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Abstract: With scientific and technological advances, growing research has focused on engineering
enzymes that acquire enhanced efficiency and activity. Thereinto, computer-based enzyme modi-
fication makes up for the time-consuming and labor-intensive experimental methods and plays a
significant role. In this study, for the first time, we collected and manually curated a data set for
hydrolases mutation, including structural information of enzyme-substrate complexes, mutated sites
and Kcat/Km obtained from vitro assay. We further constructed a classification model using the
random forest algorithm to predict the effects of residue mutations on catalytic efficiency (increase
or decrease) of hydrolases. This method has achieved impressive performance on a blind test set
with the area under the receiver operating characteristic curve of 0.86 and the Matthews Correlation
Coefficient of 0.659. Our results demonstrate that computational mutagenesis has an instructive
effect on enzyme modification, which may expedite the design of engineering hydrolases.

Keywords: enzyme engineering; hydrolases; residue mutation; machine learning

1. Introduction

Enzymes, acting as biological catalysts, have a remarkable capacity to accelerate
chemical reactions by 107–1019 fold [1], and make important contributions to shaping and
controlling cellular life. For instance, kinases are indispensable for signal transduction and
cell regulation [2]. ATPases have to do with activating transport to export toxins, wastes,
and solutions, which block the cellular process [3]. Proteases implement a breakdown
of large molecules into smaller ones to be absorbed, related to digestion of ingested
proteins and protein catabolism [4,5]. Glycoses [6] and oxidoreductases [7] collaborate to
create metabolic pathways and maintain a normal life. By virtue of their highly efficient
catalytic activity, awesome biodegradability, extremely strong environmental tolerance, and
exquisite substrate selectivity, enzymes are widely employed in the biofuel industry [8,9],
biological detergents [10], brewing industry [11,12], food processing [13,14], etc. However,
enzymes have finite productivity in vitro with a limitation that they only convert intrinsic
substrates at high rates in vivo. Not only that, but wild-type enzymes also have challenges
catalyzing non-natural substrates in the application of industry.

On the theoretical basis that amino acid sequence determines protein tertiary struc-
ture [15], a wide range of amino acid residues that form temporary bonds with substrates
and make the catalytic reaction faster by lowering the activation energy, make up the func-
tional sites and mediate various functions of enzymes. For this reason, the alteration of
residues may give rise to the functional change of enzymes. Valine in position 56 of glu-
tathione S-transferases (GSTs) formed hydrogen bonds with its substrate glutathione and
a dramatic decrease in the thermodynamic stability would be seen when mutating the
residue to alanine [16]. Mutations of the catalytic site of Candida Antarctica lipase B (CALB)
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W104V/A281Y/A282Y/V149G represented a 40-fold higher catalytic efficiency than wild-
type in the hydrolysis reaction with 4-nitrophenyl benzoate since the mutations reshaped
the structure of the active site and made it easier for 4-nitrophenyl benzoate to enter the
catalytic site [17]. G136F mutant changed the substrate specificity of (R)-stereospecific amine
transaminases (R-ATAs) on the account that this mutation altered the conformation of a loop
next to the active site, accommodating larger substrate pro-sitagliptin ketone [18]. Hence,
residue mutations typically have diverse abilities to fine-tune the functions of enzymes.

Enzyme engineering is proposed on the foundation of the above mentioned, which is
generally utilized to broaden characters of enzymes (stability, expression level, catalytic
activity, and specificity) and comprises two widespread strategies, including the de novo
synthesis of new proteins by rational design [19–22] and the amino acid mutation of
existing proteins by direct evolution [23–28]. The directed evolution method performs
mutagenesis for iterative production of mutant libraries used to screen for enzyme variants
with enhanced properties (thermal, pH, solvent, and activity), and an enormous amount of
experimental effort will be made to confirm whether the enzymes have the desired char-
acter. The first direct evolution case of enzymes was published in 1991, when researchers
successfully promoted the solvent resistance of a protease [29] by mutating triple residues
D60N, Q103R and N218S and subsequently received increasing attention. Direct evolution
still has shortcomings, notwithstanding, it does work in enzyme engineering, that it needs
to build and screen large libraries where most variants have unclear or even counteractive
activity, leading to slow progress in enzyme function optimization, and it is unable to meet
keen demand of human development.

