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Abstract: Lipases are ubiquitous enzymes whose physiological role is the hydrolysis of triacylglycerol
into fatty acids. They are the most studied and industrially interesting enzymes, thanks to their
versatility to promote a plethora of reactions on a wide range of substrates. In fact, depending on
the reaction conditions, they can also catalyze synthesis reactions, such as esterification, acidolysis
and transesterification. The latter is particularly important for biodiesel production. Biodiesel can
be produced from animal fats or vegetable oils and is considered as a biodegradable, non-toxic
and renewable energy source. The use of lipases as industrial catalysts is subordinated to their
immobilization on insoluble supports, to allow multiple uses and use in continuous processes, but
also to stabilize the enzyme, intrinsically prone to denaturation with consequent loss of activity.
Among the materials that can be used for lipase immobilization, mesoporous silica nanoparticles
represent a good choice due to the combination of thermal and mechanical stability with controlled
textural characteristics. Moreover, the presence of abundant surface hydroxyl groups allows for easy
chemical surface functionalization. This latter aspect has the main importance since lipases have
a high affinity with hydrophobic supports. The objective of this work is to provide an overview
of the recent progress of lipase immobilization in mesoporous silica nanoparticles with a focus on
biodiesel production.
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1. Introduction

Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are ubiquitous enzymes that
can be found in animals, plants and natural or genetically engineered microorganisms.
Physiologically, they play a key role in fat digestion by catalyzing the hydrolysis of fats and
oils, releasing free fatty acids, diacylglycerols, monoglycerols and glycerol. Lipases catalyze
reactions of water-insoluble substrates and the presence of the water/lipid interface is a
usual prerequisite for efficient catalysis [1]. Besides this, depending on the water content of
the reaction environment, they can promote synthesis reactions, such as esterification [2],
transesterification [3] and acidolysis [4]. These reactions can take place in organic solvents.

Due to their great versatility, lipases are recognized as the most important group of
catalysts in biotechnology [5]. They find use in a variety of biotechnological fields such
as food and dairy, pharmaceutical, agrochemical, oleochemical, cosmetic industries and
detergents [6,7]. In particular, the enzymatic transesterification of vegetable oil and animal
fat into biodiesel represents a very active research field in recent years, thanks to the benefits
that biofuels can bring in the current scenario of environmental degradation. Biodiesel
can attenuate the climate change concerns because it reduces the overall life-cycle of
carbon dioxide emission, being produced from renewable sources. Other inherent emission
reductions are hydrocarbons, carbon monoxide and particulate matter. Furthermore, it
can be used in existing engines, pure or in blends, without technical modification [8].
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Biodiesel can be produced from renewable sources available worldwide, addressing the
problems associated with the depletion of fossil resources and political instability in oil-
producing countries.

Chemically, biodiesel consists of mono-alkyl esters of fatty acids. The enzymatic trans-
esterification of triglycerides to biodiesel proceeds stepwise in three reversible reactions.
The triglyceride is converted stepwise to diglyceride, monoglyceride and finally glycerol.
In each of the steps, a molecule of fatty acid ester is released. The final products are alkyl
esters and glycerol (see Scheme 1).
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The conventional method for producing biodiesel involves acid or base catalysts. The
enzymatic catalysis enables milder process conditions (temperature, pressure and pH)
and lower amounts of by-products, reducing environmental problems and downstream
processing costs [9]. Furthermore, lipases allow treating raw materials with high content
of free fatty acids, enabling the use of low-quality inedible oil and waste cooking oil [10].
However, in order for the process to be economically viable on an industrial level, it is
necessary to solve two problems related to the use of enzymes: their high cost and their
inherent instability. Hence the need to immobilize lipase on water-insoluble supports. En-
zyme immobilization allows the development of continuous processes, an easier separation
of products and the reuse of the catalyst. For lipase, the enhancement of its stability and cat-
alytic activity was often observed upon immobilization [11–13]. Among the supports used
for the immobilization of lipase, mesoporous silica materials play a prominent role [14].
Mesoporous silica represents a broad platform for enzyme immobilization, due to an easy
modulation of the size, morphology and distribution of the pores by changing the synthesis
parameters, and their chemical and thermal stability [15]. Moreover, the abundant surface
hydroxyl groups enable easy chemical surface functionalization. This is particularly im-
portant for the immobilization of lipases. They are unique enzymes in that most of them
require interfacial activation for full catalytic performance. Lipases have a helical loop that
covers their active site. Upon adsorption at a hydrophobic/hydrophilic interface, the loop
undergoes a conformational change from the inactive “closed” form in which the catalytic
site is inaccessible to the “open” active from. It is preferable to immobilize lipase in the
“open-lid” active conformation. This is possible by using hydrophobic supports, since
lipases recognize hydrophobic surfaces similar to those of their natural substrates and they
undergo interfacial activation during immobilization [12,16]. A hydrophobic support for
adsorption can be obtained by functionalizing silica with hydrophobic groups.

The objective of this work is to provide an overview of lipase immobilization on
mesoporous silica nano/microparticles and the functionalization thereof to obtain a suitable
biocatalyst for biofuel production. Lipase is one of the most studied enzymes. Due to the
very large number of publications on lipase immobilization [17], it is important to have
sectorial reviews on specific topics to keep the state-of-the-art up to date.
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2. Lipases
2.1. Three-Dimensional Structure

Lipases derived from animal, bacterial and fungal sources all tend to have similar
three-dimensional structures. Molecular weight of lipases from different sources shows
great variation but generally, they range between 20 and 60 KDa. Despite differences
in size and sequence homology, most lipases adopt a similar core topology. The three-
dimensional structure of Candida rugosa lipase (CRL) is shown in Figure 1. The characteristic
pattern of lipases is a structural motif, the so-called lipase fold, which is a subset of the
α/β-hydrolase [1]. This fold comprises a central, mostly parallel β-sheet (in light blue in
Figure 1) with several helices on both sides of the sheet (in dark green in Figure 1). The
central β-sheet contains the catalytic residues (in red in Figure 1). In general, the polypep-
tide chain of lipase is folded into two domains, the C-terminal domain and the N-terminal
domain. The N-terminal domain contains the active site in a hydrophobic tunnel going
from the catalytic site to the surface that can accommodate a long fatty acid chain. This
tunnel generally is not straight, showing an L-shape that fits with the sterical requirements
of the oleic acid [18]. The active sites of lipases are composed of Ser-Glu (or Asp)-His
residues (nucleophile-acid-histidine), forming a catalytic triad whose topology is highly
conserved among the lipases. The residues of the catalytic triad are located at the top of
the β-sheet near its center. The serine residue turns up a short loop between a α-helix and
a β-strand, the so-called nucleophilic elbow [19], which is well-conserved in lipases.
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Figure 1. Ribbon diagram of CRL with open and closed states of the lid superimposed. The central
mixed β-sheet is light blue, and the smaller N-terminal β-sheet is dark blue. Helices that pack
against the central β-sheet are dark green. The closed conformation of the lid is yellow, and the
open conformation is red. The residues forming the catalytic triad are shown in red [1]. Reprinted
with permission: License Number: 5056440201560, license date: 26 April 2021 Elsevier, Biochimica et
Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids.
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2.2. Mechanism of Catalysis

The catalytic mechanism for triglyceride hydrolysis is illustrated in Scheme 2. In
the first step, serine is activated by deprotonation assisted by histidine and aspartate.
The nucleophile oxygen of deprotonated Ser attacks the carbonyl group of the substrate,
forming a tetrahedral hemiacetal intermediate with the triglyceride. In the second step,
the ester bond of the hemiacetal is hydrolyzed and the diacylglyceride is released. In the
third step, a nucleophile (e.g., OH−) attacks the acylated enzyme, leading to a product
(long-chain fatty acid) release and regeneration of the catalytic site [20].
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2.3. Interfacial Activation

Lipases are interfacial enzymes, i.e., they require an interface to exert their catalytic
activity. This is because their physiological environment is aqueous, whereas their sub-
strate, i.e., triglycerides, is insoluble in water. Therefore, lipase works at the water/oil
interface. In aqueous solution, lipases have very low activity toward molecularly dissolved
substrates, but when the substrate concentration is high enough to form micellar solutions
or emulsions, i.e., interfaces, the activity of lipases is highly increased.

