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Abstract: The interest in advanced photocatalytic technologies with metal oxide-based nanomaterials
has been growing exponentially over the years due to their green and sustainable characteristics.
Photocatalysis has been employed in several applications ranging from the degradation of pollutants
to water splitting, CO2 and N2 reductions, and microorganism inactivation. However, to maintain its
eco-friendly aspect, new solutions must be identified to ensure sustainability. One alternative is creat-
ing an enhanced photocatalytic paper by introducing cellulose-based materials to the process. Paper
can participate as a substrate for the metal oxides, but it can also form composites or membranes,
and it adds a valuable contribution as it is environmentally friendly, low-cost, flexible, recyclable,
lightweight, and earth abundant. In term of photocatalysts, the use of metal oxides is widely spread,
mostly since these materials display enhanced photocatalytic activities, allied to their chemical
stability, non-toxicity, and earth abundance, despite being inexpensive and compatible with low-cost
wet-chemical synthesis routes. This manuscript extensively reviews the recent developments of using
photocatalytic papers with nanostructured metal oxides for environmental remediation. It focuses on
titanium dioxide (TiO2) and zinc oxide (ZnO) in the form of nanostructures or thin films. It discusses
the main characteristics of metal oxides and correlates them to their photocatalytic activity. The role
of cellulose-based materials on the systems’ photocatalytic performance is extensively discussed, and
the future perspective for photocatalytic papers is highlighted.

Keywords: cellulose-based materials; metal oxide nanostructures; photocatalysis; green and sustain-
able; environmental remediation

1. Introduction

This review explores the recent progress concerning the applications of cellulose-based
materials in the field of photocatalysis. The main structural characteristics of cellulose and
metal oxides as nanostructures or thin films are described. TiO2 and ZnO are the selected
metal oxide photocatalysts. The concept of photocatalytic paper is reviewed, and several
studies are presented and discussed.

1.1. Cellulose-Based Materials

Cellulose is the most abundant biopolymer on earth, and presents unique characteris-
tics including its biocompatibility and recyclability; it is also lightweight, flexible, foldable,
biodegradable, and low cost [1]. This material can be extracted from cotton, wood, hemp,
rice, algae, bacteria, and several other sources [1,2]. It is widely employed for producing
paper, plastics, textile fabrics, among others.

Cellulose consists of repeating glucose monomers, where the polysaccharide with a
molecular structure of (C6H10O5)n is linked together through β-1,4-glycosidic bonds by
a condensation reaction [1,3]. Each repeating unit contains hydroxyl groups, and their
ability to make hydrogen bonds between cellulose chains determines the final cellulose
properties and contributes to its high tensile strength [1,4,5]. The formation of fibrils is
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resultant from the Van der Waals and intermolecular hydrogen bonds between hydroxyl
groups and oxygens of closer molecules that assist the aggregation of several cellulose
chains during biosynthesis, resulting, thus, in the fibrils. These fibrils will aggregate and
originate microfibrils (5–50 nm in diameter and several microns in length) [3–5]. The
overall microfibril structure can comprehend heterogeneous areas, with areas where the
cellulose chains are arranged with high crystalline order and other areas with low order
(amorphous) [1,3].

Six cellulose crystalline polymorphs are currently known, namely cellulose I, II, IIII,
IIIII, IVI, and IVII, in which cellulose I and II are found in nature [4]. Cellulose II is known
to be the most thermodynamicallystable structure, with cellulose I (metastable) converting
to II or III [3]. Each polymorph of crystalline cellulose has been systematically investigated
and their structure and characteristics are well documented [3,5], so this will not be further
covered in this work.

Traditional paper, with cellulose fibers of about 20 µm in diameter, is usually rough
(roughness of hundreds of micrometers) [1]. However, cellulose can reach the nanome-
ter size by means of a disintegration process of the micrometer-sized cellulose fibers.
Some examples are microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and
nanocrystalline cellulose (NCC), which are produced with different disintegration pro-
cesses [1,6,7]. The transparent NCC membrane (Figure 1) is composed of well-organized
three-dimensional structures, with long entangled filaments of a cellulose microfibril net-
work. The average width of the cellulose fibers is within 20–50 nm [7]. Another type of
nanocellulose is bacterial nanocellulose (BNC). The bacterium Gluconacetobacter is normally
responsible for the production of BNC membranes (Figure 1), and such a nanomaterial
presents enhanced chemical purity, high crystallinity, and low surface roughness and poros-
ity [8]. As expected, the purified cellulose materials have improved intrinsic properties,
including a higher Young’s modulus and lower thermal expansion coefficient, among oth-
ers [1]. The purified BNC membranes are also transparent, which allows their integration
in several applications that require this specification.
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Cellulose-based materials have been employed in distinct applications, including opto-
electronic devices, such as solar cells and transistors [7,9,10], sensors [11–14], electrochromic
devices [15,16], but also in diagnostic platforms [17,18] and photocatalysis [12,19,20]. In
terms of photocatalysis, despite all the envisioned applications of paper-based materials,
its implementation is not straightforward.

1.2. Photocatalytic Paper

Extensive efforts have been made by the scientific community and developed countries
to promote renewable or carbon-neutral energy sources and find solutions for diminish-
ing the ever-growing industrial residues and human contaminants. Photocatalysis can
be considered an appealing strategy to diminish these problems, especially in terms of
water purification, with major advantages over the most common methods used, including
room temperature reactions, low secondary pollutants’ generation and minimal operation
costs [21]. Moreover, the photocatalytic process fits in the Sustainable Development Goals
by the UN for research and innovation, especially Goal 6, focused in Clean Water and
Sanitation [22]. This ever-growing investigation field is reported to have started in 1972,
with Fujishima and Honda [23] demonstrating the use of TiO2 for the photoelectrochem-
ical splitting of water using UV light, and further photogeneration of charge carriers in
TiO2 [24].

