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Abstract: Structural design and morphological control of semiconductors is considered to be one
of the most effective ways to improve their photocatalytic degradation properties. In the present
work, a hexagonal WO3·0.33H2O hierarchical microstructure (HWHMS) composed of nanorods was
successfully prepared by the hydrothermal method. The morphology of the HWHMS was confirmed
by field-emission scanning electron microscopy, and X-ray diffraction, Raman spectroscopy, and ther-
mogravimetric analysis demonstrated that the synthesized product was orthorhombic WO3·0.33H2O.
Owing to the unique hierarchical microstructure, the HWHMS showed larger Brunauer–Emmett–
Teller (BET) surface and narrower bandgap (1.53 eV) than the isolated WO3·0.33H2O nanorods.
Furthermore, the HWHMS showed enhanced photocatalytic activity for degradation of methylene
blue under visible-light irradiation compared with the isolated nanorods, which can be ascribed
to the narrower bandgap, larger BET specific surface area, and orthorhombic phase structure of
the HWHMS. This work provides a potential protocol for construction of tungsten trioxide coun-
terparts and materials similar to tungsten trioxide for application in gas sensors, photocatalysts,
electrochromic devices, field-emission devices, and solar-energy devices.

Keywords: tungsten trioxide hydrate; hierarchical structure; band gap; specific surface area; photo-
catalytic property

1. Introduction

With the continuous growth of industrialization, increasing energy consumption
and the corresponding environmental pollution problems have attracted increasing and
widespread attention. In particular, comprehensive treatment of industrial wastewater has
become a hot topic in the environmental science community. Several conventional methods
have been used to treat wastewater, including biological treatment, anaerobic, aerobic, and
electrochemical methods, oxidation, reduction, flotation, flocculation, precipitation, and
adsorption. However, these methods cannot completely degrade organic pollutants [1–6].
Photocatalysis based on illumination of semiconductor powder for removal of organic
contaminants from water is environmentally friendly and cost effective, and it has; there-
fore, attracted particular interest. Titanium dioxide (TiO2) is the most extensively studied
photocatalyst for decontamination of water. Unfortunately, its wide band gap (about
3.30 eV) contributes to its low conversion rate in the visible light region, greatly limiting its
application in the field of photocatalysis [7–10].
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Tungsten trioxide (WO3) is a transition-metal-oxide semiconductor with a band-gap
energy ranging between 2.4 and 3.0 eV at room temperature. Hence, WO3 has strong
visible-light adsorption, contrary to other photocatalysts, such as TiO2, which have light
absorption in the harmful ultraviolet (UV) spectral region owing to their inherent band gap
energies [11–13]. In addition to the favorable region of light absorption, WO3 is resistant
to photocorrosion and has stable physicochemical properties [14,15]. These properties
make WO3 a promising alternative to TiO2, which needs to be modified to absorb visible
light. In addition to its favorable photocatalytic properties, the WO3 surfaces possess
highly negative surface charges that are ideal for adsorption applications, especially for
adsorption of cationic dyes, such as methylene blue (MB) [16,17]. Previous studies have
revealed that the degradation rate of organic materials is mainly related to the amount
of catalytic surface active sites, which depends on the surface area, light utilization, and
structural properties of the catalyst, including the phase composition, crystallinity, size
distribution, and morphology [18–20]. Among these properties, morphology control has
attracted attention because the photocatalytic properties of WO3 can be effectively tuned
by tailoring the shape and dimensionality in practical applications.

