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Abstract: Hybridisation of mesoporous organosilicas (MO) to reinforce the surface capability in ad-
sorption and stabilisation of noble metal nanoparticles is of great attention in generating/supporting
noble metal within their matrices and transforming them into efficient heterogeneous catalysts. Here,
we used a unique hybrid of organic-inorganic mesoporous silica in which pore profile pattern was
similar to the well-known mesoporous silica, SBA-15 for catalysis. This hybrid mesoporous organosil-
ica was further engaged as a support in the synthesis and stabilisation of Pd nanoparticles on its
surface, and then, the obtained Pd-supported MO was employed as a heterogeneous green catalyst
in the conversion of aqueous p-nitrophenol (PNP) to p-aminophenol (PAP) at room temperature with
efficient recyclability.

Keywords: hybrid mesoporous silica; Pd nanoparticles; p-nitrophenol; reduction; heterogeneous
catalyst; PMO

1. Introduction

Nanoporous silicas modified/constructed by organosiloxanes (MO) [1–5] are a class
of hybrid silica-based materials that are widely used in the diverse variety of applications
including catalysis [6,7], microextraction [8], water treatment [9], molecular recognition [10],
photocatalysis [11], optical thermometry [12], sensors [13,14], and CO2 capture [15,16].
These materials can be synthesised by condensation of various organosiloxane precursors
and usually have amorphous structures but with ordered/disordered pore channels. Some
of these materials can have microporosity alongside the mesoporosity, which can increase
the surface area and subsequently the efficiency of the material in the applications [17,18].
Furthermore, in some cases, these materials are promising to metal-organic-frameworks in
viewpoint of porosity and stability [5,19]. Since these materials are synthetic, there should
be a synthetic bottom-up strategy for reaching to such materials in which the presence of
template (mostly a soft template), e.g., F127 and P123, is inevitable [4,20,21].

When an organosiloxane bridge with significant flexibility is being used in a MO’s
structure, the organosiloxane bridge should co-condense with a silica source (e.g., tetraethyl
orthosilicate (TEOS)) to generate a uniform and robust mesoporous structure from view-
point of mechanical toughness and porosity [4]. Several advantages belong to MOs, which
cannot be found in conventional hybrid mesoporous silica materials [22]. For instance, in
MOs, depending on the type of bridge, a higher ratio of organosilica can be embedded
in the structure of MO, while in the case of conventional mesopores, e.g., SBA-15, it is an
overwhelming process to functionalise with organosiloxane precursors in high ratio that
usually deals with pore blocking or unsuccessful process [23]. In MOs, the mass transfer
in pores for guest molecules is more efficient and also more promising than conventional
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hybrid silica mesopores [12,24,25]. This efficiency in transfer of molecules improves the life-
time of the MO and catalytic activity through minimizing the pore-blocking possibility by
guest molecules [26–28]. This is because the organosilica motif of conventional mesoporous
silicas stay on the external surface of pore channels, while in MOs, it can be embedded in
the pore wall [29].

The use of mesoporous silica materials is of great importance among the candidates
for synthesis of heterogeneous catalysts [30–34]. These materials can provide excellent
heterogeneous surface for immobilisation of catalytically active metal species for various
reactions, such as cross coupling and reduction reactions [35–39]. These materials can also
provide an excelling recyclability by tuning the ratio and type of the organosilica. Pd,
among the noble metals, has played a pivotal role in the catalysis since Pd is an active
catalytic species for a broad domain of reactions, e.g., cross-coupling [40,41], oxidation [42],
reduction [6], and dehydrogenation [17,43]. Here, we integrated the isocyanurate and
carbamate functional groups in the MO and used it for supporting of Pd nanoparticles. This
was further employed as a heterogeneous green catalyst for the aqueous room temperature
reduction of PNP to PAP.