Photocatalysis can be understood as the change of a chemical reaction’s rate caused by
a photocatalyst (metal oxide material) in the presence of a light source, i.e., ultraviolet (UV),
visible (VIS), mixture of both UV+VIS, and solar radiation. There are two types of photo-
catalytic reactions, i.e., homogeneous and heterogeneous photocatalysis. In homogeneous
catalysis, the reactant and catalyst are in the same phase, while in heterogeneous catalysis,
both reaction participants are in distinct phases [25]. This process involves excitation,
diffusion, and photo-induced charge carriers. A hole-trapping mechanism based on the
adsorption/desorption of chemisorbed oxygen molecules at the semiconductor surface
governs the photocatalytic process. When the semiconductor is exposed to a light source
higher than its band gap (λ < 388 nm for TiO2 [26] and ~370 nm for ZnO [27]), electron–
hole pairs are generated (electrons are generated (eCB

−) in the conduction band, while
holes (hVB

+), in the valence band), in which these photo-generated holes and electrons
diffuse to the surface, oxidizing and reducing oxygen and water molecules. With that,
reactive radicals (O2

•− and OH•) are created (Figure 2), and such radicals will decompose
organic and inorganic compounds on the semiconductor’s surface (Figure 2) [25,28,29].
The photocatalytic process will mineralize the organic pollutants into carbon dioxide (CO2),
water (H2O) and mineral acids in the presence of the semiconductor photocatalyst and
reactive oxidizing species [30]. In brief, the relevant reactions of the organic compounds’
photodegradation in the presence of a metal oxide semiconductor are summarized as
follows [30–32]:

Semicondutor + hv→ eCB
− + hVB

+ (1)

H2O + hVB
+ → H+ + OH• (2)

O2 + eCB
− → O2

•− (3)

O2
•− + H+ → HO2

• (4)

HO2
• + HO2

• → H2O2 + O2 (5)

H2O2 + eCB
− → OH− + OH• (6)

H2O2 + O2
•− → OH• + OH− + O2 (7)

H2O2 + hv→ 2OH• (8)

Organic compounds + OH• → Intermediates→ CO2 + H2O (9)

Photocatalysis has been reported to decompose organic compounds, such as alcohols,
carboxylic acids, phenolic derivatives, and aromatic amines and halides, among others [33].
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Nevertheless, most photocatalytic studies focus on the degradation of organic pollutants
using organic model dyes that simulate pollutants released by industries, textile, pulp and
paper, and several other industrial activities, directly to the environment. These organic
dyes are complex molecules used to color textiles or products. They are water-soluble,
with some being toxic and causing severe impacts on human health [34]. Moreover, these
contaminants have a catastrophic effect on the environment and animals, interfering with
the reoxygenation capacity of water bodies and blocking sunlight that will directly influence
photosynthesis processes [35]. Rhodamine B, methylene blue, methyl orange, congo red,
and other azo dyes are examples of model dyes tested in photocatalysis studies [19,35–39].
In terms of inorganic species, bromate, chlorate, halide ions, nitric oxide, palladium,
rhodium and sulfur species can be decomposed by photocatalysis, but also metal salts and
organometallic compounds [33].
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The photocatalyst plays a key role in the whole process. The use of nanoparticles in
photocatalysis has been largely reported [41–47]; however, the use of nano-photocatalysts
in the powder form presents some limitations, especially when it comes to their recovery.
The most commonly used commercial TiO2 photocatalyst is also included, with sizes of
~30 nm [48]. Moreover, during the repeated photocatalytic processes, the loss of photocata-
lysts is highly expected [49]. One way to overcome these limitations is to use membranes,
thin films or nanostructures grown/deposited on substrates. In fact, the substrate used, it
can contribute to the final photocatalytic activity of the system. Several studies reported
photocatalysts grown or deposited on rigid substrates [38,50–52]; however, nowadays
the search for flexible substrates is tremendous as these substrates can easily adapt to
curved/rough surfaces and decrease production costs. Nanostructures grown on polyethy-
lene terephthalate (PET) [37] or polyethylene naphthalate (PEN) [36], and cotton fabric
substrates [53], among others, have been previously reported for photocatalytic applica-
tions. Photocatalytic papers have also been previously reported [20,54–56], in which the
greater advantage of using paper as a substrate is related to its porous structure that can
assist the photodegradation target to diffuse in and the reactive oxygen to migrate out [57].
Moreover, taking advantage of the pore structure created by a reticular fiber network, it has
been previously reported that paper was employed as an enhanced support material for gas
phase catalytic reactions [55]. Photocatalytic paper is not considered a disposable product
anymore, as it can be reutilized several times for the degradation of organic modeling
dyes [58].
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The main research efforts in photocatalysis are related to materials design and the de-
velopment of photoreactive systems. The former includes the integration of cellulose-based
materials to the photocatalytic system and, in the case of the metal oxide photocatalysts, the
search for enhanced nanostructures or thin films for increasing photocatalytic performance.

1.3. Metal Oxide Nanostructures and Thin Films

Metal oxides are a class of materials that have been largely investigated over the years
due to their unique properties. These materials are known as being highly stable, in some
cases, biocompatible, low cost and environmentally friendly, despite their exceptional
ability to generate charge carriers under light irradiation [59] with enhanced electrical and
optical characteristics and high optical transparency [11,37,38,60–64]. Moreover, at the
nanoscale level, these materials can present high surface-to-volume ratios, high surface
reaction activity, high catalytic efficiency, and strong adsorption ability [65].

Metal oxides can exhibit different electronic properties, from conducting to semicon-
ducting but also insulating [66]. These materials are known to have the s-shells of positive
metallic ions always fully filled by electrons, but the d-shells may not be totally filled [13,67].
This is responsible for the distinct properties of this source of materials, including the wide
band gaps that dictate the final photocatalytic behavior of the system. In fact, metal oxides
with wide band gaps are active under UV light. However, the solar UV radiation that
reaches the earth’s surface is relatively small (3–5%) [68], making the use of such materials
extremely limited for pollutant degradation with UV radiation. Consequently, solutions to
make these materials photoactive under the complete solar spectrum, such as band gap
engineering, doping or surface modification, are highly desired [69].