Computational methods of reconstructing enzymes have been the hotspot in recent
years for the sake of their low cost and high efficiency because these methods enable to
construct a prediction model to disclose the attributes of available mutant data and generate
potential mutants, which greatly shortens the research cycle. To date, many computational
approaches have been developed to predict enzymatic properties: CompassR-Strategy
was provided to identify beneficial substitutions to improve enzyme performance by
calculating the relative free energy of folding (∆∆Gfold) [30]. Knowledge-based method
SDM web server was established to predict changes of mutations on protein stability and
malfunction with statistical energy function [31]. Molecular dynamics method was also
used to analyze flexibility and conformational changes on dynamics of various enzymes
like α-amylases [32], xylanases [33], and β-fructosidases [34]. Amounts machine learning
approaches also have been applied to enzyme engineering: Artificial neural networks and
support vector machines were wielded to estimate stability alteration of proteins upon
mutation [35,36]. Random forests were executed to forecast enzyme function by residue
substitutions [37]. K-nearest-neighbors algorithm was applied to predict function [38] and
mechanism [39] of enzymes.

Hydrolases, a class of enzymes that catalyze bond cleavages by reactions with water,
are sufficient to digest macromolecules into fragments and supply the carbon sources
needed for energy production. A few studies on the biological modification of hydrolases
have been done. The first example, polyethylene terephthalate (PET) hydrolase, is one of
the hotspots and wet experiments have shown that PET-depolymerization specific activity
and thermos ability were improved after mutagenesis, hastening the decomposition cycle
of plastic waste [40]. Meanwhile, to design and modify this enzyme more effectively,
computational method GRAPE, a novel method combined with the greedy and clustering
algorithms to obtain recombined Ideonella sakaiensis 201-F6 (IsPETase) and enhanced its
degradation activity by 400-fold [41]. Rational design of epoxide hydrolases was operated
to enhance their bio resolution of bulky pharmacy [42]. Engineered organophosphate
hydrolase had dual functions and self-assembling ability, beneficial for the formation of
catalytic biomaterials [43]. Two amino acid substitutions of butyrylcholinesterase (BChE)
successfully accomplished the improvement of drug metabolism and clearance rate [44].

The above research illustrates that the directed evolution of hydrolases is indeed of
essential significance yet to modify hydrolases and computational methods seem to be
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particularly meaningful to enhance the activity of enzymes, especially those beneficial
to the environment like PETases. Moreover, these methods are requisite for the reason
that it is quite labor-intensive and time-consuming to verify the effect of mutants by wet
experiments. However, as shown above, computational methods to improve and tailor
enzymes are mainly focused on enzyme stability based on thermodynamics calculation or
the enzyme activity executed by molecular dynamics. Little attention is paid to the catalytic
efficiency (Kcat/Km value) of the enzyme catalytic reaction. Hence, in this study, we
proposed a computational method to predict the effect of residue mutations on the catalytic
efficiency of hydrolases by comparing the generally acknowledged used assessment metric
Kcat/Km ratio, where Kcat represents rate constants for the catalytic conversion of substrate
into product and Km represents Michaelis constant. Here, we built a classification model
based on historical data that described the catalytic effectiveness change between wild-
type and mutated enzymes and then predicted new output (increasing-mutation and
decreasing-mutation). The method may contribute to speeding up the engineering process
of hydrolases.

