles; (2) The element
sulfur is abundant; (3) Li-S batteries are environmentally friendly and cost-effective [1-4].
However, sluggish redox kinetics and shutting effects of LiPSs, poor electrical conductivity
of sulfur (5 x 1073 S/cm at 25 °C) [5,6], and severe volume expansion (up to 80%) restrict
the commercialization of Li-S batteries [7-12].

Tremendous efforts have been invested in addressing the challenges mentioned above
by developing novel strategies to fabricate state-of-the-art cathodes for Li-S batteries.
Porous carbon materials such as mesoporous carbon, carbon nanotubes and graphene
have been widely used to enhance the conductivity and mitigate the volume expansion of
electrodes [13-18]. However, it is difficult to inhibit the dissolving of LiPSs into electrolyte
due to the poor polarity of these carbon materials [19-22]. Research shows that a judicious
method is to absorb LiPSs through chemical reactions [23]. Therefore, metallic compounds,
such as metallic oxide, carbide, nitride, and sulfide have become a hotspot study in the past
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several years [24-28]. Among these, transition metal oxides and sulfides exhibit superior
electrochemical performance, which can promote the catalytic conversion of LiPSs [29-33].
The visualized adsorption test of polysulfides shows that titanium, vanadium and cobalt
based oxides or sulfides have notable advantages of absorbing LiPSs. However, the poor
conductivity of transition metal oxides and sulfides compromise their advantages of the
superior cycle and rate performance for Li-S batteries.

Recently, transition metal selenides gain their popularity as potential candidates
for cathode materials of high-performance Li-S batteries. It is because selenium, as the
chalcogen, shares relatively similar electronegativity and ionic radius with sulfur, while
has higher electrical conductivity (1 x 1072 S/cm) [34,35]. Hence, we combined the
high catalytic activity of transition metal compound and high electrical conductivity of
selenium to fabricate the CoSe,-PHF through etching and further selenizing layered double
hydroxide. The etching process created many pores and exposed abundant active sites
that could efficiently accelerate the catalytic conversion of LiPSs. The further selenizing
process enhanced the electrical conductivity and improved the utilization of the active
sulfur. Thanks to these merits, the batteries assembled with CoSe,-PHF/S-based cathodes
exhibited a reversible specific capacity of 959.2 mAh g~! at 0.1 C and 766.0 mAh g~ ! at
0.5 C, along with a relatively small capacity decay rate of 0.070% per cycle within 400 cycles
at 1 C. Even at the high rate of 3 C, the specific capacity of 542.9 mAh g~ ! can still be
maintained.

2. Results and Discussion

Figure 1 presents the synthesis process of CoSe,-PHE. Firstly, CoAl-LDH precursors
were synthesized by the facile water bath method (The details can be seen in the experi-
mental section). Secondly, Co-PHF were obtained by treating CoAl-LDH with 5mol L~!
NaOH aqueous solution for 4 h. Notably, Al** can be etched by excess NaOH in this
process so that generating many pores and exposing abundant active sites of catalyzing the
conversion of LiPSs. Finally, Co-PHF were mixed with selenium powder, and then were
heated at 500 °C for 3 h under N, atmosphere to obtain CoSe,-PHFE.

CoAl-LDH Co-PHF CoSe;-PHF
Figure 1. Schematic of synthesis process for CoSe,-PHF.

As shown in Figure 2a, Co-PHF exhibited flower-like sphere with a diameter of
around 10 um. Additionally, Figure 2b clearly showed the hollow structure of Co-PHF,
which would provide a large space to accommodate the volume fluctuation of active
sulfur in cathodes during the cycling process. After selenylation, the obtained CoSe,-PHF
(Figure 2c) maintained the flower-like morphology of Co-PHF parent. The transmission
electron microscope (TEM) image (Figure 2d) showed that CoSe,-PHF were composed
of hexagonal sheets, and the insert figure exhibited that CoSe;-PHF were porous, which
can expose abundant active sites towards catalyzing the conversion of LiPSs. Figure 2e
showed the high-resolution TEM image of CoSe,-PHE, the d-spacing lattice of CoSe,-PHF
was 0.237 nm, corresponding to the (211) plane of CoSe,. As illustrated in Figure 2f,
the SAED pattern can be well indexed according to the crystallographic data, indicating
the high crystallinity of CoSep-PHF. The element distribution of CoSe,-PHEF, as shown in
Figure 2g, indicated that Co, Se, and C were evenly distributed on the flower-like sphere,
further suggesting the successful preparation of CoSe,-PHF.
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Figure 2. (a,b) SEM of Co-PHF. (c) SEM of CoSe,-PHF, and (d) TEM of CoSe,-PHF. (e) HR-TEM images of CoSe,-PHF.
(f) SAED pattern of CoSe;-PHF. (g) Element mapping images for C, Co, and Se elements in CoSe,-PHF.

