

Supplementary Figures and Tables

Figure S1. Schematic illustration of TUB miniplant experimental setup for Fixed Bed Reactor (top) and Membrane Fixed Bed Reactor (bottom)

Figure S2. XRD patterns and identified phases during a temperature ramp from 400 °C to 900 °C and back at room temperature. The insert shows a zoomed in region of 20 of 20-40° with the identified reflections with no pattern changes with temperature at 400 °C and 500 °C

	space group		а	b	c	RT	400°C	500°C	600°C	700°C	800°C	850°C	900°C	1000°C	RT
			Å	Å	Å										
SiO2-cristobalite	tetragonal	alfa-low	4.9694		6.9256										
SiO2-cristobalite	tetragonal	alfa-high	4.9829		6.9633										
SiO2-cristobalite	orthorombic	beta	7.1315	7.1315	7.1315										
SiO2-cristobalite	cubic	beta	7.1471												
SiO2-tridymite-O	orthorombic		17.0859	9.9313	16.304										
SiO2-tridymite	orthorombic		8.743	5.046	8.254										
SiO2-tridymite	hexagonal		5.03		8.22										
Mn2O3	orthorombic		9.4078	9.4488	9.3739										
Mn2O3	cubic	Bixbyite	9.43												
MnWO4	monoclinic		4.762	5.66	4.9507										
Mn2WO4	monoclinic	Hubnerite	4.83	5.77	4.98										
Na2WO4	cubic		9.13												
Mn304	cubic		8.7												
Mn7SiO12	tetragonal	Braunite	9.425		18.699										

Table S1. Summary of XRD results and identified phases during a temperature ramp from room temperature/400 °C to 1000 °C and back at room temperature. The table includes respective space groups and lattice parameters at different temperatures obtained from Rietveld analysis.

Figure S3. Optical images of a cross section of a 3D printed Mn-Na-W/SiO₂ catalyst embedded in epoxy resin. The blue rectangle indicates a region of interest presented in greater detail in Figure S6.

Figure S4. WDS images of 3D printed Mn-Na-W/SiO₂ catalyst before (top row) and after (bottom row) reaction showing elemental distribution and porosity as an effect of the exposure of the structure to the reaction conditions. Note that the catalyst material and pores are evenly distributed inside the structure.

Figure S5. Phase distribution maps showing the evolution of each Mn- and Na-W oxide phase recorded across the silica support at three separate positions within the 3D printed sample. Mn₂O₃ was detected both at room temperature and at 840°C. MnWO₄ was recorded only at room temperature and did not reappear later during the measurement. Na₂WO₄ and Na₆WO₆ can be only observed in crystalline form at room temperature during this experiment.

The temperature dependent XRD measurements presented in Table S1 were performed on a PANalytical Empyrean, 60 kV with PIXcel^{3D}.

Abbildung 2.4: Sorptionsisothermen der untersuchten Katalysatoren. Links: Pulver, Mitte: Struktur, Rechts: Pellet.

Figure S6. N2 adsorption-desorption isotherms for powder, 3D printed and pelletized Mn-Na-W-O/SiO2 samples.

Figure S7. Pore diameter plots showing mesopore size distributions for the powder and 3D printed Mn-Na-W-O/SiO₂ samples.

Figure S8. Scope for future work: from current fixed bed incarnations to catalytic membrane reactors comprising 3D printed monoliths and porous alumina membrane for O₂ distributive feed for a scaled up reactor design.

Figure S10. Mass spectrometry measurements under OCM at 840 °C for 5.5hrs during the in situ XRD-CT experiments

Figure S11. SEM and EDS images showing morphology and elemental mapping of spent Mn-Na-W/SiO₂ catalyst along the inner wall of a porous MgO membrane that was tested under OCM conditions at the ID15A beamline of the ESRF; (legend: Mn-green, W-red, Mg-blue, Si-fuchsia).

Figure S12. Phase distribution maps of cristobalite, tridymite, Na₂WO₄, MnWO₄, MgWO₄ and Mg₂SiO₄ at a selected height within a porous MgO membrane reactor after 40 h of operation. Note the formation of magnesium silicate on the wall of the MgO tubes and tungsten imbedding as a sublayer in the form of magnesium tungstate.

Figure S13. Representative elemental maps showing grains of the spent Mn-Na-W/SiO₂ catalyst in the pelletized powder form. Scale bar in all maps is 20 μ m. Larger grains Mn (up to ca. 5 μ m), and Na and W (up to ca.10 μ m) were observed across the silica support.