These materials can be divided in two groups: non-transition and transition metal
oxides. The non-transition ones include the pre- and post-transition metal oxides. The
small energy difference between a cation dn and either a dn+1 or dn−1 configuration is
responsible for the differences in the material’s behavior. Metal oxides with d0 and d10

electronic configurations present stable properties, while the pre-transition-metal oxides
can be inert in several applications due to their large band gaps, so electrons and holes
are hardly formed [13,70]. TiO2, WO3 and V2O5 are in the transition-metal oxide class of
materials with d0 configuration, and ZnO and SnO2 are post-transition metal oxides with
d10 configuration [70].

Several studies reported the use of metal oxide materials in the photocatalytic degra-
dation of organic contaminants/dyes [19,34,37,38,71–74]. However, their photocatalytic
performance strongly depends on the crystal structure, morphology, elemental composi-
tion, crystalline phase, exposed surface facets, intrinsic defects (such as oxygen vacancies),
lattice distortions, and doping, among others [75–77]. In fact, the presence of oxygen
vacancies directly influences the final photocatalytic performance of such materials [78].
Thus, it is of great importance to design and control crystallinity, shape and size, which
will directly influence the charge carriers’ separation and final photocatalytic activity [24].
Moreover, it is largely known that materials’ properties are enhanced at the nanoscale level
when compared to bulk counterparts [79]. For that reason, the surface-to-volume ratio of
metal oxides is highly increased at the nanoscale, and more active sites on their surface are
available for organic molecules to interact, leading to higher overall adsorption capacity
and enhanced photocatalytic performance in environmental remediation [35,74].

Zero-dimension (0D) nanomaterials are known to have high specific surface area,
while one-dimensional (1D) nanomaterials may result in less recombination due to the
short distance for charge carrier diffusion. Two-dimensional (2D) nanomaterials display
large surface-to-volume ratios and materials with three-dimension (3D) have higher carrier
mobility and abundant active sites, a consequence of porosity and the channels forming its
structure [80,81].

Several techniques have been reported to produce metal oxide nanostructures or
thin films, including chemical bath deposition [82,83], the sol–gel method [84], electro-
spinning [83,85], electrodeposition [86,87], magnetron sputtering [88–90], laser assisted



Catalysts 2021, 11, 504 6 of 30

flow deposition (LAFD) [91,92], spray pyrolysis [93,94], and hydrothermal/solvothermal
synthesis, either by conventional or by microwave assisted heating [36,62,95–99], and
several other methods have been employed. With such a variety of production methods
reported, several different nanostructures were described, including nanowires, nanorods,
nanofibers, nanotubes, nanobelts, nanowhiskers, nanospheres, tetrapods, nanosheets, and
many others [13,71,100–105]. The 1D nanostructures, which include the nanofibers, nan-
otubes, nanobelts, nanowhiskers, nanorods and nanowires, are extensively investigated
for photocatalysis due to their slower electron–hole recombination resulting in higher
photocatalytic oxidation rates. Moreover, these 1D materials have a long axis for the ef-
ficient absorption of incident sunlight, and short path lengths for the diffusion of charge
carriers [103,106]. These nanostructures have been employed in applications beyond pho-
tocatalysis, ranging from solar cells [93,99,107] to sensors [108–113], but also in lithium–ion
batteries [114–117], fuel cells [71] and so on.

2. Metal Oxide Photocatalytic Papers

TiO2 is the most investigated metal oxide photocatalyst [81]; however, the use of other
metal oxides in photocatalysis, such as ZnO, has been growing lately [30,31,118]. At the
nanoscale, these materials can assume several structures, with direct influence on their
photocatalytic activity. Moreover, the integration of such nanostructures in substrates is
also challenging, including for cellulose-based substrates. The search for photocatalysts
capable of performing the degradation of pollutants without the requirement of powder
recovery gives visibility to the photocatalytic paper concept. In fact, the paper intrinsic
structure can contribute to the photocatalytic degradation process with the possibility of
being re-used over the time.

2.1. TiO2 Photocatalytic Paper

Titanium dioxide has been largely investigated as a photocatalyst due to its strong oxi-
dizing abilities for the decomposition of organic pollutants, and also its chemical and physi-
cal stabilities, nontoxicity, low cost, superhydrophilicity, and earth abundance [13,69,71,81].
TiO2 occurs in nature, presenting three crystalline phases: two tetragonal phases, i.e.,
anatase and rutile, and an orthorhombic phase, i.e., brookite (Figure 3) [119]. How-
ever, it also occurs in an amorphous form. Anatase and brookite are both metastable
phases that, when heated, transform into rutile, the most stable phase [120,121]. The
lattice parameters of anatase (I41/amd) are a = 0.3785 nm and c = 0.9515 nm, for rutile
(P42/mnm) are a = 0.4594 nm and c = 0.2958 nm, while brookite (Pbca) has lattice param-
eters of a = 0.9184 nm, b = 0.5447 nm, and c = 0.5145 nm [122,123]. The three crystalline
phases have TiO6 octahedra with different distortions, in which the structural and elec-
tronic properties of all the phases can be determined by the Ti–O bonds. The description of
the TiO2 structure and stoichiometry is well documented elsewhere [13,71,122,124], so this
will not be covered here.
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TiO2 is a n-type semiconductor material with a wide energy band gap, displaying
optical band gaps of 3.0 and 3.2 eV for rutile and anatase, respectively [126]. The band
gap values of brookite vary in the literature and have been reported to be from 3.13 to
3.40 eV [120,126]. With the large band gap of all TiO2 phases, the solar radiation absorption
is limited to the UV range, which restricts its widely photocatalytic application for envi-
ronmental remediation. Other restrictions to the extensive use of TiO2 in photocatalysis
are related to the rapid recombination of the photogenerated electron–hole pairs and poor
affinity towards hydrophobic organic pollutants [69].