The hierarchical architectures of semiconductors have attracted great attention because
of their unique properties, owing to the well-organized morphology, porous structures,
and high surface-to-volume ratio and permeability compared with conventional nanocrys-
tallites. Consequently, much effort has been devoted to synthesis of WO3 hierarchical
structures and investigation of their photocatalytic activities for degradation of organic
dyes [21–25], particularly for low-dimensional building blocks, such as nanoparticles,
nanorods, and nanoflakes. For example, hierarchical hollow WO3 shells containing den-
drites, spheres, and dumbbells have been synthesized [21]. Compared with commercial
WO3 particles, all the obtained hollow shells with large Brunauer–Emmett–Teller (BET)
surface areas showed enhanced photocatalytic activities for degradation of organic contam-
inants under visible-light irradiation. Nanoflake-based hollow sphere-like and flower-like
hydrated tungsten oxide three-dimensional (3D) architectures have been successfully syn-
thesized by a facile chemical solution route without any surfactants [22]. Both of the
structures exhibited good abilities for degradation of rhodamine B (RhB) under 365-nm UV
light and visible light. A facile solvothermal method has also been developed to synthe-
size 3D microdahlia WO3·0.33H2O hierarchical structures by adding acetone without any
additives [23]. After 240-min photodegradation, 88.5% of RhB was eliminated by the hier-
archical microdahlia WO3·0.33H2O. However, for practical application in photocatalysis,
fabrication of desired hierarchical micro/nanostructures is very important because of their
unique structures and properties. It is still challenging to organize WO3 nanoscale building
blocks into well-defined two-dimensional (2D) and 3D micro/nanostructures with high
performance to meet the requirements of practical applications.

The photocatalytic properties of tungsten trioxide hydrate (WO3·nH2O, n = 0–2) with a
hierarchical structure have also been reported, and a few studies have reported preparation
of self-assembled WO3·0.33H2O hierarchical microstructures. Here, we fabricated of a
novel well-defined hexagonal WO3·0.33H2O hierarchical microstructure (HWHMS) with
high uniformity and investigated its photocatalytic performance for degradation of organic
contaminants. The morphology, composition, structure, and linear optical characteristics of
the HWHMS were investigated in detail by field-emission scanning electron microscopy
(FESEM), X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA),
and UV–Visible spectroscopy. The possible growth mechanism of the WO3·0.33H2O
hierarchical structures is also proposed. The HWHMS showed enhanced photocatalytic
activity for degradation of MB under visible-light irradiation compared with isolated
WO3·0.33H2O nanorods, which can be ascribed to the narrower bandgap, larger BET
specific surface area, and orthorhombic phase structure of the HWHMS.



Catalysts 2021, 11, 496 3 of 11

2. Results and Discussion
2.1. Characterization of the HWHMS

The HWHMS and the precursor material as well as the literature were synthesized by
the hydrothermal method. The phase purity and crystallographic structure of the sample
were investigated by XRD (Figure 1). By comparing PDF standard card, the main substance
of precursor was determined to be WO3·H2O (PDF# 43-0679). All of the diffraction peaks
of the as-synthesized HWHMS can be exclusively indexed to orthorhombic WO3·0.33H2O
(JCPDS Card No. 54-1012), with lattice constants of a = 12.5271 Å, b = 7.7367 Å, and
c = 7.3447 Å. Furthermore, all of the main diffraction peaks of the HWHMS were relatively
strong and narrow, confirming the high crystallinity.
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Figure 1. XRD pattern of as-synthesized HWHMS and the precursor material.

To investigate the morphology of the as-prepared sample, we performed FESEM mea-
surements. A typical SEM image of the precursor material and obtained HWHMS are shown
in Figure 2a,b, respectively. From the clear outline in Figure, the HWHMS exhibited a hier-
archically hexagonal morphology with uniform shape and size. The side length of a single
HWHMS was approximately 1.2 µm and the thickness was about 80 nm. A high-resolution
SEM image (Figure 2b) showed that the HWHMS was mainly composed and stacked by
nanorods, which were ordered and some were face-to-face aligned. The growth mechanism
is proposed in Figure 2c. First, hydrochloric acid and sodium tungstate interact and form
pale-yellow H2WO4 seeds. Subsequently, when hydrogen peroxide (H2O2) solution is added,
the precipitate dissolves. The reactants are then subjected to surface tension during the re-
crystallization process, which is attributed to the excess H2O2. The hexagonal structure has a
stable surface energy and; therefore, the nanorods with high surface energy agglomerate in the
direction where the Gibbs free energy decreases. Similarly, Li et al. [24] reported synthesis of
Ni(OH)2 hexagonal platelets that were self-grown on three-dimensional Ni foam by one-step
hydrothermal treatment of Ni foam in 15 wt% H2O2 aqueous solution.