Thermogravimetric analysis (TGA) was conducted to determine the sulfur loading
in CoSey-PHEF/S. As shown in Figure 3a, the sulfur loading in CoSe,-PHF/S composite
was about 74 wt%. This high sulfur loading can be ascribed to the hollow structure
of CoSep-PHF. The specific surface area and pore structure of CoAl-LDH, Co-PHF and
CoSe,-PHF were determined by using N, adsorption/desorption measurement. All of
the three samples showed the type-IV curves (Figure 3b), which implied the mesoporous
structure of these samples. The BET test results for different samples were summarized in
Table 1. The specific surface area of Co-PHF was measured as 40.177 m?-g~!, which was
approximately twice to that of CoAl-LDH (19.515 m?-g~1). This result may be caused by
the etching of NaOH in CoAl-LDH leading to the formation of porous structure in Co-PHE.
After selenizing treatment, the specific surface area was decreased to 31.986 m?-g~! due to
the formation of CoSe,-PHEFE. These three samples’ results of N, adsorption—desorption
measurements were in line with their morphological features observed by SEM and TEM
measurements. Figure 3¢ demonstrated the pore size distribution plots of the three samples
tested by the Barrett—Joyner—Halenda (BJH) method. The average pore diameter of CoAl-
LDH was 5.012 nm, and this value was increased to 17.296 nm after etching, and the
average pore diameter was decreased to 15.310 nm with the selenizing treatment. The
large specific surface and the abundant mesoporous textures of CoSe,-PHF are ideal for
enhancing the performance of sulfur cathodes. It is because they can provide sufficient
adsorptive and catalytic sites for LiPSs, and efficiently mitigate the volume changes of the
cathodes during the charge-discharge process.
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Figure 3. (a) TGA curve of CoSe,-PHF/S, (b) N adsorption and desorption isotherms, (c) The pore-size distribution plots,
(d) The XPS survey spectra of CoSep-PHE, (e) Co 2p XPS spectra for CoSe,-PHF, and (f) Se 3d XPS spectra for CoSe,-PHF.

Table 1. Specific surface area, total pore volume and average pore diameter of different samples.

Total Pore Volume

Mean Pore Diameter

Samples Sper (m*-g~1) (cm3.g—1) (nm)
CoAl-LDH 19.515 0.058 5.012
Co-PHF 40.177 0.169 17.296
CoSe,-PHF 31.986 0.108 15.310
CoSe, 18.884 0.063 8.690
CoS; 19.659 0.065 9.114
Co304 22.665 0.059 8.796

X-ray photoelectron spectroscopy (XPS) tests were then conducted to explore the
chemical composition and valence states of CoSe,-PHF. As observed from the survey
spectrum of CoSe,-PHF (Figure 3d), the element of Co, Se, C and O were all existed.
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According to the literature, O 1s can be ascribed to the unavoidable surface adsorption
of the sample due to the exposure to the air. [36]. Peak fitting analysis of Co in 2p region
showed Co 2p; /» (797.1 eV), Co 2p3,, (781.1 eV) and two satellite peaks (Figure 3e), which
were consistent with Co%* in CoSe; [36,37]. In addition, two obvious satellites at the higher
energy side of the Co 2p indicated the antibonding orbital between the atom of Co and
Se [38]. In Figure 3f, the peaks located at 54.5 eV and 55.8 eV were attributed to Co-Se
bond, while the peak located at around 61.2 eV was assigned to SeOx, which was formed
by partial oxidation of CoSe; [36,37,39,40].