Most lipases possess an amphiphilic polypeptide loop, called lid or flap, covering the
active site of the enzyme in aqueous environment. The lid generally contains a α-helix. In
the so-called ‘closed state’, the loop (in yellow in Figure 1) extends over the active site and
makes it inaccessible to substrates. However, in the presence of a hydrophobic interface,
the loop moves to the side, leading to the ‘open state’ conformation (in red in Figure 1).
This phenomenon is known as interfacial activation and leads to the active form of the
enzyme. The conformational rearrangement involves only the lid, which does not move
as a rigid body but undergoes an internal rearrangement. In the case of CRL, shown in
Figure 1, a α-helix unwinds at one end and extends at the other. Following this rearrange-
ment, the surface characteristics in the proximity of the active site change radically. In the
closed state, the side of the loop facing the solvent is hydrophilic. When the lid moves
aside, several hydrophobic side chains are exposed to the solvent. A large hydrophobic
pocket containing the active site is exposed to the environment. In this conformation,
the nucleophilic serine is easily accessible. In this way, lipases are strongly adsorbed to
hydrophobic interfaces through several pockets of a large hydrophobic surface, which
surrounds the catalytic side. The catalytic triad is now accessible to the substrate and
the lipase can exert its lypolitic activity. The lid is held in place by mostly hydrophobic
and some hydrogen bonds. The structure of the lid differs for lipases in the number and
position of the surface loops. In some cases, the lid is very small and does not completely
seclude the active center from the medium, so that the closed form is partially active [21].
In other cases, the loop structure is very complex and the closed form of the lipase is
completely inactive [22].
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2.4. Enzymatic Biodiesel Production

Lipases are ubiquitously present in plants, animals and microorganisms (bacteria,
fungi and yeasts). Microbial lipases are mostly used in industry since they are more stable
and available in bulk at lower cost [23].

Lipases can be divided into three groups: 1,3-specific, fatty acid-specific and non-
specific lipases. The 1,3-specific lipases hydrolyze ester bonds in the position 1 and 3
of triglycerides. The fatty acid-specific lipases hydrolyze esters of long-chain fatty acids
with double bonds in cis-position at C9. The non-specific lipases randomly cleave the
acylglycerols. For biodiesel production, lipases should be non-specific to efficiently catalyze
the transesterification of triglycerides in fatty acid alkyl-esters.

Enzymes used for commercial applications are frequently immobilized. Among
them, Candida antartica lipase immobilized on acrylic resin (Novozym® 435) [24], Mu-
cor miehei lipase immobilized on a macroporous ion-exchange resin (Lipozyme IM) [25],
Thermomyces lanuginosus lipase (TTL) immobilized on acrylic resin (Lipozyme TL IM) [26]
and Rhizomucor miehei lipase immobilized on macroporous anion exchange resin (Lipozyme
RM IM) [27]. Most studies on bacterial lipases for biodiesel production concern Burkholde-
ria cepacia lipase (BCL) [28] and Pseudomonas fluorescens lipase [29]. Candida antarctica
lipase B (CALB) is the most widely applied lipase from yeast for biodiesel production.
Candida rugosa lipase has also been used [30]. Lipases from fungi used in transesterification
include Thermomyces lanuginosus lipase (TLL), Rhizopus oryzae lipase (ROL) [31], Penicillium
expansum lipase (PEL) [32] and Geotrichum sp. lipase (GSL) [33]. The information regarding
the sources of lipase used for the production of biodiesel are summarized in Table 1.

Table 1. Sources of lipase used in biodiesel production.

Source Brand Name Reference

Candida antartica Novozym® 435 [24]
Mucor miehei Lipozyme IM [25]

Thermomyces lanuginosus Lipozyme TL IM [26]
Rhizomucor miehei Lipozyme RM IM [27]

Burkholderia cepacia - [28]
Pseudomonas fluorescens - [29]

Candida rugose - [30]
Rhizopus oryzae - [31]

Penicillium expansum - [32]
Geotrichum sp. - [33]

- Not commercialized.

The major drawback to the industrial production of enzymatic biodiesel is the high
cost of the enzymes. However, the enzymatic process can use cheap and low-quality
feedstock (waste frying oil, non-edible oil, waste restaurant oil, yellow grease, lard, animal
fats and algae) with high free fatty acid content, which can significantly reduce the total
production cost [34]. The cost of the immobilization support is another important issue.
Actually, many technologies have been developed for lipase immobilization, but only a
few are industrialized due to the high cost of the immobilization process (see Table 1).
Progress in the development of innovative, inexpensive immobilization techniques with
low reaction time, higher enzyme stability and activity and low-cost supports need to be
developed for large-scale enzymatic biodiesel production.

3. Mesoporous Silica Supports

Mesoporous silicates are promising candidates for enzyme immobilization with re-
spect to the requirements for enzyme supports, such as large surface area, narrow pore size
distribution, well-defined pore geometry, thermal and mechanical stability, sufficient func-
tional groups for enzyme attachment (hydroxyl-groups which can be activated allowing
for linking the enzyme [35,36]), water insolubility, regenerability and toxicological safety.
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3.1. Sol-Gel Silica

The sol-gel process is a main technique for producing mesoporous silica supports,
which as highlighted above are suited for enzyme immobilization. The sol-gel process
is carried out at low temperature close to room temperature using organometallic com-
pounds, solvent and catalyst. It is based on hydrolysis and polycondensation reactions
of organometallic compounds [37]. Through these reactions, the system evolves from
a colloidal solution called sol into an integrated, semi-solid three-dimensional structure
network called a gel [38], in which the liquid phase (solvents, catalysts) are trapped in the
interstices. Then, the gel goes through two more processes: ageing and drying. The latter
can be carried out at room temperature, producing a xerogel [39], or using a gas (such as
CO2) in supercritical conditions, obtaining an aerogel [40]. Aerogels and xerogels have a
dendritic microstructure, in which spherical particles of an average size of 2–5 nm are fused
to form a cluster. These clusters form a highly porous three-dimensional structure with
nearly fractal-shaped chains, with pores smaller than 100 nm. The average size and density
of the pores can be controlled during the manufacturing process. They have average pore
diameters in the mesopore (2–50 nm) and/or micropore (≤2 nm) range, and surface areas
ranging from about 100 to 1000 m2 g−1. This means that about half of the atoms in the gel
are on the surface. Thanks to mild conditions of sol-gel synthesis, it can be used for one-pot
enzyme entrapment, as illustrated in Figure 2. The advantages of this method are related
to both the features of the support, such as uniformity, high purity, large surface area and
great pore volume, and to the mild processing conditions, which should not cause any
injury to the enzyme [41–43]. After entrapment, the enzyme is not attached to the support,
but the support acts as a physical barrier to its diffusion.
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An alternative method for support enhancement in enzymatic immobilization is the
modification of a silica surface support using an ionic liquid as an additive. The application
of an additive in the gel structure has the aim to increase surface area and pore size
and to enhance the protective hydration layer on the enzyme, which prevents enzyme
denaturation in the presence of alcohol [44–46]. Protic ionic liquids (PIL) are the result of
the combination of an acid and a Brønsted base, presenting high proton mobility, low cost,
easy synthesis and low toxicity. It was found that the surface modification of silica with
PIL for lipase immobilization by encapsulation positively influences the catalytic efficiency
of the different lipases [45,47].
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3.2. Ordered Mesoporous Silica (OMS)

Many ordered mesoporous silica materials have been synthesized since the Mobile oil
company first discovered them in 1992 [48,49]. These new materials (M41S) showed a pore
order organization similar to zeolites, but with larger pore size. These peculiar properties
allowed new opportunities to use these materials for applications in many fields, such as
biomedical [50], catalysis [51], chemical separation and adsorption [52]. The synthesis of
this family of mesoporous materials is based on the combination of sol-gel and surfactant
(templating) sciences. The templating agent is an organic species that allows the formation
of the structure. It self-organizes, forming a crystalline lattice representing the central
structure where a material, often inorganic, nucleates and grows [53]. After the removal
of the templating structure, its geometric characteristics are replicated in the structure of
the inorganic material. The hexagonal structure MCM-41 represents the most thermally
stable member of the M41S family and the easiest to produce. It is characterized by highly
regular arrays of uniform-sized channels whose diameters are in the range of 15–100 Å.
The peculiarities of MCM-41 structure depend on the kind of templates used, the addition
of auxiliary organic compounds and the reaction parameters [54,55].