2. Results
2.1. Data Set

The completed data set was composed of 314 mutations (77 increasing-mutation and 237
decreasing-mutation, see Supplementary File), distributed across 65 kinds of proteins from
33 organisms, combined with 68 kinds of various reaction substrates. To prevent bias on the
method, we made the proportion of increasing-mutation and decreasing-mutation on training
and test set, respectively, which was consistent with that on the primitive data set when sepa-
rating the data. Eventually, the training set contained 257 mutations (65 increasing-mutation
and 192 decreasing-mutation) and the test set embodied 57 mutations (12 increasing-mutation
and 45 decreasing-mutation). Meanwhile, the total data were primarily distributed in 13
categories based on its specific hydrolysis reaction type (Figure 1), such as phosphohydrolysis
(27.4%), proteolysis (8.3%), glutathione hydrolysis (0.3%), and dehalogenation (0.3%).
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2.2. Model Performance

A classification model based on the descriptors was constructed to predict whether the
mutated residue would increase or decrease catalytic activity. To begin with, we trained sev-
eral classification algorithms to compare their performance on a five-fold cross-validation
data set: Ensemble algorithm like the random forest, decision tree algorithm, support
vector machine algorithm, clustering algorithm that is K-nearest neighbors. Bayesian
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algorithms involve naive Bayes and Gaussian naive Bayes and neural net like multilayer
perceptron. It is apparent from Figure 2a and Table 1 that the choice of algorithms does
affect the performance of the model, where the AUC, accuracy, and MCC tend to be larger
in ensemble modeling techniques (random forest) than as compared to the other models.
Random forest classifier constructs a multitude of decision trees, of which every decision
tree will give a class prediction, and afterward, the class with the most votes will be the
final prediction result of the method [45]. Obviously, the random forest has the best result
in our study, with the highest MCC of 0.382 and the maximum AUC of 0.8, which shows
a significant advantage in prediction. We thus perceived the random forest as a suitable
model to predict the effect of residue mutation on the catalytic efficiency of hydrolases.
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Table 1. Prediction of effects on the catalytic efficiency of hydrolases by residue mutation on different
classifiers.

Classifier. Accuracy Precision Recall AUC MCC

Random Forest 0.8 0.8 0.62 0.80 0.382
Gaussian Process 0.77 0.69 0.68 0.73 0.363

Neural Net 0.77 0.69 0.66 0.74 0.353
Naive Bayes 0.55 0.64 0.67 0.67 0.307

Nearest Neighbors 0.76 0.67 0.58 0.67 0.232
Decision Tree 0.7 0.60 0.61 0.61 0.213

SVM 0.75 0.88 0.52 0.74 0.152

Nevertheless, just as the data (Figure 2a and Table 1) revealed, the recall, AUC, and
MCC of the model were not optimal, especially the MCC. Therefore, we successively adopted
several measures to achieve a higher-quality prediction model. On the one hand, to balance
the model’s prediction ability of different classes of samples, we harmonized the slightly
unequal dataset (the ratio of positive and negative samples was close to 1:3) by oversample
way synthetic minority oversampling technique (SMOTE), which synthesizes new examples
for the minority class. On the other hand, we did hyper parameter optimization to improve
the model’s performance targeting numbers of trees in the forest, the depth of every decision
tree, the numbers of samples allowed in the leaf node, and the numbers of samples when
placed in the node before the node is split. Eventually, we improved the prediction ability of
this random forest model on the aspect of MCC (Table 2), increasing to 0.448 from 0.382, which
meant the model had a better prediction result on both increasing-mutation and decreasing-
mutation. The final model was exploited to predict the blind test set ultimately, and what
stands out in Figure 2b and Table 2 is the model was unexpectedly satisfactory on the test set,
with AUC of 0.86 and MCC of 0.659.
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Table 2. Prediction of effects on the catalytic efficiency of hydrolases by residue mutation on valida-
tion and test set by random forest model.