TiO2 is usually used as a photocatalyst in the forms of anatase, generally with higher
photocatalytic activity, and rutile, which is less photoactive [48,69,127–130]. The enhanced
photocatalytic performance of anatase can be related to three main reasons: (i) its larger
band gap when compared to rutile, which raises the valence band maximum to higher
energy levels relative to redox potentials of adsorbed molecules, thus influencing the oxida-
tion of electrons and facilitating electron transfer from TiO2 to adsorbed molecules; (ii) its
indirect bandgap that exhibits a longer lifetime of photoexcited electrons and holes when
compared to the direct bandgap of rutile and brookite [129]; and (iii) the concentration
of oxygen vacancies is higher for anatase nanomaterials, which leads to a greater charge
separation efficiency [121]. In the case of brookite, the interest on its photocatalytic activity
has been growing lately [120,131,132], which has been reported to have higher photocat-
alytic activity than anatase or rutile [133]. The determination of the best photocatalyst
among the three TiO2 phases is still under intense debate. Moreover, it has been shown
that the mixture of the TiO2 phases displays higher photocatalytic activity than the pure
phases [37,134], reducing the recombination of photogenerated holes and electrons [135].
In fact, the most common commercial photocatalyst is Degussa P-25, that consists of both
rutile and anatase phases [130].

The higher photocatalytic activity in terms of exposed active facets was reported as
{111} > {001} > {100} > {101} for anatase [136], {110} > {001} > {100} for rutile [129] and
{210} for brookite [120]. The active facets have a direct effect on the surface adsorption or
desorption abilities and the redox potential of the charge carriers, such as the surface area,
with more active sites for reaction on the nanomaterials’ surface [137].

To overcome the limitations involving the use of TiO2 in photocatalysis under solar
radiation, several approaches have been reported. One possibility involved the engineering
of the TiO2 optical bang gap by adding oxygen vacancies or doping with non-metal and
metal elements to narrow its band gap [138–140]. It has been reported that oxygen vacancies
facilitate the charge separation process [141], while doping with external elements can
increase the redox potential of the radicals and increase quantum efficiency by reducing the
degree of recombination of the electrons and holes, despite enlarging the TiO2 absorption
spectrum [142]. Surface modification, fabrication of composites or heterojunctions with
other metal oxides or other materials such as graphene have also been reported to expand
TiO2 photocatalytic activity under solar radiation [69,143–147]. Lately, several reviews
describing the TiO2 band gap reduction to the visible region and further photocatalytic
activity under visible/solar radiation have been conducted, demonstrating the use of
different materials and several methods that were investigated [143,147–150].

TiO2 is a very versatile material and to satisfy the most distinct applications of this
material, different structures have been designed and produced. In terms of nanomaterials,
TiO2 nanowires, nanorods, nanofibers, nanotubes, nanobelts, nanowhiskers, nanospheres,
and nanoflowers, among others, have been described (Figure 4) [36–38,151–156]. TiO2
thin films have been also largely investigated [157–159]. Various techniques have been
reported for producing TiO2 nanostructures or thin films including wet-chemical tech-
niques [160,161], the sol–gel method [84,158], thermal evaporation [162], magnetron sput-
tering [163,164], anodization [165,166], electrodeposition [167,168], the gas jet fiber spin-
ning process [103], electrospinning [104,169], hydrothermal and solvothermal synthe-
sis [170–173], and microwave irradiation [15,36,38], among several other methods.
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The integration of TiO2 in cellulose-based materials to form composites or membranes
has been reported, but the growth or deposition of thin films or nanostructures on a paper
substrate has also shown promise [12,15,19,177,178]. Hu et al. [179] produced a flexible
and binder-free graphene–TiO2 paper to be applied as lithium–ion battery anode materials,
consisting of 3-D nano-structures with nano-sized TiO2 intercalated between graphene
layers as pillars to increase the Li–ion insertion/extraction rate. In [15], electrochromic
TiO2 nanostructured films were grown on gold coated papers using a microwave-assisted
hydrothermal method at a low synthesis temperature to produce electrochromic (EC)
devices. The effect of the acid used in the microwave synthesis played a crucial role on the
film’s structure and final EC performance (Figure 5).

Several studies described the photocatalytic activity of TiO2 paper-based photocat-
alysts with gaseous or liquid pollutants. In 1995, Matsubara et al. [180] reported the
production of a TiO2-containing paper and investigated its photocatalytic activity by mea-
suring the decomposition of gaseous acetaldehyde under a weak UV light irradiation.
Iguchi et al. [181] prepared photocatalytic papers containing TiO2 supported on inorganic
fibers. The photodegradation performance of acetaldehyde gas and the durability of the
TiO2-containing papers have been investigated under UV irradiation. In [182], photo-
catalytic papers fabricated with nano TiO2 powders doped with nitrogen and iron and
supported on X zeolite were tested for the photodegradation of acetaldehyde in air, as an
indoor pollutant under visible light irradiation (batch conditions).
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Sboui et al. [183] reported the functionalization of papers with TiO2 decorated with
AgBr nanoparticles. Their photocatalytic performance was evaluated through the degra-
dation of 2-propanol in gas phase under sunlight exposure. In another approach, the
fabrication of photocatalytic paper using TiO2 nanoparticles confined in hollow silica cap-
sules has been shown (Figure 6) [55]. The encapsulation demonstrated a shielding effect
that can insulate the TiO2 nanoparticles from the surrounding environment and prevent
the self-degradation of organic support materials under UV light. The encapsulated TiO2
nanoparticles have been deposited onto the cellulose paper either by a chemical adhesion
process via ionic bonding or by a physical adhesion process using a dual polymer system.
The photocatalytic activity was assessed with 2-propanol degradation under UV-light
exposure.
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Zhang et al. [57] reported a cellulose-based photocatalytic material with TiO2 nanopar-
ticles loaded on carbon fibers. Na2SiO3 or Al2(SO4)3 were used as adhesives, with dif-
ferences in the photodegradation behaviors of methyl orange (MO) depending on the
composite used. The ratio of carbon/cellulose fibers also demonstrated to influence the
MO photodegradation. Qin et al. [58] described the production of photocatalytic papers
containing a mixture of poly-dopamine-loaded cellulose fibers and pristine cellulose fibers
and TiO2 nanoparticles. The photocatalytic performance of TiO2 photocatalytic paper was
shown by decomposing methyl orange under UV light irradiation. In [184], TiO2-coated
non-woven paper was tested as a photocatalyst for the degradation of Rhodamine B in
aqueous solutions. TiO2 was coated on non-woven paper using an aqueous dispersion
of colloidal SiO2 binder. The photodegradation was temperature-dependent with a high
degradation rate being achieved at high temperature. Moreover, the presence of Cl−,
CH3COO− and HPO4

2− ions led to the reduction of the photodegradation rate, while the
presence of SO4

2− increased it. The binder assists the adhesion of TiO2 on paper fibers
and prevents the degradation of paper imposed by the oxidation effect of TiO2 [185]. Jiao
et al. [186] showed anatase TiO2 on paper and this photocatalyst degraded blue indigo
carmine dye under UV radiation. Toro et al. [187] reported the fabrication of TiO2 hydrosols
on paper sheets and their photocatalytic behavior was investigated under UV radiation
using methylene blue as a model dye.