Another main family of the OMS is named Santa Barbara Amorphous no 15 (SBA-15),
discovered in 1998 [56]. The templating agent used is amphiphilic triblock copolymers in
strong acidic media. SBA-15 has pore size in the range between 5 to 30 nm, possesses a
regular hexagonal array of pores with uniform diameter and has a high thermal, mechanical
and chemical stability. Particularly important for lipase immobilization is the tuneable
pore size in the 5–10 nm range. This renders SBA-15 an ideal support for successful
immobilization of lipase, since the pore size can be adjusted to match the molecular
diameter of the lipase under study. For physical adsorption, this is particularly relevant,
since too big pore size may lead to the leaching of lipases from the channels, causing
a decrease in enzyme loading and instability [57,58]. In addition, the thick silica walls,
peculiar to this material, makes the SBA-15 stable and resistant. The presence of abundant
surface hydroxyl promotes an easy functionalization with hydrophobic groups for lipase
adsorption or with reactive groups for covalent linkage.

3.3. Mesocellular Silica Foam

Among all possible forms of mesoporous silica particles (MSPs), mesostructured
cellular foams (MCF) are suitable for enzyme immobilization thanks to their structure
formed by uniform-sized, large spherical cells interconnected by windows, which create a
continuous 3D pore system [59]. This three-dimensional network allows a better substance
diffusion than a 2D pore structure of conventional MPSs such as SBA-15 or MCM-41 [60].
MCF silica has pore size in the range of 15–50 nm and windows of 10–15 nm. Pore and
window sizes of MCF are readily tuneable by adjusting surfactant (template), swelling
agent and silica source ratio. The MCF materials resemble aerogels, with their well-
defined pore and wall structure, thick walls and high hydrothermal stability, but are easier
to synthesize. MCF with large mesopores was prepared in aqueous hydrochloric acid
using dilute solutions of the non-ionic block copolymer surfactant Pluronic P123, with
1,3,5-trimethylbenzene (TMB) as the organic swelling agent and tetraethyl orthosilicate
(TEOS) as the silica precursor [59]. A comparative study on mesocellular silica foam
with different template removal methods and their effects on enzyme immobilization was
carried out [61]. They have prepared MCFs using two different template removal methods:
calcination and solvent extraction. The first led to a reorganization of the pores, with
a more orderly organized pore structure and increased BET surface area due to porous
structure collapse. The solvent extraction method allowed for better preserving the random
3D micropore structure.

MCFs are suitable supports for enzyme immobilization. In particular, they are suited
for adsorption and crosslinking of the adsorbed enzyme to form cross-linked enzyme
aggregates (CLEAs). In fact, the large pores are able to adsorb a large amount of enzyme
molecules inside each cavity. Once cross-linked, the CLEAs can no longer move out of the
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cavity due to the smaller size of the interconnecting windows. Thanks to this, the desorption
of the enzyme from the support is minimized and at the same time, the interconnected
structure allows an easy diffusion of reagents and products. MCFs were used to host the
CLEAs of glucose oxidase in the cellular pores, resulting in the improvement of catalytic
performance of immobilized enzyme [62]. The hydrophobic modified MCFs can provide a
promising platform for lipase CLEAs.

3.4. Biomimetic Silica

Biomimetic silica is the in vitro silica formation through reactions similar to those
occurring in vivo. In nature, biomineralization provides a mechanism by which biological
organisms generate hard composite materials (e.g., shells) by using proteins as scaffolds
for inorganic materials. Biosilicification is the formation of silica particles that occurs, for
example, in diatoms. Biosilica nanoparticles can be synthesized using a silica precursor
and a wide range of cationic amine-rich molecules as catalyst, i.e., polyethyleneimine (PEI).
The reaction rapidly forms a network of porous silica nanospheres that entraps the catalyst
and any other material that is contained within the reaction mixture. Hence, the procedure
can be used as a mechanism for enzyme entrapment, thanks to the mild reaction conditions
(neutral pH and room temperature in aqueous environment) [63]. These conditions are
compatible with the retention of enzyme activity. Multiple enzymes have been entrapped
with this method [64].

3.5. Silica Nanoflowers

MSPs with radial-oriented mesochannels and a conical pore shape are ideal scaffolds
for catalytic applications, as the pore structures are accessible by large molecules. Increases
in the center radial structure and pore size enable molecules to move easily into or out of the
pores and promote loading and mass transport [65]. These factors can enhance the catalytic
performance of immobilized enzymes [66]. These stellate structures are synthesized using
the microemulsion technique. Zhang et al. [67] synthesized monodisperse MSPs smaller
than 130 nm. The synthesis was performed with a templating sol-gel technique using
cetyltrimethylammonium (CTA+) as the templating surfactant and small organic amines
(SOAs) as the mineralizing agent. MSPs with tunable porosity of stellate, raspberry or
worm-like morphologies were obtained by varying the nature and the concentration of
SOA together with an appropriate choice of the cationic surfactant counter-ion. Fibrous
silica nanospheres (KCC-1) were prepared using the microwave-assisted hydrothermal
technique [68]. The fabrication involved microemulsion formation using cetylpyridinium
bromide (CPB) or cetyltrimethylammonium bromide (CTB) as a template and urea in a
mixture of cylcohexane, pentanol and water. Nanoparticles of uniform size (from 250 to
450 nm) were obtained. The KCC-1 nanospheres’ internal structure was composed of
well-defined and ordered fibers coming out from the center of the particles and distributed
uniformly in all directions. Dendrimeric fibers arranged in three dimensions formed
the spheres, which can allow easy access to the available high surface area. Wrinkled
silica nanoparticles (WSNs) with a radial structure, with silica fibers widening radially
outward, have been synthesized using a bi-continuous microemulsion phase [69]. WSNs
exhibit a radial open pore structure, in which the pore size is maximum at the extremities,
and a hierarchical distribution of pores: each wrinkle-forming nanoparticles is a mem-
brane with a mesoporous structure. WSNs were used to immobilize cellulase [70] and
β-glucosidase [71,72]. The results demonstrated that this matrix is a very efficient support
for the physical adsorption of enzymes: its peculiar morphology created a favorable mi-
croenvironment for catalysis, reducing diffusion limitations. A TEM image of WSNs is
shown in Figure 3. The image shows spherical particles with diameters of 200–250 nm,
whose internal morphology is composed by silica fibers coming out from the center of the
particles. The silica fibers spread uniformly in all directions, forming central-radial pores,
which widen radially outward.
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3.6. Non-Surfactant Template Mesoporous Silica