Data Accuracy Precision Recall AUC MCC

Validation Set 0.81 0.76 0.69 0.80 0.448
Test Set 0.89 0.89 0.78 0.86 0.659

2.3. Case Study

To analyze the prediction capability of the method, we performed several case stud-
ies on increasing-mutation or decreasing-mutation predicted by this method. Figure 3
displays the prediction effects of residue mutation on glycoside hydrolysis reaction effi-
ciency, which revolved with the hydrolysis of glycosidic bonds in complex sugars [46].
Enzymes represented here are Beta-D-glucosidase from Maize (PDB: 1HXJ) and Rye (PDB:
3AIU). We noted that the method predicted correctly with two increasing-mutations
(V205L and P377A) and three decreasing-mutations (F198V, D261N, and M263F) of Beta-
D-glucosidase from Maize [47], plus with two increasing-mutations (G464F and S465L)
and two decreasing-mutations (F198A, Y378A) of Beta-D-glucosidase from Rye were pre-
dicted by the method [48], among which F198V and D261N resulted in an almost inactive
enzyme. Insights into the structure of the enzymes, mutation at position 198 motivated
the rearrangement of Phe205, Phe466, and Glu464, the three residues that all related to
the glycoside and aglycone binding pocket and mutation of residue Asp261 destabilized
the protonation states of the acid-base catalyst. Phosphohydrolysis reactions catalyzed by
Phosphonoacetaldehyde hydrolase (Figure 4a) and RNA helicase (Figure 4b) are the process
of hydrolysis of organic phosphate [49]. From graphs, we uncovered the model predicted
rightly with five decreasing-mutations of Phosphonoacetaldehyde hydrolase (C22A, M49L,
G50A, H56A, and Y128F) [50], and three decreasing-mutations of RNA helicase (S228A,
T230A, and H375A) [51]. In Phosphonoacetaldehyde hydrolase, the Kcat/Km ratio of M49L
was reduced 15,000-fold, along with Kcat/Km of G50A was reduced 11,000-fold. On the
view of protein structure, Met49 was located in the catalytic site and bound with a water
molecule, which was proved to be linked with the formation of the hydrogen bond with
the carbonyl oxygen of substrate and the transfer of protons. However, Gly50 enabled to
aid the hairpin turn at the helix-turn-helix motif and stabilize the closed conformation state
of enzyme, which could interpret the drastic descend of G50A mutant catalytic efficiency.

Apart from these, our model also correctly predicted several decreasing-mutations
in lactam hydrolysis, ester hydrolysis and amino acid hydrolysis reactions. They were in
Beta-Lactamase (Figure 5, H86S, H88S, D90E, H149S, C168S, and H210S) [52,53], Pectin
Esterase A (Figure 6, Q153A, Q177A, V198A, T272A, and M306A) [54], additionally with
Arginase (Figure 7, H101E, D128A, H141N, D232A, D234E, and G235A) [55–57]. Thereinto,
Kcat/Km of D232A of Arginase showed a sharp reduction of 23,000-fold. Back to the
original reaction mechanism, research has demonstrated that this reaction required an
intact binuclear manganese cluster, yet the mutation of D232 was unable to steady Mn2+

and make the metal-bridging hydroxide ion in the appropriate position, resulting from the
decline of catalytic activity of the enzyme. Original Kcat/Km parameters are shown in
Table 3.

All these results show that our method does have a noticeable ability to predict the
effect of residue mutation on hydrolysis reaction, especially on glucoside hydrolysis, phos-
phohydrolysis, lactam hydrolysis, etc. However, there is still one question that the number
of increasing-mutation predicted by our method was much less than decreasing-mutation
because of our imbalanced data set. Therefore, we will measure our model in more cases that
contain increasing-mutations in the further work to make our method more rigorous.
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Table 3. Kcat/Km parameters of wild-type enzymes and their mutants.