Figure 4a,b displayed the x-ray diffraction (XRD) patterns of Co-PHF, CoSe,-PHF,
and CoSe,-PHF/S. Although most of the aluminum in the precursor (CoAl-LDH) was
etched by NaOH, the diffraction peaks of Co-PHF were still matched well with CoAl-LDH
(PDF#51-0045) [41-43]. After selenylation, since that the characteristic diffraction peaks
of CoSe; (PDF#09-0234) appear in the obtained CoSey-PHF sample. In addition, the XRD
pattern of CoSe;-PHF/S composite is actually the overlap of XRD peaks of CoSe,-PHF and
Sg, indicating that sulfur is successfully loaded into CoSe,-PHF.
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Figure 4. XRD patterns of (a) Co-PHF, and (b) CoSe,-PHF & CoSe,-PHE/S.

Cyclic voltammetry (CV) was conducted to investigate the catalytic activity of CoSe,-
PHF toward the conversion of LiPSs in the charge-discharge process. As shown in
Figure 5a, two reduction peaks (R; and Ry) and one oxidation peak (O) were observed
in both CoSe,-PHF/S and CoSe, /S electrodes. For CoSe,/S-based electrode, the first
reduction peak (R;) corresponded to the conversion of sulfur (Sg) to long-chain LiS, (4 <n
< 8), and the second reduction peak (R;) was related to the further reduction of long-chain
LiPSs to short-chain Li»S, and LiS,, as well as CoSe,-PHF/S based electrode [44—-46]. The
broad oxidation peak centered at about 2.455 V represented the two continuous oxidation
processes. As shown in Figure 5b and Figure S2 (see Supplementary Materials), both
reduction and oxidation peaks were highly dependent on the potential scan rate. As the
potential scan rate increased, two reduction peaks shifted to lower potential while the
oxidation peak shifted to higher potential. Significantly, the area ratio of reduction peak to
oxidation peak for CoSe,-PHF/S electrode was close to 1, indicating its highly reversible
reaction of sulfur redox. By contrast, the two reduction peaks of CoSe;, /S-based electrode
centered at lower potential (2.238 V, and 2.027 V, respectively), and the oxidation peak
centered at a higher potential (2.487 V), which suggested that CoSep-PHF possessed higher
catalytic activity than CoSe;. And CV tests on the symmetrical cells of CoSe,-PHF electrode
and CoSe; electrode (without loading sulfur) showed the same conclusion. As shown in
Figure 5¢, the redox current in CoSe,-PHF cell increased faster than that of CoSe,-based cell
with the increasing of potential, implying that CoSe,-PHF electrode can really accelerate
the conversion of LiPSs and enhance the kinetics of electrode reaction.
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Figure 5. (a) CV curves of CoSe,-PHF/S and CoSe; /S cathodes at a scan rate of 0.1 mV s~ 1, (b) CV curves of CoSe,-PHF/S
under different scan rates, (c) CV profiles for symmetric cells, (d) Photograph and UV —vis absorption spectra of polysulfides
solutions with the addition of Super P, CoSe;, and CoSe,-PHF.

Theoretically, CoSe,-PHF could inhibit the shuttle effect of polysulfides via the en-
hanced chemical absorption and catalytic conversion between CoSe,-PHF and LiPSs. As
shown in Figure 5d, LiPSs solution (LiySg, 0.5 mol-L~1) was soaked with the CoSe,-PHF
for 2 h and its color was changed from brown to almost water white, while the other two
solutions (added with Super P, and CoSe;,, respectively) were changed slightly, which
corresponded with the results of UV —vis absorption spectra, indicating the much stronger
adsorption and catalytic conversion capability for LiPSs of CoSe,-PHE.

Electrical conductivity measurements revealed the conductivity of CoSe,-PHE. As
shown in Table 2, the electrical conductivity for CoSep;-PHF was estimated to be 1.49 x
1072 S cm™!, which is an increase of nearly 3 orders of magnitude compared with Co3Oy
(1.90 x 107 Sem 1) and CoS; (2.27 x 1075 S cm™1). The high electrical conductivity of
CoSe,-PHF is beneficial for the electron transport and utilization of active sulfur during
the charge-discharge process. Furthermore, electrochemical impedance spectra (EIS) of
CoSe,-PHF/S cathodes before charge-discharge process were conducted to determine the
internal resistance and charge transfer kinetics (CozO4/S, CoS,/S and CoSe, /S cathodes
as contrast samples). As shown in Figure 6, the Nyquist plots of CoSep-PHE/S and
other three contrast electrodes showed semicircles in the high frequency region (charge-
transfer resistance, R¢t) [35,47]. The R of electrode—electrolyte interface for CoSep-PHEF/S,
CoSe; /S, CoS, /S and Coz04/S cathodes was 38.509 (), 55.526 (), 74.221 ), and 84.337 (),
respectively, indicating the lower resistance for charge transfer and faster kinetics for
LiPSs conversion in CoSe;-PHF/S [48]. Therefore, CoSe,-PHF can significantly reduce
charge-transfer resistance and promote the electrode reaction kinetics of LiPSs.
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Table 2. Electrical conductivity of different samples.