The composition and structure of the synthesized HWHMS were further characterized
by Raman spectroscopy and TGA. Raman spectroscopy can determine the molecular vibra-
tion and rotation information by capturing the scattering information, which is sensitive to
the structure. The Raman spectrum of the HWHMS is shown in Figure 3a. Six vibration
peaks located at 169.5, 196.5, 277.5, 333.4, 692.1, and 802.0 cm−1 can be observed in the
Raman spectrum. According to related literature [25,26], the peaks at 169.5 and 196.5 cm−1

are because of internal lattice vibration of the product. The vibration peaks at around
277.5 and 333.4 cm−1 correspond to bending vibration of W–O–W. The vibration peak at
333.4 cm−1 is attributed to tensile vibration of W–OH2. In addition, the strong Raman
vibration peaks at 692.1 and 802.0 cm−1 can be attributed to tensile vibration of O–W–O.
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Figure 3. (a) Raman spectrum of HWHMS; (b) TG curve of HWHMS and the precursor material.

The thermal stability and chemical components were investigated by TGA (Figure 3b).
The weight loss process of the as-prepared HWHMS can be divided into two stages. The
first slight weight loss stage (about 0.60%) of the sample occurred between 0 to 150 ◦C,
which is attributed to evaporation of free water from the HWHMS. The second weight
loss stage occurred from 150 to 430 ◦C, and it was more obvious than the previous stage.
The weight loss in the second stage was probably associated with the loss of combined
water. The weight loss of 2.61% in the second stage was relatively close to the calculated
weight loss of 2.52% based on the loss of H2O from the WO3·0.33H2O precipitate. The
weight loss process of the precursor material can be divided into three stages. The first
slight weight loss stage (about 7.38%) of the sample occurred between 0 to 300 ◦C, which
is attributed to evaporation of free water from precursor material. The second slight
weight loss stage (about 1.29%) of the sample occurred between 300 to 600 ◦C, which is
attributed to thermal decomposition of solvents from the precursor material. The third
weight loss stage occurred from 600 to 800 ◦C the weightlessness of the third stage is 3.72%,
and it was probably associated with the loss of combined water. The weight loss rate
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of the precursors was more pronounced than that of HWHMS. All of the above results
confirmed formation of the well-defined HWHMS through assembly of nanorods by a
facile hydrothermal method.

The texture and pore structure of the resulting HWHMS were investigated by nitrogen
adsorption–desorption. The results are shown in Figure 4a and the Barrett–Joyner–Halenda
pore size distribution is shown in Figure 4b. The BET surface area of the HWHMS was
17.6181 m2/g, which is favorable for application in photocatalytic degradation of organic
pollutants. The HWHMS possessed a broad and bimodal pore-size distribution with small
(40–50 Å) and large (200–500 Å) mesopores. The small mesopores reflect the porosity
within the nanorods, while the larger mesopore are related to the pores formed between
the stacked nanorods. The HWHMS with many different sized mesopores could reduce
transport limitation in catalysis, and it is suitable for harvesting the photoenergy and
transport of reactive molecules [27,28].
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Figure 4. (a) Typical N2-gas adsorption–desorption isotherms and (b) the corresponding pore-size
distribution of the HWHMS.

2.2. Optical Properties of the HWHMS

The optical properties of the HWHMS were investigated by UV–Vis absorption spec-
troscopy, and the results are shown in Figure 5a. The weak signal at about 554 nm, which
is in the visible region, can be assigned to the absorption peak of WO3. The absorption
intensity of the sample decreased as the wavelength of incident light blue shifted. The
Kubelka–Munk conversion equation was used to calculate the band-gap energy of the
HWHMS [29]:

αhυ = A(hυ − Eg)n/2, (1)

where α, Eg, and A are the absorption coefficient, band-gap energy, and general constant,
respectively. hυ is the photon energy. n depends on the transition properties of the
semiconductor (n = 1 for an allowed direct transition and n = 4 for an allowed indirect
transition). For WO3·0.33H2O, the transition is indirect. To further explore its band