2. Results and Discussion
2.1. Synthesis and the Characterisation of the Catalyst

We here synthesised a silica porous material by co-condensation method, where
the organic and inorganic are homogeneously mixed and dissolved into a new material.
Since this hybrid mesoporous silica material (MO-ISO) was obtained by co-condensation
of a synthetic organosiloxane, we developed a facile one-step solvent-free approach to
synthesise the organosiloxane precursor in our laboratory, as represented in Figure 1, and
we further used it for immobilisation of Pd nanoparticles. These Pd nanoparticles were
primarily obtained by adsorption of Pd2+ ions on MO-ISO and eventual reduction of them
with NaBH4 at room temperature.
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We previously proved the successful synthesis of this organosiloxane bridge by various
techniques such as 1H- and 13C-NMR, FTIR, and mass spectroscopy, which all have been
discussed in the literature [16]. We used this isocyanurate-carbamate organosiloxane bridge
(ISO bridge) to synthesise the mesoporous organosilica (MO-ISO) with a high surface area
and mechanically stable properties. Since in the previous study, we showed that the ratio of
TEOS to organosiloxane precursor has a critical effect on the surface area and morphology,
we selected the molar ratio of 1:15 (organosiloxane to TEOS, respectively). For studying
the surface area, the N2 adsorption–desorption isotherms of the synthesised MO-ISO were
evaluated and represented in Figure 2. Accordingly, the surface area is obtained around
697 m2·g−1 with type IV isotherm and the average pore size is 6.2 nm. Going further,
the Pd-supported MO-ISO (Pd@MO-ISO) has exhibited a relative loss in the surface area
(389 m2·g−1), however, the surface area is still high, compared to other porous materials
(Figure 2). This decrease in the surface area can be attributed to the relative occupancy of
the pore space through the Pd nanoparticles.
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Figure 2. (A) N2 adsorption–desorption isotherms and (B) BJH plots of MO-ISO and Pd@MO-ISO.

The FTIR spectrum for 1,3,5-tris(2-hydroxyethyl)-1,3,5-triazinane-2,4,6-trione (THEIC),
the heterocyclic starting material of ISO bridge, was compared with the FTIR spectrum
of the MO-ISO to see if the main structure of ISO has undergone any change (Figure 3).
This can be judged by the existence of two sharp bands at 1467 and 1700 cm−1 related to
the stretching vibrations of the isocyanurate carbonyl located in the ring. A small shift in
this regard can be observed to these band positions, which can be attributed to the change
in the intermolecular hydrogen bondings in the pure form and when embedded in the
MO structure. Some peaks in the range of 2900–3000 cm−1 are also related to the aliphatic
chains (ethylene) of the ISO bridge.

Since the generated carbamate groups are sensitive to the acidic and basic media, we
carefully examined the appeared two peaks in the 13C-NMR spectrum of MO-ISO related
to the carbonyls (one to carbamate (156 ppm) and another to the isocyanurate (148 ppm)),
which can confirm that the ISO bridge has been retained intact in the structure [16].
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Figure 3. ATR-FTIR spectra of THEIC and Pd@MO-ISO.

SEM micrographs of MO-ISO morphology exhibits micro-sized particles, showing
that the mesopores are assembled and aggregated into the large particles (Figure 4A).
Furthermore, high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) image of MO-ISO confirms the presence of Pd nanoparticles distributed in
the MO-ISO’s matrix. Note that the Pd nanoparticles are with lighter colour, since the more
the condense matter, the lighter the appearance it takes in HAADF-STEM image (Figure 4B).
Looking at the TEM image of MO-ISO reveals that the structure of MO-ISO is hexagonally
ordered with uniform pore size distribution (Figure 4C). Moreover, the Pd-supported
MO-ISO confirms the presence of Pd nanoparticles formed on the MO-ISO (Figure 4D).
The calculated sizes of Pd nanoparticles according to the TEM and HAADF-STEM images
are found to be ~12.9 nm (See inset Figure 4D).