Samples o (Scm™1)
S[5] 5.00 x 10730
Co30;4 227 x 1073
CoS, 1.90 x 1075
CoSe, 2.57 x 1073
CoSe,-PHF 1.49 x 1072

100 A —— CoSe,-PHF/S Rs Ret W
—=— CoSe,/S
—e— Co0,0,/S

- 2" /ohm
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20-
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Figure 6. Electrochemical impedance spectra of CoSe,-PHF/S, CoSe, /S, CoS, /S, and CozO, /S cathodes.

To further study the electrochemical performance of CoSe,-PHF/S electrodes, a series
of charge-discharge cycling experiments were tested. As shown in Figure 7a,b, CoSe;-
PHE/S electrodes showed much higher discharge capacity than CoSe, /S electrodes at
any discharge voltage. In Figure 7c, the ratio of Q2 (Corresponding to Li»Ss + 2e™ +
2Li* — 2LipSy; LipSy + 2e™ + 2Li* — 2LiyS) to Q1 (Corresponding to Sg + 4e~ + 4Li*
— 2LipSy) for CoSey-PHE/S and CoSe; /S electrodes were 2.64, and 1.63, respectively.
The charge-discharge voltage gap (AE) of CoSey-PHE/S electrodes were much smaller
than that of CoSe, /S (Figure 7c,d) [49-51], suggesting the faster ions transport and lower
electrochemical polarization of CoSe,-PHF/S electrodes.

The corresponding voltage profiles based on different current rates were shown in
Figure 8a. The discharge platform at a relatively high current rate of 3 C maintained
well in CoSe;-PHE/S electrodes, suggesting a high operation stability of CoSe,-PHF/S
electrodes. The value of rate capacity for CoSe,-PHF/S electrodes were 955.8 mAh g~!
at 0.1 C, 769.6 mAh g~! at 0.5 C, 680.7 mAh g~ ! at 1 C, 618.0 mAh g~! at 2 C, and
542.9 mAh g~! at 3 C (Figure 8b), which were much higher than these of CoSe, /S, CoS,/S
and Co304/S. At the current rate of 0.1 C, CoSey-PHEF/S electrodes with sulfur loading
at 1.3 mg cm~2 showed a much higher specific capacity other electrodes in each cycle
(Figure 8¢). Besides, with a high sulfur loading at 3.4 mg cm 2 (Figure 8d), initial spe-
cific capacity of CoSe,-PHF/S electrodes were 578.8 mAh g~!, which could retain 86.3%
of its initial capacity after 150 cycles at 0.5 C. The decrease of specific capacity with the
increasing of sulfur loading may be caused by the quick dissolution of LiPSs intermediates
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into electrolyte. To further verify the electrochemical performance of CoSe,-PHF/S elec-
trodes, long-term cycling was also conducted at 1 C. As shown in Figure 8e, in contrast to
CoSe, /S, CoSey /S, CoSy /S and CozO4/S electrodes, which displayed much lower specific
capacities and coulombic efficiencies, CoSe,-PHF/S electrodes can retain a high capacity of
522.1 mAh g~! and a nearly 100% coulombic efficiency after 400 cycles, corresponding to a
slow capacity decay rate of 0.070% per cycle. Therefore, CoSep-PHF/S electrodes owned
much better electrochemical performance, and can be considered as a promising sulfur
host for Li—S batteries.
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Figure 7. Charge—discharge cycling curves of (a) CoSe,-PHF/S based and (b) CoSe;/S based electrodes at a 0.1 C,
(c) Galvanostatic discharge—charge voltage profiles of the first cycle at 0.1 C, (d) potential gap of CoSe,-PHF/S and CoSe, /S
based electrodes at various charge—discharge cycles.