The ordinary surfactants used in the synthesis of mesoporous materials are often
expensive and toxic. There have been several attempts to prepare mesoporous silica
nanoparticles using non-surfactant templates, such as D-glucose [73], kanemite [74] and
boron oxide [75]. However, the pore size of these particles was usually smaller than 4 nm,
which is not enough to adsorb bulky enzymes (i.e., lipase or cellulase) in their interior.
Recently, Gao et al. [76] synthesized mesoporous silica materials with large interconnected
mesopores with tunable pore sizes (6−13 nm) by templating with the green non-surfactant
tannic acid (TA). TA is a glycoside polymer of gallic acid present in a large part of plants. TA
is cheap and non-toxic, and can be easily removed without calcination, by water or ethanol
extraction. Tannic acid templated mesoporous silica nanoparticles (TA-MSNPs) have been
used as supports for immobilization of several enzymes, such as lysozyme and bovine
serum albumin [76], NHase [77] and β-glucosidase [78]. A TEM image of TA-MSNPs is
shown in Figure 4. The image shows quasi-spherical porous particles with a diameter of
about 250 nm.
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3.7. Spray-Drying Mesoporous Microparticles

Spray-drying is a versatile methodology for the scalable production of micron-size
particles for a broad range of applications. The production of nanostructured particles
via spray-drying is of interest because it is simple, economic and can be scaled up to ton
quantities [79]. Spray-drying is initiated by atomizing/spraying suspensions into droplets
followed by a drying process, resulting in solid particles (see Figure 5). A silica colloidal
suspension can be used as a precursor. Colloidal silica is a good precursor for spray-drying
because of its stability, its ease of dispersion in water and the possibility to control its
size at the nanometer scale. Usually, the precursor is atomized to form spherical droplets,
which contains nanometer-sized solid particles. The dispersion water is evaporated inside
a reactor, resulting in sub-micrometer-sized nanostructured particles. This technology has
also been employed to prepare enzyme catalyst supports for glucose oxidase, horseradish
peroxidase and laccase [80].

Catalysts 2021, 11, x FOR PEER REVIEW 10 of 29 
 

 

spray-drying is of interest because it is simple, economic and can be scaled up to ton 

quantities [79]. Spray-drying is initiated by atomizing/spraying suspensions into droplets 

followed by a drying process, resulting in solid particles (see Figure 5). A silica colloidal 

suspension can be used as a precursor. Colloidal silica is a good precursor for 

spray-drying because of its stability, its ease of dispersion in water and the possibility to 

control its size at the nanometer scale. Usually, the precursor is atomized to form spher-

ical droplets, which contains nanometer-sized solid particles. The dispersion water is 

evaporated inside a reactor, resulting in sub-micrometer-sized nanostructured particles. 

This technology has also been employed to prepare enzyme catalyst supports for glucose 

oxidase, horseradish peroxidase and laccase [80]. 

 

Figure 5. Spray-drying of a colloidal silica dispersion. 

3.8. Core-Shell Magnetic Silica Particles 

In recent decades, magnetic nanoparticles have drawn great attention for practical 

application as support for enzyme immobilization. Magnetic particles can be easily and 

quickly separated from the reaction medium by applying an external magnetic field, fa-

cilitating the separation of the biocatalyst even in complex and viscous reaction medium, 

avoiding labor-intensive operations of filtration or centrifugation. However, the bare 

non-porous magnetic nanoparticles could be damaged due to erosion caused by un-

wanted interactions with reacting agents [81]. The grafting of a silica layer on magnetic 

nanocores creates silica composite magnetic nanoparticles, which can prevent the above 

negative effect [82]. Moreover, the integration of functionalized mesoporous silica mate-

rials with magnetically responsive magnetite composites can form porous magnetic 

nanocomposites, which have the advantages of both mesoporous silica and magnetic 

nanoparticles. In fact, the mesoporous silica-coated magnetic nanoparticles possess large 

surface areas, and the mesoporous silica shell can be functionalized easily by orga-

nosilanes with different functional groups to generate chemical bonds with enzymes 

during the immobilization process. There are several reports in the literature reporting 

fabrication of superparamagnetic (Fe3O4) core and silica shell [83]. Accordingly, the 

magnetic core–shell structured material seems to be an excellent carrier for the immobi-

lization of lipase [84]. 

4. Lipase Immobilization 

Enzyme immobilization refers to the confinement of the polypeptide molecule on-

to/within an insoluble support with retention of the enzyme catalytic activity. Techniques 

for the immobilization are broadly classified into two categories: physical methods (ad-

sorption and entrapment) and chemical methods (covalent binding and cross-linking). 

Each of these methods has its advantages and problems. Lipases are mainly immobilized 

by adsorption and covalent coupling [85], although there is no lack of entrapment studies 

in the literature [86]. Nevertheless, the practical usage of this technique is rather limited. 

This is because lipases carry out their action mainly at the interface between an aqueous 

Figure 5. Spray-drying of a colloidal silica dispersion.

3.8. Core-Shell Magnetic Silica Particles

In recent decades, magnetic nanoparticles have drawn great attention for practical
application as support for enzyme immobilization. Magnetic particles can be easily and
quickly separated from the reaction medium by applying an external magnetic field, fa-
cilitating the separation of the biocatalyst even in complex and viscous reaction medium,
avoiding labor-intensive operations of filtration or centrifugation. However, the bare non-
porous magnetic nanoparticles could be damaged due to erosion caused by unwanted
interactions with reacting agents [81]. The grafting of a silica layer on magnetic nanocores
creates silica composite magnetic nanoparticles, which can prevent the above negative
effect [82]. Moreover, the integration of functionalized mesoporous silica materials with
magnetically responsive magnetite composites can form porous magnetic nanocomposites,
which have the advantages of both mesoporous silica and magnetic nanoparticles. In
fact, the mesoporous silica-coated magnetic nanoparticles possess large surface areas, and
the mesoporous silica shell can be functionalized easily by organosilanes with different
functional groups to generate chemical bonds with enzymes during the immobilization
process. There are several reports in the literature reporting fabrication of superparam-
agnetic (Fe3O4) core and silica shell [83]. Accordingly, the magnetic core–shell structured
material seems to be an excellent carrier for the immobilization of lipase [84].
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4. Lipase Immobilization

Enzyme immobilization refers to the confinement of the polypeptide molecule onto/
within an insoluble support with retention of the enzyme catalytic activity. Techniques for
the immobilization are broadly classified into two categories: physical methods (adsorption
and entrapment) and chemical methods (covalent binding and cross-linking). Each of
these methods has its advantages and problems. Lipases are mainly immobilized by
adsorption and covalent coupling [85], although there is no lack of entrapment studies in
the literature [86]. Nevertheless, the practical usage of this technique is rather limited. This
is because lipases carry out their action mainly at the interface between an aqueous and an
oil phase. Entrapment produces restrictions of mass transfer to the lipase active site.

Enzyme immobilization allows the reuse of the biocatalyst. This aspect is very impor-
tant in the development of industrial processes, given the high cost of enzymes. It is also
possible to develop continuous processes, have a greater ease of separation of products (less
or not contaminated by proteinaceous material) and an improvement in the characteristics
of the enzyme itself, such as thermostability, pH stability and activity [87]. Thermal stability
is also an important aspect, as the reaction rate increases with increasing temperature, but
enzymes undergo thermal denaturation with loss of their catalytic activity.

4.1. Adsorption

Immobilization by adsorption relies on weak interaction between the enzyme and the
support matrix, such as hydrogen bonds, electrostatic forces and hydrophobic interactions.
It is the simplest method of enzymatic immobilization, as it only requires the adsorbate
and the adsorbent to be put into contact at mild temperatures and without the use of
chemical reagents. The activity of the immobilized enzyme is often preserved, and the
support can be regenerated. However, due to the weak interactions between the enzyme
and the support, leaching of the enzyme into the bulk solution is possible. For lipases,
the adsorption technique is advantageous to work in non-aqueous reaction environments,
since the solubility of lipase in organic solvent is very low and its desorption from the
matrix can be neglected [88]. Lipases are most often immobilized on hydrophobic supports.
In aqueous solution, the equilibrium between the open and the closed form of lipase is
shifted toward the closed form. Lipases recognize hydrophobic surfaces as if they were at
the interface with their own substrate, the oil, and undergo interfacial activation during
immobilization, pushing the equilibrium toward the open active form (see Figure 6a).
Furthermore, due to the mechanism of interfacial activation, lipases tend to give dimers in
aqueous solution, in equilibrium with the monomer, through the interaction of the active
centers of two molecules in the open form [89]. The dimeric form is less active than the
monomeric one. The immobilization on hydrophobic supports produces a shift of the
dimer/monomer equilibrium of the lipase towards the monomer form, which is readily
adsorbed in the open form (see Figure 6b). For these reasons, most lipases show a large
increase in activity when immobilized on hydrophobic support [90,91].

