Highly Graphitized Fe-N-C Electrocatalysts Prepared from Chitosan Hydrogel Frameworks

Giorgia Daniel¹, Tomasz Kosmala¹, Federico Brombin¹, Marco Mazzucato¹, Alessandro Facchin¹, Maria Chiara Dalconi², Denis Badocco¹, Paolo Pastore¹, Gaetano Granozzi¹ and Christian Durante^{1,*}

- 1 Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- 2 Department of Geoscience, University of Padova, via Gradenigo 6, 35131, Padova, Italy
- * Correspondence: christian.durante@unipd.it; Tel.: +39-049-8275112

Figure S1: TEM images of Fe-N-C3 before (**a**,**b**) and after (**c**,**d**) acid treatment.

Figure S2: TEM images of Fe-N-C5 before (**a**,**b**) and after (**c**,**d**) acid treatment.

Figure S3: Example of Raman spectrum deconvolution.

Figure S4: (**a**) Pseudo-Voigt fitting on graphite peak obtained from XRD technique. (**b**) *Williamson-Hall* (*W*-*H*) plot of magnetite and *α*-Fe.

Figure S5: XRD spectra of Fe-N-C3 and Fe-N-C5 before and after acid washing.

Figure S6: (**a**) nitrite stripping and recovered CVs of Fe-N-C5 recorded in Ar-saturated electrolyte at 10 mV s⁻¹, (**b**) magnification of the stripping area integrated for the site density determination, (**c**) Tafel plot recorded before and after poisoning in O₂-saturated electrolyte, and (**d**) Activity map of all catalysts.

	1					1					
Sample						Raman					
	D1	G	Ad3	I d1/ I G	R2	2D4	2D1	2D1 _{Area}	D1+G	2D2	I2D1/ID1
	cm-1	cm-1				cm-1	cm-1		cm-1	cm-1	
Fe-N-C1	1347	1589	40	1.2	0.55	2489	2685	27	2906	-	0.19
Fe-N-C2	1347	1597	76	1.3	0.57	-	2689	23	2915	-	0.19
Fe-N-C3	1342	1588	36	1.5	0.60	2480	2675	35	2905	-	0.22
Fe-N-C4	1343	1583	41	1.3	0.57	2500	2684	20	2920	-	0.21
Fe-N-C5	1346	1577	15	1.1	0.45	2457	2689	34	2929	3230	0.92

Table S1: Raman parameters obtained from deconvolution spectra.

Table S2: Line profile analysis results for α -Fe in sample Fe-N-C5.

sample	Reflection	Pos. [°2Th.]	d-spacing [Å]	Sample IB [°2Th.]	size [nm]
Fe-N-C5	011	52.305	2.029	0.231	49
	002	77.183	1.434	0.274	48

Table S3: Surface chemistry determined from XPS spectra fitting.

Sample						XPS					
	C 1s	O 1s	N 1s	Fe 2p _{3/2}	Nimine	Npyridinic	Nx	Npyrrolic	${ m N}_{ m graphitic}$	N-O	
wt. %					%						
					397.8ª	398.8 ª	399.9 ª	400.7 ª	401.7 ª	402.7 ª	
Fe-N-C1	80.56	15.08	2.12	2.23	20.7	19.4	18.9	33.4	7.5	-	
Fe-N-C2	88.07	7.55	1.62	2.45	9.8	5.7	27.5	40.3	13.1	3.6	
Fe-N-C3	87.56	9.68	2.04	0.72	17.6	12.4	19.2	37.4	7.6	6	
Fe-N-C4	82.69	14.60	1.33	1.37	26.1	21.9	29.1	19.7	3.2	-	
Fe-N-C5	90.19	7.47	0.76	1.58	17	20.4	20.9	23.2	18.5	-	

^a Binding Energy expressed in eV

Table S4: Electrochemical data from RRDE characterization in 0.5 M H₂SO₄.

Sample									
	E1/2	<i>j</i> L ª	јк	n		H	2 O 2		
			0.65 Vrhe	RRDE ^a	K-L	$0.7 V_{\text{RHE}}$	0.2 Vrhe	SD	TOF
	VRHE	mA cm ⁻²	mA cm ⁻²			(%	sites g ⁻¹	S ⁻¹
Fe-N-C1	0.353	3.14	0.155	3.79	3.42	8	6	1.2E17	0.08
Fe-N-C2	0.453	3.94	0.334	3.75	3.78	10	6	1.1E17	0.24
Fe-N-C3	0.482	3.87	0.472	3.86	3.88	10	5	1.4E17	0.35
Fe-N-C4	0.539	4.15	0.991	3.93	3.89	9	2	2.3E17	0.3
Fe-N-C5	0.570	4.09	1.472	3.94	3.95	7	2	3.1E17	1.05

^a 0.0 V vs RHE.