Catalysts 2021, 11, 273

90f13

1200
2.84 'TM] ¢ CoSe,-PHF/S
2.6- = = COSCZ/S
. E 10004 p.1c 4 CoS,/S
ey E EEEls ¢ Co0y8 M€
Z & "% o5c c
T 99 ‘S 800 . . >t
=4 < *ee 1C . seeeetilas
S (=% TN 1C Simag
p— < aeilifesey 2C 2C *
= 2.0 S gises - o aase
> s g 600 1 __al.3(: Saesentang
- L
. .g N Sadd
*2C1C 05C 0.
1.6-(21) 3C2C1C 0.5C 0.1C v% 400 (b)
0 200 400 600 800 1000 0 10 20 30 40
Specific Capacity(mAh g) Cycle number
1400 L 1200—— ==l
D %@FWimmﬁmmmi}%fﬂ'lﬂoi\i Tes B e - §
< 12004 —=—CoSe,PHF/S | B 51000 Pttt PO
« e CoSelS 80 g < —=—2.5mgem™ [80 5
‘-E’ —a—CoS /ZS -g \.E/ 0.5C —=—3.4mg em? .g
£1000- Sl Lo £ & 30 - 60 =
g 0.1C —s—C0,0,/S s 3 ~——— -~
=9 B |
S 800+ 40 -2 g 00 T~ 0z
2 E o g
= 20 3 & 400 205
S 600 2 Q
2 O 2 d
L ©) . . : : 0 £ 200 () : : . . 0 <
0 20 40 60 30 100 0 30 60 90 120 150
Cycle number Cycle number
—"bbl 200 Jrrrrr e T T D L T T U R e T e e A T e e 1 00;\?
- e CoSe. - B N
= 1000 CoSe,-PHF/S Z
g —=—CoSe,/S 80 =
2. 8001 ——CoS,/S 2
z .
B 1C ——Co0,0,/S 60 &
(5] .03 4/; L
D [ e——— <
S L40 2
400 — g
= =
S 200+ (20 B
[=*]
& (e =
0 : . . 0
0 100 200 300 400

Cycle number

Figure 8. (a) Galvanostatic charge—discharge curves for CoSe,-PHF/S based electrodes at different current rates, (b)
Rate performance of CoSep-PHF/S, CoSe; /S, CoS, /S, and Co304/S based electrodes at various current rates, (c) Cycling
performance of CoSey-PHF/S, CoSe;, /S, CoS; /S, and Co304/S based electrodes at 0.1 C with the sulfur loading of 1.3 mg
cm~1, (d) Specific capacity of CoSep-PHF/S with varied sulfur loadings at 0.5 C, (e) Cycling performance of CoSe,-PHE/S,
CoSe;, /S, CoS, /S, and Co304/S based electrodes at 1 C with the sulfur loading of 1.2 mg cm ™2,

3. Experimental Section
3.1. Synthesis of CoAl-LDH Precursors

CoAIl-LDH precursors were prepared by a typical hydrothermal process. Firstly,
Co (NO3), 6Hy0 (2.183 g), Al (NO3)3 9H,0 (0.938 g), NH4F (0.371 g) and urea (1.501 g)
were dissolved in 50 mL deionized water (DIW) and stirred at room temperature for 1 h.
Secondly, the solution was added into a 100 mL Teflon-lined stainless-steel autoclave and
maintained at 110 °C for 8 h. After cooling to room temperature, the precipitates were
obtained by centrifuging and washing with DIW for several times. Finally, CoAl-LDH
precursors were obtained by drying at 60 °C for 12 h.
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3.2. Synthesis of CoSe,-PHF, CoSey, CoS; and CozOy

Firstly, 20 g of NaOH and 1 g CoAl-LDH precursors were dispersed in 200 mL DIW
and stirred for 4 h. Secondly, the brown precipitates (denoted as Co-PHF) were collected
by centrifuging and washing with DIW for several times, followed by drying at 60 °C
overnight. Finally, 200 mg of Co-PHF were mixed with 800 mg of selenium powder, and
then the mixture was heated at 500 °C for 3 h under N; atmosphere to obtain CoSe,-PHF.
For comparison, Co3O4 was prepared by heating Co-PHF in the air at 500 °C for 3 h; CoS;
was prepared by heating the mixture of Co-PHF and sulfur at 500 °C for 3 h under N,
atmosphere, and CoSep was prepared by heating the mixture of CoAl-LDH precursors and
selenium powder at 500 °C for 3 h under N, atmosphere.