For biodiesel production, the use of hydrophobic support is desirable. In fact, the
accumulation of hydrophilic compounds during the transesterification reaction, i.e., glyc-
erol, can lead to enzyme deactivation. This effect can be reduced using hydrophobic
supports [17].

Porous materials are superior sorbents compared to non-porous ones thanks to their
larger surface area, provided that the size and morphology of the pores can easily ac-
commodate the enzyme but also allow the easy diffusion of the substrate [92]. In this
regard, mesoporous silica is an excellent material for the immobilization of lipase due to
the possibility of tailoring the morphology and size of the pores. However, mesoporous
silica is quite hydrophilic. Hence, lipase immobilization requires the functionalization of
the silica particles with hydrophobic moieties. Muchor Miehei (Mm-L) and Candida rugosa
(CRL) lipase were immobilized on unfunctionalized SBA-15 with similar pore size (8.2 and
8.9 nm, respectively) at pH 6 [93] and 3 [94], respectively. An almost complete conversion
of vegetable oil into biodiesel was obtained in 40 and 68 h, respectively. It is possible that
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the lipase in acid conditions is already partially deactivated, despite that the adsorption at
pH 3 maximizes the immobilization yield due to the establishment of major electrostatic
interactions. In fact, it has been shown that when the adsorption is performed at pH 3
and 10, the lipase activity is quenched [95]. In both cases, the second reuse results in a
significant loss of activity. For Mm-L, the yield in biodiesel drops to about 50% with the
second use and to 15% with the third. For CRL, the biodiesel yield is 42% with the second
use. Better results can be obtained by functionalizing mesoporous silica with hydrophobic
moieties and finely tuning the pore size to slightly larger than lipase molecular diameter.
Octadecyl-modified mesoporous silica nanoparticles (C18-MSNs) with a high C18 content
(~19 wt %) and tunable pore sizes (1.6–13 nm) and surface area (219–349 m2 g−1) were syn-
thesized and used for adsorption of CRL [96]. Lipase loading varied from 114 to 1415 mg/g
of support. All immobilized CRLs exhibited improved activities compared with the soluble
enzyme (see Table 2), suggesting interfacial activation on/in the hydrophobic support and
the catalytic activity increased with the pore size. However, the biocatalyst with the pore
size slightly larger (4.6 nm) than the molecular size of lipase (3.3 × 4.2 × 5 nm) showed
the best stability, retaining 93% of its activity after five reuses. It was demonstrated that
hydrophobicity associated with the C18 content is the key for hyperactivation of lipase and
pore-size optimization minimized the lipase leaching.
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Table 2. Variation of activity and operational stability of C18-MSNs immobilized lipase with pore size.

Pore Diameter (nm) Specific Activity with Respect to Soluble Enzyme (times) Residual Activity after 5 Reuses (%)

1.6 4.51 11
2.0 4.39 12
4.8 5.23 93
6.9 5.70 68
8.0 5.94 54
13 6.12 49
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In a following work [97], the same research group states that the small particle size
(about 60 nm) and the high preparation cost restrict the application of C18-MSNs in
practical catalysis reactors, such as continuous flow devices, despite the high degree of
hyperactivation. They developed mesoporous silica microspheres (MSMs) with high
hydrophobicity by spray-drying of colloidal silica followed by alkyl chain grafting. The
catalysts were optimized in terms of alkyl chain length and enzyme loading. The best
catalyst was obtained by functionalizing MSNs with octadecyl trimethoxysilane (pore size
8.6 nm and surface area 124 m2 g−1) and a loading of 100 mg/g of support. Higher lipase
loading resulted in a considerable decrease in the relative activity due to pore blocking.
The optimized catalyst displayed enzyme hyperactivity of 1.14 times the activity of soluble
lipase. When applied to a continuous transesterification reactor for biodiesel production, it
demonstrated a high conversion of 99% and a good activity retention of 64% after 24 h.

Lipase from Thermomyces lanuginosus (TLL) was immobilized by adsorption on core-
shell mesoporous silica functionalized with ionic silsesquioxanes with long-chain counter-
ions (stereate) [98]. The grafting method was employed to incorporate the ionic silsesquiox-
ane containing the positively charged 1,4-diazoniabicyclo[2.2.2]octane group with chloride
as a counter-ion. The hydrophobic moiety (stearate anion) was incorporated by ion ex-
change. The functionalized support is schematized in Figure 7. The modification with the
ionic silsesquioxane and stearate led to a shift in pore size from 9.3 to 8.0 nm, still enough
to accommodate TLL of about 5 nm molecular diameter. The surface area shifted from
143 to 61 m2 g−1. The immobilization yield increased from 36% to 97.4%. Oddly, lipase
immobilized on the functionalized support did not show hyperactivation, whereas lipase
immobilized on the unfunctionalized hydrophilic support did. The hyperactivation on
the hydrophilic support was attributed to the weak interactions between lipase and the
silica surface, allowing better preservation of enzyme conformation and easy substrate
access to the catalytic site, whereas the hydrophobicity might hamper substrate access to
the catalytic site of the enzyme. Nevertheless, the hydrophobic support showed a higher
immobilization yield (97% vs. 36%) and better reusability, retaining 76% of lipase initial
activity after three reuses vs. 50% after two reuses of lipase on the hydrophilic support.
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Functionalization of silica aerogel with hydrophobic protic ionic liquid (aerogel-IL)
was also explored [99]. Lipase from Burkholderia cepacia (BCL) was immobilized by adsorp-
tion in N-methyl pentanoate monoethanolamine-modified silica aerogel. The incorporation
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of the ionic liquid was performed during the sol-gel synthesis process. The performance
of the biocatalyst was assayed in the hydrolysis of olive oil emulsion and compared with
that of a biocatalyst prepared without the addition of ionic liquid. The aerogel-IL support
showed higher yield of immobilization, due to the increase of the surface area from 81
to 322 m2 g−1, pore volume size from 0.04 to 0.8 cm3 g−1 and pore diameter from 1.1 to
5.0 nm, and the probable increase in the hydrophobic nature of aerogel due the ionic liquid
chemical modification with respect to the unmodified support. BCL immobilized on the
aerogel-IL support aerogel increased the reaction rate by about 23.6%. This increase was
attributed to the interfacial activation of the lipase retained in the support, maintaining the
active site more exposed to the substrate. The optimum temperature of both immobilized
biocatalysts shifted from 50 ◦C of free lipase to 40 ◦C, resulting in a lower activation energy
of the enzyme.