Photocatalytic papers based on a TiO2/Sodium alginate nanocomposite were reported
in [185] (Figure 7a–c). Their photocatalytic activity was investigated with the removal
of chemical oxygen demand of wastewater. The increase in the photocatalyst increased
the wastewater mineralization and enhanced the removal of chemical oxygen demand,
as expected (Figure 7d). It has been shown that the presence of sodium alginate as a
biopolymer increased the adhesion of nanoparticles to paper fibers and reduced the harmful
effect imposed by the photocatalyst.
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A paper-TiO2 composite was developed in [178] and the efficiency of the resulting pho-
tocatalyst was investigated by degradation of gaseous 2-propanol under simulated sunlight
irradiation. Another study reported a ternary composite composed by Au nanoparticles
decorating TiO2 nanowires onto hierarchically porous carbon fiber paper. Its photocat-
alytic activity was investigated with the degradation of gaseous styrene under visible light
irradiation [177].

Two analogous studies reported the production of photocatalytic papers composed by
nanosized TiO2 supported on natural zeolite [188,189]. The fibers formed a closely packed
network with microvoids, with the zeolite-based TiO2 particles being randomly attached
to these fibers. The natural zeolite-based TiO2 composite sheets decomposed gaseous
toluene under UV radiation, and the photocatalytic efficiency was attributed to the synergy
effect with (1) confinement of the organic contaminant in the microvoids between the fiber
networks, (2) its further adsorption on zeolite and (3) the subsequent photodecomposition
of adsorbate by TiO2 nanoparticles [188]. In [190], a photocatalytic paper formed by a
composite of TiO2/SiO2 particles introduced in bulk paper had its activity demonstrated
by the degradation of ethanol (50–200 ppm) under UV irradiation.

A review on the topic was published in 2006, where Pelton et al. [56] revised the
photocatalytic paper developments at that time, which included methods to fix TiO2 on
cellulose substrates to minimize photochemical damage to the paper; moreover, the use of
multiple approaches for enhancing mineralization were discussed for better photocatalytic
disinfection.
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When it comes to growing TiO2 nanostructured films on paper, where paper is the
substrate, D. Nunes et al. [19] reported the synthesis of TiO2 nanostructured films using
microwave irradiation at low temperature synthesis (80 ◦C) and without any seed layer, in
which bacterial nanocellulose and tracing paper were tested as substrates (Figure 8a–d).
Their photocatalytic activity was investigated using Rhodamine B degradation under solar
radiation. The nanocellulose based material demonstrated higher photocatalytic activity
than tracing paper, in which the structural differences of the TiO2 nanostructured films
and substrates play a key role on the behavior observed (Figure 8e,f). It has been reported
that a nanocellulose substrate with a 3D structure at the nanoscale can effectively enhance
photocatalytic activity. Moreover, the 3D closed packed cellulose nanofiber network of
nanocellulose fully covered with TiO2 provides more active sites for the photoreaction,
and also facilitates the species’ transport and electrons’ collection [191]. The BNC-based
material could be reutilized despite activity deterioration over the exposures.
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B absorbance spectra at different solar light exposure times up to 15 h (e). Rhodamine B degradation ratio (C/C0) vs. solar
simulating light exposure time (f). Reproduced with permission of Springer Nature [19].

Office paper was also used as substrates for growing TiO2 nanostructured films.
Figure 9 showed the scanning electron microscopy (SEM) images of the pristine office
paper (Figure 9a) and the TiO2 nanostructured films grown under microwave irradiation
on the office paper substrate (Figure 9b). It can be observed that microwave synthesis
totally covered the paper substrate, and a continuous nanostructured TiO2 film could be
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achieved. These films were investigated as photocatalysts, and their photocatalytic activity
was assessed for Rhodamine B degradation under UV radiation (Figure 9c). The gradual
rhodamine B degradation was observed. The photocatalysts were resistant to water immer-
sion, and after the photocatalytic experiments, the papers could be recovered and dried for
further tests. The direct growth of TiO2 on paper with chemical-based processes reduces
the production costs of the photocatalysts due to the lack of parallel processes, such as seed
layers, or annealing. An analogous study reported the photocatalytic degradation of Rho-
damine B using office paper as a substrate under UV and solar radiation [12]. This study
demonstrated the synthesis of TiO2 and ZnO nanostructures using hydrothermal synthesis
assisted by microwave irradiation, using office, Whatman, and commercial hospital papers
as substrates. Their photocatalytic activity was assessed, and higher Rhodamine B degra-
dation was reported for photocatalysts grown on Whatman paper [12]. T. Freire et al. [192]
reported the growth of TiO2 thin films composed by very fine particles of ~11 nm on
Whatman paper using hydrothermal synthesis assisted by microwave irradiation. These
films had their photocatalytic activity tested with the photodegradation of Rhodamine B
under solar radiation, and the effective contribution of paper on the final photocatalytic
performance has been estimated.
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The inset magnifies the TiO2 nanostructured film grown on office paper substrate. (c) Rhodamine B absorbance spectra at
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paper before and after (pinkish color) experiments (71% of degradation after 8 h using 3 lamps of 95 W aligned in parallel,
from Osram, with an emission wavelength of 254 nm, and Rhodamine B solution of 5 mg/L). Photocatalytic experiments
based on [19].
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2.2. ZnO Photocatalytic Paper

Zinc oxide is also considered a promising photocatalyst for environmental remediation.
In fact, it has been reported that ZnO exhibits higher efficiency in the photocatalytic degra-
dation of some organic dyes than TiO2, i.e., methyl orange and Rhodamine 6G [193]. ZnO
has a high surface reactivity owing to its large number of active surface defect states [20].
This material has a strong oxidation ability, chemical stability, enhanced photocatalytic
activity, and a large free-exciton binding energy, in a way that the excitonic emission pro-
cesses can be maintained at room temperature or above [30]. Moreover, it is non-toxic,
earth abundant, biocompatible, biodegradable, environmentally friendly, low cost, and
compatible with simple chemical synthesis. Just like TiO2, its wide band gap limits light
absorption in the visible light region which is associated with the fast recombination of
photogenerated charges, resulting in low photocatalytic efficiency [30].