Mutation Type Protein Name Mutant Kcat/Km(wt)/
s−1uM−1

Kcat/Km(mut)/
s−1uM−1

Increase/Decrease
Fold

Increasing-
Mutation

Beta-D-glucosidase(Maize) V205L 0.0819 0.0869 1.1
P377A 0.0819 0.105 1.3

Beta-D-glucosidase(Rye) G464F 0.01247 0.015 1.2
S465L 0.01247 0.03724 3.0

Decreasing-Mutation

Beta-D-glucosidase(Maize)
F198V 0.0819 0.0148 5.5
D261N 0.0461 0.00552 8.4
M263F 0.0461 0.02707 1.7

Beta-D-glucosidase(Rye) F198A 0.1475 0.005283 27.9
Y378A 0.1475 0.1374 1.1

Phosphonoacetaldehyde
hydrolase

C22A 0.4546 0.00368 123.5
M49L 0.4546 0.0000294 15,462.6
G50A 0.4546 0.0000391 11,626.6
H56A 0.4546 0.0005172 879.0
Y128F 0.4546 0.04911 9.3

RNA helicase
S228A 0.0002045 0.0000833 2.5
T230A 0.0002045 0.00008024 2.5
H375A 0.0002045 0.00007609 2.7

Beta-Lactamase

H86S 1.353 0.08868 15.3
H88S 1.353 0.01565 86.5
C168S 1.353 0.03158 42.8
H149S 1.353 0.001228 1101.8
D90E 1.386 0.02069 67.0
H210S 1.386 0.003562 389.1

Pectin Esterase A

Q153A 3.462 0.1055 32.8
Q177A 3.462 0.1818 19.0
V198A 3.462 1.133 3.1
T272A 3.462 0.5519 6.3
M306A 3.462 0.1113 31.1

Arginase

H101E 0.1786 0.002655 67.3
D128E 0.1786 0.00005 3572.0
H141N 0.1786 0.002333 76.6
D232A 0.1786 0.0000075 23,813.3
D234E 0.1786 0.00264 67.7
G235A 0.1175 0.08 1.5
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3. Discussion

Research on the engineering of hydrolases has always been the hotspot in enzyme en-
gineering. In this paper, we exhibited a computational approach to predict the change of
catalytic efficiency of hydrolases after residue mutations. Importantly, the dataset employed
in this method was a manually curated, literature-derived dataset, comprising 314 single
residue mutations, and associated for the first-time experimental information on alterations
in catalytic hydrolysis reaction activity with three-dimensional structures of protein–ligand
complexes. Nevertheless, there are still some unanswered questions. As the data (Supple-
mentary File) show, we only focused on individual residue mutations of enzymes, whereas
iterative mutations are more integrant in protein engineering. Previous studies assumed that
mutation effects of proteins have additivity [58,59], and the ProSAR algorithm [60] was also
applied to identify synergistic effects by statistical analysis way. Therefore, it is still a rough
but worthwhile road to study the effects of iterative mutation on proteins. Besides, features
utilized in our methods were focused on sequence, structure, and assay environment, which
were predominantly molecular-level descriptors. Nevertheless, lots of studies have confirmed
that the hydrophobic effect and hydrogen bonding are the dominant force in protein folding,
which contributes to the stability of proteins [61–63] and the reduction of free energy and
may impact the transition of proteins state and the kinetic properties of enzymes. Therefore,
more attention should be paid to the atomic-level characteristics [64], which facilitate the
establishment of causal relationships between protein–ligand complexes and catalytic activity.
Meanwhile, chemical reactions catalyzed by enzymes are dynamic processes associated with
activation energy, bond break, and transformation of chemical groups. Hence, comprehensive
understanding of reaction mechanisms, dynamics, structures and sequences is essential for
in-silico enzyme engineering. At the same time, just as shown in Figure 1, hydrolases are an
enzyme family containing diverse enzymes that catalyze various hydrolytic reactions, e.g.,
lipases break ester bonds and phosphatases act analogously upon phosphate. Thus, different
subsets of hydrolyses-class may catalyze the substrate with different attributes and characters.
Hence, prediction models on the catalytic efficiency of hydrolyses should make a difference
between certain subsets of hydrolyses. Future studies on the topics mentioned above are,
therefore, recommended.