Catalysts 2021, 11, 496 6 of 11

structure, the band-gap energies can be estimated from a plot of (αhν)1/2 versus photo-
energy (hν) and the intercept of the tangent to the plot will give an approximation of the
indirect band-gap energies of the samples. The plots of (αhν)1/2 versus hν are presented in
Figure 5. The band gap energies of the precursor material and the HWHMS are calculated
to be 2. 41 and 3.32 eV.
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Figure 5. UV–Vis absorption spectrum and calculated band-gap diagram of (a) the precursor material
and (b) the HWHMS.

2.3. Photocatalytic Performance of the HWHMS

It is well accepted that the size and morphology of photocatalysts have a great influ-
ence on their photocatalytic properties [30,31]. To investigate application of the HWHMS
in the field of water pollution, photocatalytic degradation of MB by the HWHMS was
performed under irradiation by a 300 W Xe lamp within the visible region (420–780 nm).
The time-dependent absorption spectra of the MB solutions are shown in Figure 6a. Photo-
catalytic degradation of MB by isolated WO3 nanorods was also performed for comparison
(Figure 6b). The photocatalytic degradation performance was evaluated by comparing
the intensity of MB at the absorption peak position (664 nm). The curve corresponding to
0 min is the absorption curve of MB, which had achieved dark adsorption equilibrium. The
intensity of the characteristic adsorption peak decreased with increasing photocatalytic
degradation time, indicating an effective degradation process in both cases. The plots of
C/C0 versus irradiation time for the HWHMS and WO3 nanorods are shown in Figure 6c,
where C is the MB concentration at time t and C0 is the initial MB concentration when
adsorption–desorption equilibrium was achieved. After 70 min photodegradation, the
adsorption ratios of the WO3 nanorods and HWHMS were 58% and 80%, respectively,
showing the higher photocatalytic performance of the as-synthesized HWHMS than the
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isolated WO3·0.33H2O nanorods. Although HWHMS is not as good as other oxides in its
photocatalytic effect, such as ZnO/TiO2 nanosheets [32], compared with WO3·0.33H2O
prepared by others in the literature, its photocatalytic effect is still relatively good, such
as WO3·0.33H2O Nanonetworks [33], Ag2O/WO3·0.33H2O heterostructure [34], CeO2
Nanostructures [35], ZnO Nanowires [36] and so on.
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Figure 6. UV–Vis spectra of MB with different illumination times under visible light in the (a) HWHMS and (b) WO3·0.33H2O
nanorods. (c) Photocatalytic degradation rate of MB (30 mg/L) by the HWHMS and WO3 nanorods. (d) Schematic diagram
MB degradation by the HWHMS.

The difference in the activities of the WO3 nanorods and HWHMS can be ascribed to
the following factors. First, the narrower bandgap of the HWHMS would contribute to
higher degradation efficiency. Generally, the energy band structure of nanostructured WO3
consists of a discontinuous low-energy valence band (VB) full of electrons and an empty
high-energy conduction band (CB), which are separated by the band gap. When light
with energy equal to or greater than the band gap of WO3 hits the surface, a VB electron
will absorb the light energy to excite transition to the CB, generating an electron–hole
pair. The electron reacts with a neighboring O2 molecules to produce a superoxide radical
(·O2

−), and the hole simultaneously reacts with a water molecule on the photocatalyst
surface to produce a highly reactive hydroxyl radical (·OH). The·O2

