Supporting Information

Figure S1. Comparison of catalytic performances of our catalyst 0.04Sr-Ho₂O₃ and three reference catalysts at different temperatures: (a) CH₄ conversion and (b) C₂-C₃ selectivity.
(▼) 0.04Sr-Ho₂O₃-NS, (▲) 0.04Sr-La₂O₃, (●) 3%Li/MgO, (■) 0.04Sr-CeO₂.

Figure S2. TEM image of Ho₂O₃-NP.

Figure S3. XPS spectra of O 1s on Ho_2O_3 -NP (a), Ho_2O_3 -NS (b), $0.02Sr-Ho_2O_3$ -NS (c), $0.04Sr-Ho_2O_3$ -NS (d) and $0.06Sr-Ho_2O_3$ -NS (e).

Figure S4. The typical GC chromatograms detected by a FID (a) and a TCD (b).

Scheme S1. Proposed reaction mechanism of methane transformation to ethane, ethylene, propane and propylene.