ZnO is an n-type semiconductor with a direct and wide band gap of 3.37 eV and a
large exciton binding energy of 60 meV at room temperature [30,194]. The common ZnO
crystal structures are the rocksalt, wurtzite or cubic (zinc blende) structures. However, ZnO
displays the wurtzite crystal structure at room temperature (Figure 10), with the highest
thermodynamic stability among the three structures [30,195]. This wurtzite structure has
a hexagonal unit cell with space group P63mc and lattice parameters, a = 0.3296 nm and
b = 0.52065 nm [30]. The ZnO wurtzite structure has a tetrahedrally coordinated bonding
geometry based on two interconnecting hexagonal closed packed sublattices, each of them
consisting of one type of atom (Zn or O) displaced alternatively along the threefold c-axis.
It exhibits a positive polar plane that is rich in Zn2+ and negative polar plane that is rich
in O2−. Each zinc ion has four oxygen neighbor ions in a tetrahedral configuration and
vice versa [30,196]. The tetrahedral coordination is typical of sp3 covalent bonding, and
this Zn2+ and O2− tetrahedral coordination is the origin of a polar symmetry along the
hexagonal axis. Moreover, the polarization effect is one of the major factors influencing the
crystal growth of ZnO nanostructures [30].

The c-axis direction is referred to as [0001], while the surface perpendicular to the
c-axis is the hexagonal (0001) plane [196]. The most common and stable ZnO wurtzite
crystal exhibits the following face terminations: the polar Zn terminated {0001} and O
terminated {0001} facets, and the non-polar {1010} facets, containing an equal number of
Zn and O atoms [62,194,197–199]. The polar facets possess distinct chemical and physical
properties when compared to the non-polar ones [194].

It has been reported that the {0001} facets terminated with Zn atoms are the most
active facets among the various surfaces of ZnO nanomaterials. Thus, due to the high
surface energy of {0001} facets, the exposure of {0001} facets may enhance the efficiency of
photocatalysis. However, it has been shown that nanostructures with high percentages of
exposed high-index facets also exhibited superior photocatalytic activity [200].

ZnO has also restrictions to its widespread use in photocatalysis under solar radiation
as previously mentioned. Thus, several approaches have been suggested to overcome this
limitation, including nonmetal and metal doping for reducing the band gap and improving
the charge carrier separation, which shifts the absorption range of ZnO to the visible
region [118]. Moreover, the surface functionalization of ZnO also has an impact on the final
photocatalytic performance due to the narrowing of the material’s surface band gap [201].
Another approach lies on making an enhanced heterojunction with a p-type semiconductor,
for example, CuO, to achieve superior photocatalytic activity [202].



Catalysts 2021, 11, 504 15 of 30
Catalysts 2021, 11, x FOR PEER REVIEW 15 of 31 
 

 

 
Figure 10. Bulk crystal structure of wurtzite Zinc oxide [203]. Reprinted Figure with permission 
from Simulation of reconstructions of the polar ZnO (0001) surfaces, as follows: H. Meskine and P. 
A. Mulheran, Phys. Rev. B 84, 165430, 2011. Copyright 2021 by the American Physical Society. 

ZnO has been extensively investigated over the years as thin films or nanostructures 
and in fact, several ZnO structures have been described at the nanoscale. The most com-
mon are one-dimensional nanostructures, such as nanorods, nanotubes, nanofibers, nan-
owires, but also nanoplates, nanosheets, nanospheres, tetrapods, and nanoflowers, among 
others, have been described (Figure 11) [204–209]. To produce such a variety of structures, 
numerous and distinct techniques have been reported, including direct precipitation 
[210], the sol–gel method [211,212], hydrothermal [213,214] and solvothermal syntheses 
[101], microwave synthesis [96,97,215], chemical bath deposition [216], electrospinning 
[217], electrodeposition [218], electrospinning [102,105], magnetron sputtering [219,220], 
and spray pyrolysis [221], among others. 
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Mulheran, Phys. Rev. B 84, 165430, 2011. Copyright 2021 by the American Physical Society.