− and OH radicals
can oxidize the MB molecules adsorbed on the surface of the WO3 catalyst particles to
harmless substances. A schematic of the mechanism of electron–hole generation, radical
formation, and reaction with organic dyes in water for degradation is shown in Figure 6d.
The narrower band gap of the HWHMS means that lower irradiated energy is required to
generate an electron–hole pair and more light can be absorbed. Furthermore, the narrow
band gap can also prevent recombination of photogenerated electron–hole pairs. Hence,
catalytic degradation of organic pollutants by the HWHMS is enhanced compared with the
isolated WO3·0.33H2O nanorods.
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Second, it is generally accepted that the catalytic process is mainly related to adsorp-
tion and desorption of molecules on the surface of the catalyst. The calculated BET surface
area of the WO3·0.33H2O nanorods is 9.7993 m2/g. The high specific surface area of the
HWHMS composed of stacking nanorods results in more unsaturated surface coordination
sites exposed to the solution. The hierarchical structures in the HWHMS catalyst enable
storage of more molecules. Therefore, the nature of the HWHMS structure provides more
active reaction sites for the MB degradation reaction, leading to improved photoactivity.

Finally, different crystal phases also influence the photocatalytic activity of WO3. The
HWHMS is the orthorhombic WO3 phase, while our previous work indicates that
WO3·0.33H2O nanorods are the hexagonal WO3 phase [37]. Specifically, the WO3·0.33H2O
crystal structure contains two types of WO3 octahedrons. One contains six W–O bonds and
the other contains four W–O bonds, a shorter W=O bond, and a longer W–OH2 bond [38,39].
In the orthorhombic phase structure, W=O in the upper layer and W–OH2 in the lower layer
cannot form hydrogen bonds. Conversely in the hexagonal phase structure, hydrogen bonds
can easily form between W=O and W–OH2 in the adjacent lower layer. This structural differ-
ence enables the orthorhombic WO3 photocatalyst to maintain a shorter W=O bond, which
makes the Fermi level and CB position of the orthorhombic WO3 phase higher than those of
the hexagonal WO3 phase. The transition to the CB is thus easier, inhibiting recombination
of photogenerated electron–hole pairs, so the photocatalytic degradation performance of the
orthorhombic WO3 phase is higher than that of the hexagonal WO3 phase.

Generally, two steps are involved in photodegradation of organic dyes: adsorption of the
dye molecules and their subsequent degradation. The pseudo-first-order and pseudo-second-
order kinetics models were used to further investigate the adsorption mechanism associated
with the HWHMS. The pseudo-first-order kinetics model can be expressed as [40]

1
qt

=
K1

tqe
+

1
qe

, . . . (2)

while the pseudo-second-order kinetics model can be expressed as [35]

t
qt

=
1

k2q2
e
+ (

1
qe
)t, (3)

where qe is the absorption capacity at equilibrium and qt is the loading of MB at time t.
The parameters k1 and k2 represent the pseudo-first-order and pseudo-second-order rate
constants of the kinetics models, respectively. The linear fits of the data obtained using the
HWHMS according to the above two models are shown in Figure 7a,b. The correlation
coefficient (R2) of the pseudo-second-order model (0.97095) was higher than that of the
pseudo-first-order model (0.90711), suggesting that the HWHMS tended to adsorb MB by
chemical processes, and that adsorption was dependent on both the surface properties of
the adsorbent and the solute concentration.
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3. Materials and Methods
3.1. Preparation of the HWHMS

All of the reagents used in the experiments were obtained from commercial sources,
and they were analytical reagent grade and used without further purification. First,
WO3 seeds were prepared. Specifically, 3 mM Na2WO4·2H2O was dissolved in 20 mL
of deionized water with magnetic stirring to ensure that it completely dissolved, and
then 3 M HCl was added to the solution dropwise until the solution began to produce
a yellowish precipitate. After magnetic stirring for a few minutes, the precipitate was
centrifuged at a speed of 4000 rpm for 5 min. Second, the HWHMS was synthesized by a
hydrothermal process using water and hydrogen peroxide as the solvent. Typically, the
resulting yellowish precipitate was dissolved in 15 mL of hydrogen peroxide aqueous
solution (30 wt%). After stirring for 30 min, the resultant mixture was transferred into
a Teflon-lined autoclave (50 mL) and reacted at 160 ◦C for 12 h. The mixture was then
naturally cooled to room temperature. The resultant mixture was washed with deionized
water and ethanol several times. Finally, the white precipitate was placed in a vacuum
oven and dried at 60 ◦C for 1 day to acquire the final sample. For comparison, isolated
WO3·0.33H2O nanorods were also prepared. The specific synthesis process is described
in [37].