As already mentioned, one of the problems affecting the immobilization by adsorption
of the lipase, especially for use in aqueous solvents, is the desorption of the enzyme from
the support. This produces a decrease in the activity of the immobilized biocatalyst and the
contamination of the reaction environment with proteinaceous material [100]. The situation
improves when the lipase is immobilized on hydrophobic materials and the biocatalyst
designed to work in an organic environment. However, even in these circumstances, given
the weak interactions involved, detachment of the protein from the support cannot be
ruled out, especially considering that lipase-catalyzed reactions often lead to products with
surfactant properties, able to release the enzyme from the support [101]. A possible strategy
to prevent enzyme leaching is the cross-linking of the adsorbed enzyme. This methodology
proceeds in two-steps: adsorption and subsequent enzyme cross-linking, which effectively
prevents the leaching of cross-linked enzyme aggregates (CLEAs) from the porous support.
Obviously, the pores of the support must be large enough to accommodate several enzyme
molecules to be cross-linked. Among protein cross-linkers, glutaraldehyde (GA) has been
extensively used due to low cost and easy availability [102]. However, GA is toxic and often
causes the loss of enzymatic activity. Different macromolecular cross-linkers can be used to
replace GA in the preparation of CLEAs. Lipase from Rhizopus chinensis was immobilized
onto octyl-modified mesocellular foams (MCFs-C8) with pore size of about 32 nm and
pore windows of 9.8 nm [103]. Surface area was 1174 m2 g−1. The immobilization was
carried out via a two-step process of enzyme adsorption and cross-linking. Oxidized gum
Arabic (Scheme 3) was used as a cross-linker to improve the catalytic performance in non-
aqueous phase. The catalytic performance of the biocatalyst was compared with those of
simply adsorbed lipase and lipase adsorbed and cross-linked with GA. All samples showed
hyperactivation with respect to soluble lipase, but the biocatalyst prepared with oxidized
gum Arabic showed the highest esterification activity, thermal stability in n-heptane and
activity recovery (70% after 5 reuses).
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The increased activity was attributed to the polyhydroxy structure of the macro-
molecular polysaccharide, which preserves the hydration layer of lipase, essential for its
catalytic activity [104]. In addition, gum Arabic probably affects the interfacial activation
of lipase [105]. Improved thermal stability was explained by the confinement effect, i.e.,
the enhanced enzyme stability in crowded nano-environment: if confined in nanopore
that mimics the crowded environment in cells, proteins can give enhanced stability [106].
Similar results were obtained for Candida antartica lipase (CALB) physically adsorbed
into MCFs-C8 and cross-linked with oxidized sodium alginate, employed for biodiesel
production through the transesterification of soybean oil with methanol [107]. A scheme of
lipase adsorption and cross-linking in MCF is shown in Figure 8.

Catalysts 2021, 11, x FOR PEER REVIEW 15 of 29 
 

 

 

Figure 8. Lipase adsorption and cross-linking in MCF. 

Other research groups have dealt with solving diffusion limitations using mesopo-

rous silica supports with particular pore geometries. Actually, catalysis with immobi-

lized enzymes suffers various diffusion limitations imposed by substrates and products. 

The substrate has to reach the active site of the enzyme by diffusion and at the same time, 

the products should diffuse away from the active site, assisting further binding of sub-

strate [108]. For porous materials, the situation is more complex since the reactants and 

products have to diffuse through the pores of the support. Jiang et al. [109] synthesized 

hierarchically ordered macroporous/mesoporous silica (3DOM/m-S) through the du-

al-templating method using polystyrene colloidal crystals as the hard template and am-

phiphilic triblock copolymers P123 as the soft template. The achieved 3DOM/m-S pos-

sesses ordered macropores of 400 nm with interconnecting windows of about 100 nm and 

mesopores of 5.1 nm. Surface area was 245.5 m2 g−1. The macropores can provide efficient 

mass transportation, and the mesopores can create an additional surface area for enzyme 

loading and enzyme–substrate interactions. Actually, it was found that Candida antartica 

lipase (CALB, 3 × 4 × 5 nm molecular size) was mostly immobilized inside the mesopore 

channels rather than on the external surface (loading 20 mg/g of support). The matching 

between the pore size and the CALB molecular size provided strong thermal stability to 

the biocatalyst, since the conformational mobility of lipase molecules is restricted by the 

interactions with the channel walls. The immobilized and soluble CALB were used in the 

esterification between ethanol and fatty acids with different chain length (C6–C18) in 

cyclohexane. For soluble CALB, the maximum conversion was approximately 70%, while 

for the immobilized one, it was about 90%. The higher conversions could be ascribed to 

enhanced stability and better dispersibility of immobilized CALB, while the free CALB 

aggregated in organic solvent, which caused diffusion limitations. Compared with CALB 

immobilized in ordered macroporous materials, the immobilized biocatalyst showed 

better reusability, retaining 75% conversion vs. 35% after ten reuses. The decrease of 

conversion rate in the macroporous support could be attributed to the loss of lipase 

molecules during centrifugation and washing procedures. These results confirmed that 

CALB immobilized in 3DOM/m-S, whose pore size matches the molecular size of CALB, 

could protect the enzyme from mechanical inactivation caused by shearing force and 

prevent enzyme leaching compared with macropore surface adsorption. 

Pang et al. [110] immobilized Candida rugosa lipase (CRL) on wrinkled silica nano-

particles having highly ordered, radially oriented mesochannels. The synthesis was per-

formed using TEOS as a source of silica, cetyltrimethylammonium bromide (CTAB) as a 

surfactant and polyvinylpyrrolidone (PVP) as a stabilizing agent of particle growth. Par-

ticle size (240 to 540 nm), specific surface areas (490 to 634 m2 g−1) and pore size 

(7.95–10.01 nm) were varied using different molar ratios of CTAB to PVP. The activity of 

the immobilized CRL was higher than the free one in all cases. The better performance 

Figure 8. Lipase adsorption and cross-linking in MCF.

Other research groups have dealt with solving diffusion limitations using meso-
porous silica supports with particular pore geometries. Actually, catalysis with immobi-
lized enzymes suffers various diffusion limitations imposed by substrates and products.
The substrate has to reach the active site of the enzyme by diffusion and at the same
time, the products should diffuse away from the active site, assisting further binding of
substrate [108]. For porous materials, the situation is more complex since the reactants
and products have to diffuse through the pores of the support. Jiang et al. [109] synthe-
sized hierarchically ordered macroporous/mesoporous silica (3DOM/m-S) through the
dual-templating method using polystyrene colloidal crystals as the hard template and
amphiphilic triblock copolymers P123 as the soft template. The achieved 3DOM/m-S pos-
sesses ordered macropores of 400 nm with interconnecting windows of about 100 nm and
mesopores of 5.1 nm. Surface area was 245.5 m2 g−1. The macropores can provide efficient
mass transportation, and the mesopores can create an additional surface area for enzyme
loading and enzyme–substrate interactions. Actually, it was found that Candida antartica
lipase (CALB, 3 × 4 × 5 nm molecular size) was mostly immobilized inside the mesopore
channels rather than on the external surface (loading 20 mg/g of support). The matching
between the pore size and the CALB molecular size provided strong thermal stability to
the biocatalyst, since the conformational mobility of lipase molecules is restricted by the
interactions with the channel walls. The immobilized and soluble CALB were used in
the esterification between ethanol and fatty acids with different chain length (C6–C18) in
cyclohexane. For soluble CALB, the maximum conversion was approximately 70%, while
for the immobilized one, it was about 90%. The higher conversions could be ascribed to
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enhanced stability and better dispersibility of immobilized CALB, while the free CALB
aggregated in organic solvent, which caused diffusion limitations. Compared with CALB
immobilized in ordered macroporous materials, the immobilized biocatalyst showed better
reusability, retaining 75% conversion vs. 35% after ten reuses. The decrease of conversion
rate in the macroporous support could be attributed to the loss of lipase molecules during
centrifugation and washing procedures. These results confirmed that CALB immobilized
in 3DOM/m-S, whose pore size matches the molecular size of CALB, could protect the en-
zyme from mechanical inactivation caused by shearing force and prevent enzyme leaching
compared with macropore surface adsorption.