In addition, we studied the Pd nanoparticles and the MO-ISO structure through
elemental TEM-mapping and TEM-based electron-dispersive spectroscopy (EDS). We
confirmed the supporting of Pd nanoparticles in MO-ISO structure by scanning the related
elements such as O, N, C, and Si through TEM-mapping. This is illustrated in Figure 5A.
Figure 5B also shows the TEM-EDS spectra of Pd@MO-ISO. This analysis confirms the
presence of Pd element in the structure as well as other critical elements, e.g., C, N, and Si.

2.2. Catalytic Test

Further, we tested the catalytic activity of Pd@MO-ISO in the reduction of nitroaro-
matics by testing PNP in the aqueous media at room temperature. In this regard, we used
sodium borohydride (NaBH4) as reducing agent and H2O as a green solvent. The catalyst,
Pd@MO-ISO, was used in different amounts to see which ratio of Pd to the reactant, PNP,
has the higher TON. Accordingly, the results indicated that 5 mg catalyst in 3 mM PNP
solution (40 mL) has a higher activity in terms of Turn Over Number (TON). TON was
obtained by following formula:
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TON =
generated product (mmol)

active sites of the catalyst (mmol)
, (1)

where the TON value was obtained as 125 for the PNP reduction through 5 mg Pd@MO-ISO
(with 2 wt% of Pd content) and 0.12 mmol PAP. Note that we assigned the active sites of the
catalyst to entire number of Pd atoms in the structure, regardless of which the Pd atoms are
the surficial or interior ones. Therefore, we neglected the small fraction of Pd atoms that
are catalytically inactivated by outermost layers. Further, examinations indicated that the
higher amount of the catalyst (10 mg) does not have significant effect on the improvement
of the catalytic activity from viewpoint of TON. It is noteworthy that the lower loadings and
higher loading of Pd (=0.5 wt% and 3 wt%) on MO-ISO did not have promising catalytic
results since the TON of the reaction were obtained lower than that of 2 wt%-loading Pd
nanoparticles. This observation indicates that the TON value is optimal at 2 wt% of loaded
Pd in MO-ISO for the reduction of p-nitrophenol. In addition, we examined the reduction
reaction within 20 min while sampling in every 5 min. We realised that the major fraction
of the reaction progress occurs at early 10 min. We confirmed the conversion of PNP to
PAP by observing fading of an adsorption peak at 410 nm and appearance of a related peak
at 317 nm over the reaction time (Figure 6).
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20 min.

We also studied the recyclability of the catalyst, Pd@MO-ISO, as the recyclability is one
of the pivotal features in heterogeneous catalysts in organic transformation. Accordingly,
we used the optimised reaction conditions, i.e., 3 mM PNP, room temperature, aqueous
conditions, and 5 mmol NaBH4. The results show that Pd@MO-ISO as a heterogeneous cat-
alyst that is easily recoverable and reusable at least for five consecutive cycles (Figure 7A).
In addition, the analysis of the reaction solution, once the catalyst is filtered, through
atomic absorption spectroscopy (AAS) in the fifth cycle, confirmed that the Pd leaching
is negligible (<1%). SEM-based EDS spectra of recovered Pd@MO-ISO after five cycles
also shows the presence of Pd species, further confirming the resistance of the material in
Pd leaching (Figure 7B). However, the observed loss, could be attributed to the relative
collapse of the silica mesoscopic structure by exposing to the highly reactive NaBH4.
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We further compared the catalytic results of our catalyst and method with the previ-
ously reported catalysts, which are used for PNP reduction to PAP. We found our catalyst
superior to those of several catalysts and methods reported before, in terms of TON
(Table 1).

Table 1. Comparing the PNP reduction through our synthesised catalyst with the previously reported
catalysts in aqueous solution in the presence of NaBH4 as reducing agent.

Catalyst Time (min) Temperature (◦C) TON Reference

TA@Fe3O4-AgNPs 6 r.t. * 25 [44]
PdPt@Chitosan 120 22 10 [45]
Pd@MO-urea 26 r.t. 64 [17]
Pd@MO-ISO 20 r.t. 125 This work

* r.t. is room temperature.