ZnO has been extensively investigated over the years as thin films or nanostructures
and in fact, several ZnO structures have been described at the nanoscale. The most common
are one-dimensional nanostructures, such as nanorods, nanotubes, nanofibers, nanowires,
but also nanoplates, nanosheets, nanospheres, tetrapods, and nanoflowers, among others,
have been described (Figure 11) [204–209]. To produce such a variety of structures, nu-
merous and distinct techniques have been reported, including direct precipitation [210],
the sol–gel method [211,212], hydrothermal [213,214] and solvothermal syntheses [101],
microwave synthesis [96,97,215], chemical bath deposition [216], electrospinning [217],
electrodeposition [218], electrospinning [102,105], magnetron sputtering [219,220], and
spray pyrolysis [221], among others.
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Figure 11. SEM images of several ZnO nanostructures. (a) ZnO nanorods [204], (b,c) ZnO
nanoplates [204], (d) ZnO tetrapods [222], (e) ZnO nanosheets [205], (f) ZnO nanospheres [206],
(g) ZnO nanotubes [207], (h) ZnO nanoflowers [209], and (i) aligned ZnO nanowire arrays [208].
Reprinted with permission from direct growth of freestanding ZnO tetrapod networks for multi-
functional applications in photocatalysis, UV photodetection, and gas sensing, ACS Appl. Mater.
Interfaces 2015, 7, 26, 14303–14316, copyright 2021 American Chemical Society [222], and Else-
vier [204–209].
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The growth of ZnO on paper substrates has also been reported previously.
Araujo et al. [223] produced 3D SERS platforms based on ZnO nanorod arrays grown
on paper substrates using a fast and low-temperature hydrothermal method assisted
by microwave radiation. Pimentel et al. [11] produced paper-based UV sensors based
on ZnO nanorods, also grown using a fast and low-temperature hydrothermal method
assisted by microwave radiation. Two types of paper substrates were tested, i.e., tracing
and Whatman papers. The effect of the synthesis temperature on ZnO nanostructures was
investigated and an UV/Ozone treatment performed directly to the ZnO seed layer prior
to microwave assisted synthesis revealed expressive differences regarding the formation of
the ZnO nanostructures (Figure 12). Manekkathodi et al. [224] reported the production of
prototype photoconducting devices and PN junction diodes were fabricated with aligned
single-crystal ZnO nanowires and nanoneedles on paper using low temperature and a
non-hazardous chemical solution.
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in microwave synthesis. The effect of UV treatment has been investigated. The real image of the
paper-based UV sensor is presented [11]. Reproduced with permission of MDPI [11].

The antibacterial activity against Escherichia coli of paper coated with ZnO nanoparti-
cles has been reported in [225]. In another study, ZnO-cellulose composites coating paper
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were applied as antibacterial and antifungal agents [226]. A review manuscript dedicated to
the preparation and antibacterial activity of cellulose/ZnO composites has been published
in [227].

When it comes to ZnO photocatalytic paper, some studies demonstrated the enhanced
photocatalytic activity of such metal oxide material on paper, especially of 1D nanostruc-
tures, such as nanorods, nanowires, and nanofibers, due to their larger surface-to-volume
ratio, when compared to thin films [20].

Baruah et al. [20] demonstrated that ZnO nanorods grown on paper supports prepared
from soft wood pulp are promising photocatalysts. The produced paper embedded with
ZnO nanorods in its porous matrix revealed enhanced photocatalytic degradation of methy-
lene blue and methyl orange under visible light, being reused several times. Tsai et al. [54]
reported a photocatalytic paper comprised of Cu2O and Ag nanoparticles decorating ZnO
nanorods produced using a hydrothermal method, and its application in the visible light
photodegradation of Rhodamine B. The photocatalytic activity of pure ZnO-based paper
and paper containing Cu2O and Ag separately or together have been tested, in which the
paper with Cu2O and Ag nanoparticles co-decorating the ZnO nanorods demonstrated the
best photocatalytic efficiency (Figure 13).
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A thorn-like ZnO-multiwalled carbon nanotube hybrid paper produced with an
atomic layer deposition followed by hydrothermal growth has been reported in [228]. Its
photocatalytic performance was assessed under UV irradiation, enabling the photodegra-
dation of Rhodamine B and good recyclability.

In an innovative approach, Fe2O3/ZnO hollow spheres with submicron pores were
integrated in inks to produce stable photocatalytic papers by a spraying method. It was
reported that the hollow spheres perfectly matched the cellulose networks within the paper
due to the similar dimensions, and that the photocatalytic paper were able to efficiently
degrade the 2,4,6-trichlorophenol under solar light irradiation [229].

A heterojunction of TiO2/ZnO nanostructures grown on paper substrates has been
reported in [12]. Microwave synthesis was used for growing both layers and depending on
the type of paper used, different ZnO structures were obtained (Figure 14). Continuous
ZnO nanorod arrays were grown on Whatman paper, while on office paper, nanoplates
that originated the nanoflower structures could be observed. The formation of nanoplates
structures have been associated with the presence of calcium carbonate (CaCO3) in office
paper. The effect of oxalic acid has also been investigated, and an etching effect was ob-
served on office paper with deterioration of the nanoplate’s surface and laminar structures,
and holes started to appear. The ZnO/TiO2 heterostructures grown on office paper were
tested as a photocatalyst under UV light. It was shown that the deteriorated structure of
the nanoplates increased the photocatalytic activity due to the higher surface area of such
materials.
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Figure 14. ZnO/TiO2 heterostructures grown on Whatman and Office papers having TiO2 synthe-
sized without acid and with 25 mM of oxalic acid (a–d). The inset in (a) magnifies the heterostructure,
while the inset in (d) evidences the surface modification with oxalic acid. (e) Rhodamine B pho-
todegradation under UV light of the heterojunction grown on office paper and represented in (d) [12].
Reproduced with permission of Hindawi [12].
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Other metal oxide-based papers had their photocatalytic activity investigated for
environmental remediation; however, these studies are still scarce. A photocatalytic
paper based on Ag2O has been reported, in which cellulose fibers and graphite fibers
have been incorporated with the Ag2O nanoparticles. Its photocatalytic activity was
evaluated with the degradation of methyl orange under UV, VIS or near-IR light, mostly
covering the solar spectrum [230]. Another study reported a composite based on
BiVO4@diatomite/microcrystalline cellulose/poly (vinyl butyral) that was prepared using
the electrospinning method. The photocatalytic activity of this paper was investigated
with the photodegradation of methylene blue and formaldehyde under visible light [231].

The International Standard ISO 10678:2010 is an accepted standard experimental
method for photocatalytic experiments and it specifies a method for the photocatalytic
degradation of methylene blue [232]. Nevertheless, in most published studies, the pho-
tocatalytic parameters that can influence the final photodegradation vary expressively,
including the light sources, the concentration of pollutants tested, and even the distance
between the light source and the photocatalytic apparatus. Table 1 summarizes all the
metal oxide-based photocatalytic papers discussed above, considering the paper-based
materials, target pollutant, and light source.

Table 1. Summary of the metal oxide-based photocatalytic papers reported in literature.