Pang et al. [110] immobilized Candida rugosa lipase (CRL) on wrinkled silica nanoparti-
cles having highly ordered, radially oriented mesochannels. The synthesis was performed
using TEOS as a source of silica, cetyltrimethylammonium bromide (CTAB) as a surfactant
and polyvinylpyrrolidone (PVP) as a stabilizing agent of particle growth. Particle size
(240 to 540 nm), specific surface areas (490 to 634 m2 g−1) and pore size (7.95–10.01 nm)
were varied using different molar ratios of CTAB to PVP. The activity of the immobilized
CRL was higher than the free one in all cases. The better performance was attributed
to the radially aligned mesopores of WSNs, allowing dispersing active catalytic sites on
large internal surface and pores. On the other hand, it was found that the large pore
entrance of wrinkled silica reduces the pore block and alleviates diffusion limitations [71].
Burkholderia cepacia lipase (BCL) was immobilized on tannic acid template mesoporous
silica (TA-MSN) with mean pore size of 10.1 nm and surface area of 447 m2 g−1 [111].
This support, with highly large interconnected mesoporous structure, could be more ben-
eficial for adsorption or heterogeneous catalysis than surfactant-templated MSNs with
their non-interconnected cylindrical or dendritic pores, since large interconnected pores
would provide more accessible internal volume. The enzyme (loading 34 mg/g of support)
showed improved thermal stability. Most of the BCL was immobilized inside the pores of
the TA-MSN, which provided a sheltered position that rigidified the external backbone of
the enzyme molecules, protecting them from thermal damage. The biocatalyst was reused
15 times with minimal loss of conversion capacity (92.39%).

Xiang et al. [112] have synthesized a new type of inorganic–organic nanocomposite
material as efficient support for the immobilization of porcine pancreas lipase (PPL). It
was obtained combining chitosan (CS) and mesoporous material SBA-15 via functional
ionic liquid as the bridging agent between them (SBA-CIL-CS), as shown in Figure 9. The
obtained support had a pore size of 6.19 nm and surface area of 45.38 m2 g−1. PPL was
immobilized by adsorption on this support, with a loading of 132 mg/g of support.
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The results indicated that SBA-CIL-CS had high immobilization yield and excellent
properties, including pH and temperature endurance, activity, stability and reusability
(above 82% retention of initial activity after ten cycles). Compared to the soluble enzyme,
the relative activity of SBA-CIL-CS-PPL increased to 8.3 times, and 2.3 times more than
that of SBA-PPL. This inorganic carrier provided with natural ingredients can protect the
secondary structure at the active site of PPL, hindering the conformation change of the
enzyme during the immobilization process [101]. With the combination of the advantages
of inorganic mesoporous material and natural polymer material, SBA-CIL-CS proved an
efficient immobilization support.

A summary diagram of the commented paper is reported in Table 3.

Table 3. Support used and catalyzed reactions for lipase immobilized by adsorption within mesoporous silica particles.

Support Reaction Reactants Solvent Reference

SBA-15 Transesterification Rapeseed oil + methanol - [93]
SBA-15 Transesterification Cotton seed oil + methanol - [94]

C18-MSN Hydrolysis 4-nitrophenyl palmitate (pNPP) Water [96]
C18-Silica microspheres Transesterification Corn oil + methanol - [97]

Aerogel-IL Hydrolysis
Transesterification

Olive oil emulsion
Coconut oil + ethanol - [99]

Gum Arabic/MCF Esterification n-caprylic acid+ethanol Heptane [103]
Sodium alginate/MCF Transesterification Soybean oil + methanol - [107]

Core shell magnetic silica Hydrolysis 4-nitrophenyl palmitate (pNPP) Water/isopropanol [98]
Hierarchically ordered

macro/meso Esterification Fatty acid + alcohols Cyclohexane [109]

Wrinkled silica Esterification Oleic acid + methanol - [110]

TA-MSN Esterification
Transesterification

Oleic acid + ethanol
Soybean oil + ethanol

n-hexane
n-hexane [111]

SBA-15/Chitosan Hydrolysis Triacetin Water [112]

4.2. Covalent Immobilization

Covalent immobilization is the most common method of lipase immobilization on
silica nanoparticles. It involves the formation of a chemical bond between the enzyme and
the support. The advantages of this method are the increased lipase stability, increased
recyclability and negligible desorption of the enzyme from the support. The enzyme is
generally bonded to the surface through one or more sites. However, the activity of lipase
is not always retained following covalent immobilization. The ideal immobilization of
an enzyme should occur in such a way that it does not destroy the structure of the en-
zyme nor hinder diffusion of the substrate and product to and from the active site. Silica
materials do not possess reactive groups for direct coupling with the enzyme, but rather
hydroxyl-groups, which have to be activated. The silica surface can be modified by bi-
functional agents or spacer arms (epichlorohydrin, glutaraldehyde, glyoxal, formaldehyde,
carbodiimide, ethylenediamine, glycidol, carbonyldiimidazole and others), their function
being to promote a strong attachment between the support (silanized or otherwise) and
the immobilized enzyme. Bifunctional agents may interact with the groups present on
the enzyme, such as hydroxyl, mercapto or amine groups, allowing a larger conformation
flexibility for the immobilized system [35,36]. The most common method of activation is
the introduction of amino groups on the silica surface, followed by functionalization with
reactive groups. A well-established procedure involves the reaction between the surface
hydroxyls with (3-Aminopropyl)triethoxysilane (APTES) and the subsequent reaction with
glutaraldehyde (GA). GA forms a link with primary amino groups of the functionalized
silica nanoparticles and a Schiff base linkage between its aldehyde group and the termi-
nal amino group of lipase, as shown in Scheme 4. Amine groups can be introduced by
post-synthesis grafting, or during the synthesis, for example by using a mixture of TEOS
and APTS.
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Scheme 4. Covalent immobilization of lipase on APTES/GA-activated silica surface.

Other functionalization methods consist in the grafting of siloxanes that contain epoxy
groups, for example 3-glycidyloxypropyl trimethoxysilane (3-GPTMS). Babaki et al. [113]
covalently immobilized lipases from Candida antarctica (CALB), Thermomyces lanuginosus
(TLL) and Rhizomucor miehei (RML) onto SBA-15, epoxy-functionalized using 3-GPTMS.
The functionalization of SBA-15 and the immobilization of the three lipases were carried
out in one step, as reported in Figure 10. The prepared biocatalysts SBA-CALB, SBA- RML
and SBA-TLL had enzymatic loading of 36, 36 and 38 mg/g of support, respectively. The
enzyme derivatives were used for transesterification of canola oil to fatty acid methyl esters
(FAME). All three enzymes were immobilized in high yield onto the modified support.
Immobilization onto SBA strongly increased the enzyme thermal stability and methanol
tolerance compared to that of the soluble enzymes. Compared to other chemical or physical
immobilization methods on the SBA-15 support, epoxy-functionalized silica resulted in
higher catalytic activity and reusability. SBA-TLL, SBA-CALB and SBA-RML showed
operational stability up to 20, 14 and 7 runs, respectively.

Catalysts 2021, 11, x FOR PEER REVIEW 18 of 29 
 

 

 

Scheme 4. Covalent immobilization of lipase on APTES/GA-activated silica surface. 

Other functionalization methods consist in the grafting of siloxanes that contain 

epoxy groups, for example 3-glycidyloxypropyl trimethoxysilane (3-GPTMS). Babaki et 

al. [113] covalently immobilized lipases from Candida antarctica (CALB), Thermomyces la-

nuginosus (TLL) and Rhizomucor miehei (RML) onto SBA-15, epoxy-functionalized using 

3-GPTMS. The functionalization of SBA-15 and the immobilization of the three lipases 

were carried out in one step, as reported in Figure 10. The prepared biocatalysts 

SBA-CALB, SBA- RML and SBA-TLL had enzymatic loading of 36, 36 and 38 mg/g of 

support, respectively. The enzyme derivatives were used for transesterification of canola 

oil to fatty acid methyl esters (FAME). All three enzymes were immobilized in high yield 

onto the modified support. Immobilization onto SBA strongly increased the enzyme 

thermal stability and methanol tolerance compared to that of the soluble enzymes. 

Compared to other chemical or physical immobilization methods on the SBA-15 support, 

epoxy-functionalized silica resulted in higher catalytic activity and reusability. SBA-TLL, 

SBA-CALB and SBA-RML showed operational stability up to 20, 14 and 7 runs, respec-

tively. 