3. Materials and Methods
3.1. Materials Characterisations

The SEM images were observed with a HITACHI SU-8230 scanning SEM. TEM images
were taken with a JEOL JEM-2100F microscope (operated at 300 kV). N2 adsorption–
desorption, BJH, and BET analyses were carried out at 77 K using a Microtrac Bel BEL-mini.
Prior to the measurements, the samples were evacuated at 90 ◦C for 20–24 h. ICP-OES
was performed by Pekin-Elmer (Waltham, MA, USA) model. The pore size distribution
of the mesopores were determined by BJH analysis obtained by Autosorb Microtrac Bel
BEL-mini.

3.2. Materials Synthesis

For the synthesis of this organosiloxane bridge, THEIC (3 mmol, 0.783 g) was reacted
with (3-isocyanatopropyl) triethoxysilane (1 mmol, 0.5 mL) at 135 ◦C for 3 h, cooled to
80 ◦C, and stirred at that temperature for another 3 h. Then, a colourless oily product was
obtained at the end, which was used without further purifications [16]. The synthesised
isocyanurate-based organosiloxane bridge was further employed in the synthesis of the
corresponding MO through co-condensation of TEOS. Accordingly, the Pluronic triblock
copolymer P123 (2 g, MW = 5800 g·mol−1) was dissolved in HCl aqueous solution (10−4 M,
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75 mL) and stirred for 3 h. Then, the as-synthesised organosiloxane bridge from the
previous step was mixed with TEOS with the molar ratio of 1:15, respectively, and co-
condensed in the P123/HCl aqueous solution mixture and stirred for 24 h at 25 ◦C. After
stirring for 24 h, the reaction mixture was transferred to an autoclave for aging for 24 h
at 100 ◦C. After aging, the polymeric P123 was extracted from the pore space by Soxhlet
with MeOH for 4 days. A white powder as the final product after drying at 60 ◦C for 4 h
in an oven was obtained. For simplicity, the product obtained in this stage was named
“MO-ISO.”

Na2PdCl4 (37 µmol, 0.011 g) in acetonitrile was added dropwise to MO-ISO (0.2 g).
Afterward, creamy pasty product was collected and dried at 100 ◦C. After drying for 3 h, it
was re-dispersed in MeOH and then, NaBH4 was added to the dispersion and allowed to
stir for 0.5 h. Finally, the final product was centrifuged and washed for three times with
EtOH (10 mL) and dried in oven at 60 ◦C for 3 h. For simplicity, the product obtained in
this step was named “Pd@MO-ISO.” The wt% of Pd loaded in MO-ISO was analysed by
ICP-OES technique, indicating that the Pd content is 2 wt% in the MO-ISO.

3.3. Catalytic Test

In the catalytic test to reduce PNP to PAP, Pd@MO-ISO (5 mg) was dispersed in
the aqueous PNP solution (3 mM, 40 mL) by sonicating for 5 min. Then, the sodium
borohydride (5 mmol, 125 mg) was added to the solution and continued to stir vigorously.
During the reaction, every 5 min, the sampling from reaction progress was achieved by a
syringe equipped with syringe filter to separate the catalyst from the reaction media. Then,
the obtained samples from each minute were analysed by UV–VIS spectrometer to monitor
the reaction progress.

4. Conclusions

Here, we presented a heterogeneous green catalyst on the basis of the new Pd-based
hybrid mesoporous organosilica, which could successfully adsorb Pd ions and support it
on the surface. The Pd supporting process had not a significant destructive effect on the
mesoscopic structure of the MO-ISO and had an efficient catalytic activity in the chemical
reduction of PNP to PAP via NaBH4 as reducing agent. The catalyst also showed a high
rate of recyclability and negligible Pd species leaching over recycling the catalyst. The
catalytic activity of Pd@MO-ISO was excellent in comparison to other previously reported
catalysts with the similar textural structure.
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