Material Target Pollutant/Medium Light Source Reference

Paper with TiO2 aggregates Acetaldehyde in gas Weak UV [180]

Paper with TiO2 supported on inorganic
fibers Acetaldehyde in gas UV [181]

Paper with nano TiO2 powders supported
on X zeolite Acetaldehyde in gas VIS [182]

Papers containing TiO2 decorated with
AgBr nanoparticles 2-propanol in gas Sunlight [183]

Paper with TiO2 nanoparticles confined in
hollow silica capsules 2-propanol in gas UV [55]

Cellulose-based material with TiO2
nanoparticles loaded on carbon fibers Methyl orange in liquid UV [57]

Papers containing poly-dopamine-loaded
cellulose fiere together with pristine

cellulose fiere and TiO2 nanoparticles
Methyl orange in liquid UV [58]

TiO2-coated non-woven paper with
colloidal SiO2 binder Rhodamine B in liquid UV [184]

Paper with TiO2 nanosol Blue indigo carmine in liquid UV [186]

TiO2 hydrosols on paper sheets Methylene blue in liquid UV [187]

Paper based on a TiO2/Sodium alginate
nanocomposite

Chemical oxygen demand of
wastewater/liquid UV [185]

Paper-TiO2 composite 2-propanol in gas Sunlight [178]

Au nanoparticles decorating TiO2
nanowires onto hierarchically porous

carbon fiber paper
Styrene in gas VIS [177]

Papers composed by nanosized TiO2
supported on natural zeolite Toluene in gas UV [188,189]

Paper formed by a composite of TiO2/SiO2
particles Ethanol in gas UV [190]

BNC with TiO2nanostructured films Rhodamine B in liquid Sunlight [19]

Papers with TiO2, ZnO and ZnO/ TiO2
nanostructured films Rhodamine B in liquid UV and sunlight [12]
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Table 1. Cont.

Material Target Pollutant/Medium Light Source Reference

Papers with TiO2 thin films Rhodamine B in liquid Sunlight [192]

Paper with ZnO nanorods Methylene blue and methyl orange in
liquid VIS [20]

Paper with Cu2O and Ag nanoparticles
decorating ZnO nanorods Rhodamine B in liquid VIS [54]

Thorn-like ZnO-multiwalled carbon
nanotube hybrid paper Rhodamine B in liquid UV [228]

Papers with Fe2O3/ZnO hollow spheres 2,4,6-trichlorophenol in liquid Sunlight [229]

Paper containing Ag2O nanoparticles Methyl orange in liquid UV, VIS or near-IR [230]

Paper based of
BiVO4@diatomite/microcrystalline

cellulose/ poly(vinyl butyral)

Methylene blue in liquid and
formaldehyde in gas VIS [231]

All the approaches discussed in this review manuscript provide an overview on the
versatility of using cellulose-based materials on photocatalysis. However, these materials
still present some drawbacks, such as degradation under light exposure or the presence of
impurities. An alternative to surpass these limitations is surface functionalization. In fact,
functionalization strengthens thermal, mechanical and barrier properties [1] and increases
surface absorption which, in the case of photocatalysis, influences the final performance.
Moreover, it can create hydrophobic barriers or regions to contain compounds/reagents
or pollutants. Cellulose functionalized with several binders (porphyrin, phthalocyanine,
polyaniline (PAni)), and cellulose embedded with silver nanowires have been previously
reported [1,233,234]. Thus, the integration of enhanced metal oxides as membranes, com-
posites or grown/deposited in functionalized cellulose-based materials can originate highly
photoactive papers to help environmental remediation.

3. Conclusions and Future Perspectives

This review summarized the latest developments in photocatalysis, focusing on metal
oxides integrated on cellulose-based materials to originate enhanced photocatalytic papers.
The work described the use of paper as a substrate, but also to form composites and
membranes. The main characteristics of paper have been emphasized, including its low-
cost and abundant character; moreover, it is environmentally friendly, flexible, foldable,
recyclable, and lightweight. For photocatalysis, its 3D structure can contribute to enhance
the photocatalytic activity, providing more active sites for the photoreaction.

Metal oxide nanomaterials are largely employed in photocatalysis, due to their high
surface-to-volume ratios and high surface reaction activities. This work focused on nanos-
tructured TiO2 and ZnO since both materials are largely employed in the photodegradation
of organic compounds. Moreover, these materials are eco-friendly, earth abundant, inex-
pensive, nontoxic, easily produced, and compatible with wet-chemical synthesis. Different
studies have been presented which have correlated structural properties to the final pho-
tocatalytic activity. The main photocatalytic limitations of these materials have been
addressed, namely the fast recombination of electrons and holes and the limitation of
solar spectrum absorption, with different approaches for overcoming those being dis-
cussed. Other metal oxide-based paper systems and their applications for environmental
remediation have also been mentioned.

The future of photocatalytic paper is expected to rely on nanosized cellulose. It is
imperative to develop sustainable and inexpensive production processes for nanocellulose
and its scale-up to industrial levels. To improve the photocatalytic activity of nanocellulose,
surface functionalization is critical. The cellulose functionalization also allows stacking
different paper-based layers: for example, a composite of a n-type semiconductor/cellulose
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on top of a p-type semiconductor/cellulose (or vice versa), forming an enhanced pho-
tocatalytic heterojunction. Advanced 3D materials composed by a mixture of nano and
micro-sized cellulose can also be relevant. The use of printing techniques is also an alterna-
tive to produce continuous photocatalytic films on nano-paper by directly printing inks
containing the metal oxide nanostructures.

The increase in photocatalytic activity involves the development of better photocata-
lysts, i.e., metal oxide nanostructures or thin films. Several approaches have been discussed,
from metal oxides decorated with nanoparticles, to doping with other elements, or even
coupling with other semiconductors. However, extensive efforts are still needed for the de-
velopment of innovative production strategies and tuned nanomaterials which are highly
photoactive under solar radiation. Moreover, the deep understanding of the degradation
mechanisms is still required.

The photocatalytic paper concept opens a wide number of possibilities, as these
materials can be employed in varied applications, are easily adapted to different surfaces
due to their high flexibility and have easy handling. Their disposable character and
recyclability effectively contribute to environmental protection, while reducing costs.
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