3.2. Characterization

The synthesized HWHMS was characterized by XRD (Bruker D8-Advance X-ray
diffractometer, Bruker, Karlsruhe, Germany) from 10◦ to 70◦ at a rate of 4◦ (2θ) min−1

at 40 kV and 30 mA using Cu Kα as the radiation source (λ = 1.5418 Å). FESEM (NOVA
NANOSEM 450, FEI, Waltham, MA, USA) was performed to determine the morphology
of the HWHMS. The composition and structures of the HWHMS were characterized by
Raman spectroscopy (Renishaw Invia, Waltham, MA, USA) at a wavelength of 514.5 nm
and TGA (NETZSCH STA 449 F3 thermal analyzer, NETZSCH-Gerätebau GmbH, Selbu,
Germany), respectively. The BET specific surface area and pore structures of the HWHMS
were investigated at 77 K on the basis of the nitrogen-adsorption isotherms obtained with
a surface area and porosimetry analyzer (Micromeritics 3Flex surface area and porosimetry
analyzer, Micromeritics, Norcross, GA, USA). The samples were degassed at 120 ◦C for
10 h before the measurements. The UV/Vis/NIR optical diffuse reflectance spectra were
recorded at room temperature on a Perkin–Elmer Lambda 950 Spectrophotometer (Perkin–
Elmer, Waltham, MA, USA) with a wavelength range of l = 190–2500 nm. A BaSO4 plate
was used as a standard (100% reflectance). The optical properties of the HWHMS were
characterized by UV–Vis spectroscopy (UV-2600, Shimadzu, Kyoto, Japan). The sample
was placed in a quartz cell with an optical path length of 1 cm.

3.3. Photocatalysis Experiments

The photocatalytic activity of the HWHMS was determined by degradation of MB
with irradiation of visible light under ambient temperature. In the experiment, 0.075 g
of HWHMS powder was dissolved in a beaker containing 50 mL (30 mg/L) MB solution.
Before photocatalysis, the sample was placed in a completely dark environment for 30 min,
which is referred to as “0”. Subsequently, 5 mL of the suspension was extracted from
the beaker and dropped into a centrifuge tube. The residual mixture was placed under
a Xe lamp (CEL-HXF 300, 300 W, Zhongjiao Gold Source Co., Ltd., Beijing, China) for
irradiation. The filter filtered the beam and guaranteed that the wavelength was in the
visible band (λ = 420–780 nm). The illumination time was controlled to 210 min during
the whole photocatalytic process, and 5 mL solution was added into a centrifuge tube
every 30 min. The entire experiment was performed under magnetic stirring at a speed
of 400 rpm and the distance between the light source and liquid level was maintained at
12 mm. The above solution taken at different times was centrifuged at 6000 rpm and the
supernatant liquid was used to investigate the UV–Vis absorption properties.
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4. Conclusions

The well-defined HWHMS was successfully prepared through self-assembly of
WO3·0.33H2O nanorods by the hydrothermal method. The hexagonal morphology of
the HWHMS was confirmed by FESEM, and XRD, Raman spectroscopy, and TGA showed
that the synthesized product was orthorhombic WO3·0.33H2O. Owing to the unique hi-
erarchical microstructure, the HWHMS had larger BET surface and narrower bandgap
(1.53 eV) than the isolated WO3·0.33H2O nanorods, which is beneficial for photocatalytic
degradation of MB. The HWHMS showed enhanced photocatalytic activity for degradation
of MB under visible-light irradiation compared with the isolated WO3·0.33H2O nanorods,
because of its narrower bandgap, larger BET specific surface area, and orthorhombic phase
structure. In addition, the HWHMS tended to adsorb MB through chemical processes.
Experiments indicated that the surface area and crystal phase of the catalyst had a great
influence on the photocatalytic activity. This type of novel superstructure is also expected
to have potential applications in catalyst supports, solar cells, and gas sensors.
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