3.3. Synthesis of CoSe,-PHF/S, C0S,/S and Co304/S and CoSe,/S Composite

Sulfur was thoroughly mixed with CoSe,-PHF at a mass ratio of 3:1. Subsequently,
the mixture was heated under Ar atmosphere at 155 °C for 12 h and then further treated
at 200 °C for 1 h in a quartz tubular furnace. The resultant samples were defined as
CoSey-PHCS/S composite. CoS, /S and Co304/S and CoSe; /S were also prepared in the
same method.

3.4. Visualized Adsorption Test of Polysulfides

LiySe (0.5 mol L~1) solution was prepared by dissolving sulfur and Li,S at a molar
ratio of 5:1 in a mixture of dimethoxyethane (DME) and 1,3-dioxolane (DOL) (v/v, 1:1), and
vigorously stirring at 65 °C in an Ar-filled glovebox. Subsequently, 20.0 mg of samples (i.e.,
CoSey-PHF and CoSe;) were added to 5.0 mL of LiySg solution for a 2 h static adsorption
to evaluate their LiPSs adsorption ability.

3.5. Electrochemical Measurement

The cathodes were prepared by mixing CoSe,-PHE/S (or Co304/S, CoS,/S, and
CoSey /S) composite, Super P, and PVDF in NMP (7:2:1) and stirring the mixtures for
6 h, then coating the obtained slurry on Al foil and drying in an oven at 60 °C for 24 h.
CR2016 coin cells were assembled in the glovebox and the sulfur areal mass loading of
the batteries is 1.1-1.5 mg cm 2. Celgard 2400 film was placed between cathode and
lithium foil. The electrolyte was consisted of 1.0 M LiTFSI, a mixture of DOL and DME (1:1,
v/v), and 2.0 wt% LiNOj; additive. The cycling and rate performance were tested on the
LAND battery test instrument (LAND CT2001A, Wuhan, China) between 1.6 V and 2.8 V.
Cyclic voltammetry curves and electrochemical impedance spectra were obtained with the
electro-chemical workstation (CHI660D, Shanghai, China).

3.6. Characterization

The morphologies of the materials were investigated by using a Hitachi SU8010
field-emission SEM (Hitachi, Tokyo, Japan). The TEM images were investigated by a JEOL
JEM-2100F microscope. The crystal structures were obtained by using a Bruker D8 Advance
powder X-ray diffract meter at the 26 range of 5-90°. TGA curves were obtained with a
METTLER instrument. The samples were tested under a N, atmosphere at a heating rate of
10 °C min~!. XPS measurements were conducted with a Phi X-tool XPS instrument. BET
specific surface area and porous structure were determined by a Micromeritics ASAP 2020
analyzer. Electrical conductivity was determined by using a four-point probe resistivity
measurement system (RTS-9).

4. Conclusions

In conclusion, CoSep-PHF were prepared by a novel synthesizing strategy of etching
and further selenizing CoAl-LDH. Due to the porous transition metal compound’s superior
adsorption and catalytic conversion capabilities towards LiPSs and the high electrical
conductivity of metal sulfides, CoSe,-PHF can not only efficiently accelerate the catalytic
conversion of LiPSs during the charge-discharge process, but also expedite the electron
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transport and improve the utilization of the active sulfur. As a result, CoSe,-PHF/S cathode
materials in Li—S batteries exhibit a reversible specific capacity of 955.8 mAh g~! at 0.1 C
and 766.0 mAh g~! at 0.5 C, along with a small capacity decay rate of 0.070% per cycle
within 400 cycles at 1 C. Even at the high rate of 3 C, the specific capacity of 542.9 mAh g~!
can be maintained. This work offers a new way to prepare porous composites with high
catalytic activity and electrical conductivity as efficient sulfur hosts for high-rate, long-cycle
rechargeable Li—S batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/2/273/s1, Figure S1: (a) XRD of CoSey, (b) XRD of CoSy, (c) XRD of Co30y, Figure S2: CV
curves of CoSe, under different scan rates.
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