4. Materials and Methods
4.1. Method Workflow

As schematically represented by Figure 8, our method was made up of four major steps,
including data collection, data preparation, feature construction, and model prediction.
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4.2. Data Collection and Preparation

The availability of high-quality data is essential for computational methods because
its confidence and attribute determine the universality of the model. However, current
kinetic data and structural information of protein–ligand complexes of both wild and
mutant proteins are unsystematic and nonstandard. To fill this gap, we collected and
manually curated experimental-based data from MuteinDB [65] and SABIO-RK [66], two
databases that include information about reaction substrate, products, kinetic parameters,
and enzymatic reactions directly with variants of enzymes, and also checked it for accuracy
from the literature. We manually aggregated exceed 300 data from MuteinDB, including
protein name, mutated site, reaction substrate, reaction condition and crawled about 60,000
data by Python (Python Software Foundation, Scotts Valley, CA, USA, 2009) from SABIO-
RK, and then removed some data against criteria that include requiring enzyme kinetics
data of single residue mutation and the three-dimensional structure had been determined.
About 3000 data pieces of ultimately matched our criteria.

All the data were distributed at different reaction types and the data related to hydrol-
ysis reaction were taken out and thereafter, corresponding mutated residues were localized
onto protein structures deposited in the Protein Data Bank (PDB) [67]. Meanwhile, the
reaction substrate was also mapped onto experimentally solved protein–ligand complexes
if the crystal complex exists. Otherwise, the ligand was docked into the catalytic sites of
proteins by SMINA [68]. Then, we divided data into two groups based on the catalytic
efficiency change of a given single-point residue mutation on a logarithm scale:

Efficiency Change = ln
Kcat/Km(mut)

Kcat/Km(wt)
(1)

where Kcat/Km(mut) indicates the catalytic efficiency of the mutant protein–ligand complex
and Kcat/Km(wt) indicates the catalytic efficiency of the wild-type complex. The residue
mutation was classified as increasing-mutation (to increase catalytic efficiency) when
efficiency change was positive and the decreasing-mutation (to decrease catalytic efficiency)
when the change was negative.

4.3. Feature Construction

In an attempt to predict increasing-mutation or decreasing-mutation with the compu-
tational method, we turned it into a classification problem and constructed 50 features of
protein and ligand at the molecule and atomic level to describe mutation information. Overall,
features were categorized as sequence features, structural features, and assay conditions.

According to our previous research [69], sequence features that have been the most
preferred descriptor applied in computational methods, here, included Shannon entropy
to depict conservation of mutated residue, position-specific scoring matrix to describe
mutated residue evolutionary distance and other physicochemical properties of residues
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like hydropathy, hydrophobicity, and polarity. All the sequence features were computed
by Prody (Bahar Lab, Pittsburgh, PA, USA, 2011) [70], Biopython (Open Bioinformatics
Foundation, Toronto, Canada, 2020) [71] toolkit, and KAlign (Stockholm Bioinformatics
Centre, Sweden, 2011) [72] software.

Structural features were divided into four categories.
(1) Basic structural features of proteins consisted of geometric characterization, secondary

structure assignments, residue solvent-accessible surface area calculated by DSSP (Wolfgang
Kabsch and Chris Sander, Heidelberg, Germany, 2003) [73] software and Biopython (Open
Bioinformatics Foundation, Toronto, Canada, 2020) [71] toolkit, along with B-factor [74]
attained from protein 3D structure file to reflect displacement fluctuation of atoms.

(2) Residue network features were also included in this method, which involved the
change of non-covalent interactions of mutated amino acids based on residue network,
generated by RING [75] software (BiocomputingUP Lab, Italy, 2016).

(3) Ligand properties comprised molecule weight, number of hydrogen acceptors and
donors, number of heavy atoms, rotatable bonds, number of rings, and LogP, which were
all calculated by cheminformatics toolkit RDKit (Greg Landrum, San Francisco, CA, USA,
2020, http://www.rdkit.org/).

(4) In order to describe the difference of characterization of interactions in protein–
ligand complexes, we drew on Protein–Ligand Interaction Profiler (PLIP) [76] tool (Michael
Schroeder group, Tatzberg, Dresden, Germany, 2015) to excavate relevant to non-covalent
contacts in protein–ligand structure and calculated quantity changes of seven interaction
types (pi-stacking, pi-cation interactions, hydrogen bonds, hydrophobic interactions, salt
bridges, water bridges, hydrogen and halogen bonds) for mutated residues.

Considering in vitro assays of enzyme catalytic activity is easily affected by experi-
mental conditions that could lead to different Kcat values in different conditions, we added
pH and experimental temperature as two descriptors to address this issue.

4.4. Comparison of Different Classifiers

With the purpose of improving the accuracy of the method, we compared seven
different classifiers exploited to select the best model. They were random forest classifier,
Gaussian process classifier, neural net classifier, naive Bayes, nearest neighbor classifier,
decision tree, and support vector machine (SVM). All the classifiers were trained on the
training set, and according to the performance metrics, we chose the best method to
construct the model in the future. All the machine learning models mentioned above were
implemented by Python 3 and the scikit-learn [77] library.

4.5. Model Evaluation

Commonly, the model will be fitted on a training set and then utilized to predict
unknown data of the test set. However, due to the limitation of our data set and to prevent
overfitting, we employed five-fold cross-validation on the training set. The training set
was randomly split into five complementary subsets, and each of the subsets would be
exploited as the validation set to validate analysis or find the best parameters after the
model was fitted on the other four subsets left. Afterward, the independent and brand-new
test set was used to provide an impartial assessment of the final model. The performance of
the model was evaluated by several metrics, including accuracy, precision, recall, Matthews
Correlation Coefficient (MCC), the receiver operating characteristic (ROC) curve, along
with false positive rate (FPR), true positive rate (TPR, also defined as recall), and the area
under the curve (AUC).

The measurements above were defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

http://www.rdkit.org/
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TPR (Recall) =
TP

TP + FN
(4)

FPR =
TP

FP + TN
(5)

MCC =
TP × TN − TP × FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
(6)

where TP, FP, TN, FN represent true positive, false positive, true negative, and false negative.
The ROC curve is plotted with TPR against the FPR at diverse threshold values, and AUC
provides a cumulative measure of performance across all possible classification thresholds.

When it comes to classification problems, accuracy, precision, recall, and AUC are
commonly applied to assess the model. Whereas just as the equation is shown, when the
dataset was imbalanced, which means the distribution of data across the known classes
is skewed, accuracy became invalid. Precision, recall, and even the ROC curve were in
the same situation as they just focused on the single category (positive or negative class)
which we were interested in. Thereby, to estimate the model roundly, we took into account
other metrics MCC [78], which took into account all four values FN and regarded the true
class (whether it is a positive or negative class) and the predicted class as two variables to
calculate their correlation coefficient. The higher the correlation between true and predicted
values, the better the prediction for all classes.

5. Conclusions

Engineering of hydrolyses to strengthen their activity by mutating certain residues
has always been the hotspot for researchers. Here, in our study, to discriminate the effects
(increase and decrease) of residue mutation on the catalytic activity of hydrolyses, we
constructed a classifier executed by Random Forest algorithm on 257 single mutations of
hydrolyses with properties of enzymes on sequence, structure, and assay condition and to
predict the residue effect by assessing the Kcat/Km of enzymes. After training on the five-
fold cross-validation set and optimization of parameters, ultimately, the independent test
set had a dazzling result with the AUC of 0.86 and the MCC of 0.659. Our study not only
provides a solid theoretical basis for related research but also expedites the engineering
process of hydrolyses.

Supplementary Materials: The supplementary file is available online at https://www.mdpi.com/
2073-4344/11/2/286/s1.
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