 

Figure 10. Lipase immobilization on epoxy-functionalized SBA-15. 

The application of magnetic nanoparticles in enzyme immobilization has received a 

great deal of attention due to the cheap and easy synthesis and better enzyme perfor-

mance in recovery and reuse [114]. Core–shell structures of magnetic mesoporous silica 

that contain a superparamagnetic core and a large surface area provide an improved 

support system with high capacity and dispersion with external magnetic field [115]. 

Mehrasbi et al. [116] covalently immobilized lipase from Candida antarctica (CALB) on 

functionalized magnetic nanoparticles to catalyze biodiesel synthesis. Core–shell nano-

Figure 10. Lipase immobilization on epoxy-functionalized SBA-15.



Catalysts 2021, 11, 629 19 of 29

The application of magnetic nanoparticles in enzyme immobilization has received a
great deal of attention due to the cheap and easy synthesis and better enzyme performance
in recovery and reuse [114]. Core–shell structures of magnetic mesoporous silica that con-
tain a superparamagnetic core and a large surface area provide an improved support system
with high capacity and dispersion with external magnetic field [115]. Mehrasbi et al. [116]
covalently immobilized lipase from Candida antarctica (CALB) on functionalized magnetic
nanoparticles to catalyze biodiesel synthesis. Core–shell nanoparticles were synthesized
by coating Fe3O4 nanoparticles, prepared by co-precipitation method, with silica shell
(Fe3O4@SiO2). Functionalization was obtained using the bifunctional linker 3-GPTMS. The
immobilization of CALB was carried out in extremely mild conditions (pH 7.0, 25 ◦C). The
biocatalyst was used for the conversion of waste cooking oil with methanol to FAMEs. The
protein binding efficiency on functionalized Fe3O4@SiO2 was calculated as 84%, preserving
97% of specific activity of the soluble enzyme, and a significant improvement of its thermal
stability and methanol tolerance compared to the soluble enzyme was observed. Moreover,
the effect of tert-butanol and water adsorbent addition on the FAMEs yield was evaluated
and the methyl ester content reached nearly complete conversion. Water adsorbent was
added since the esterification of free fatty acids present in the oil produce water in the
reaction medium. Excess water in the reaction medium can cause the aggregation of the
enzyme, reducing its catalytic activity.

Ali et al. [117] have covalently immobilized Candida rugosa lipase (CRL) on two kinds of
radially oriented mesochannels: yolk–shell microspheres represented as Fe3O4@SiO2@Hollow
KCC (Y.S-1) and Fe3O4@SiO2@Hollow mSiO2 (Y.S-2). The yolk–shell mesoporous fibrous
(Y.S-1) and non-fibrous (Y.S-2) supports were built through a controllable stepwise interface
deposition and surfactant-templating co-assembly process, reported in Figure 11. The
obtained multifunctional microspheres possess highly accessible mesoporous channels
(20–50 nm), high surface area (600–400 m2/g) and large magnetization (25–29.5 emu g−1).
The pronounced cavity in the silica shell leaves the surface nanoparticle much more
accessible than in typical core–shell structures, and the thin and highly porous silica walls
facilitate encapsulation. After amino functionalization, CRL was immobilized using GA as
a linker. Through a simple magnetic separation, the CRL on the yolk–shells can be easily
recycled and reused without significant loss in activity, even after 15 reuses. The CRL on
Y.S-1 and Y.S-2 showed good loading (797–501 mg/g), enzyme activity of 1503 and 837 U/g
respectively, high thermal and pH stability and longer storage capability as compared to
the soluble lipase. The immobilization of lipase on yolk–shells restricted its freedom to
undergo distortion in the stable conformation, stabilizing it against denaturing for a long
period of time as compared to the soluble lipase. As can be seen, the CRL on Y.S-1 showed
the best loading, activity, thermal, pH and storage stability. This could depend on ordered
mesopore channels, radially aligned, in the outer shells of Y.S-1, which allow for hosting a
greater amount of CRL, avoiding diffusional limitation.
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The same research group [118] covalently immobilized lipase from Candida rugosa
on paramagnetic amine surface-modified mesoporous fibrous silica (Fe3O4@KCC-1-NH2).
These nanoparticles had a pore diameter of 10–20 nm and a large surface area of
370.27 m2 g−1, providing a large space for lipase loading. Covalent immobilization of
CRL was carried out using GA. The obtained biocatalyst had lipase loading of 283 mg g−1

of carrier. It showed better resistance to temperature and pH inactivation than soluble
lipase, expanding the reaction pH and temperature regions. Immobilized CRL showed
enzyme activity of 630 U g−1 and retained 89% of the initial activity after 28 days and
69% after 10 cycles. Esmi et al. [119] immobilized Rhizopus oryzae lipase (ROL) on the
mesoporous silica magnetic nanoparticles (MNPs@MS) coated with mesoporous silica (MS)
functionalized by amine and aldehyde groups. They had a surface area of 354 m2/g. The
nano-biocatalysts were used to produce fatty acid methyl esters in the transesterification
reaction of olive oil with methanol. MNPs were synthesized by using the co-precipitation
method and coated with MS by sol-gel synthesis using cetyltrimethylammonium bromide
(CTAB) as a template for mesoporous formation. ROL was immobilized on these sup-
ports via physical adsorption and covalent attachment, as reported in Figure 12. Covalent
linkages between MNPs@MS and ROL were created using both APTES and GA. The best
biocatalyst is that prepared by covalent linkage (ROL-MNPs@MS-AP-GA). This led to an
enzyme loading of 82.4%, the specific activity of 0.403 U/mg and the highest biodiesel
yield of 88.4%. This could depend on both limited steric hindrance thanks to Ga functional-
ization, which provides wider space for immobilization, and improving the mobility of the
enzyme during hydrolysis reaction due to the flexible arm of suitable length.
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Figure 12. Schematic illustration of functionalization of MNPs with APTES and GA and immobiliza-
tion of ROL.

Khoobbakht et al. [120] immobilized Burkholderia cepacia lipase onto mesoporous
silica/iron oxide magnetic core–shell nanoparticles for canola waste cooking oil (WCO)
conversion to biodiesel. The primary amino groups of microspheres were activated using
GA coupling agent for a linkage with the amino acid residue of lipase (see Figure 13). Re-
sponse surface methodology (RSM) was used to investigate the influence of the experiment
variables, consisting of immobilized lipase concentration, reaction time, methanol to WCO
molar ratio and reaction temperature, on the biodiesel yield. The obtained results predicted
maximum FAMEs content of 92% at immobilized lipase concentration of 36%, reaction
time of 25 h, methanol to WCO molar ratio of 6.2 and reaction temperature of 34 ◦C. The
biocatalyst lost only 11% of its initial activity in the third cycle of transesterification.
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Figure 13. Schematic illustration of the synthesis of lipase immobilization on superparamagnetic mesoporous silica-SPION
core–shell nanoparticles.

A great interest has evolved in enzyme covalent attachment without a cross-linking
agent, complying with the trend of green chemistry. Shao et al. [121] carried out a
green and cheap immobilization process of porcine pancreatic lipase (PPL) using three
mesoporous magnetic nanoparticles, Fe3O4@MCM-41, Fe3O4@MCM-41/CPS (CPS is 3-
chloropropyltriethoxysilane) and Fe3O4@MCM-41/APTS. They had surface areas of 73.85,
12.16 and 12.23 m2/g, respectively. PPL was immobilized onto these nanoparticles by
covalent attachment, physical adsorption and cross-linking, respectively. In Figure 14, a
schematic representation of core–shell Fe3O4@SiO2 nanoparticles’ formation and the PPL
immobilization process is reported. The catalytic studies showed that the best biocatalyst
is that obtained by covalent linking without a cross-linking agent. It was obtained by
reacting the enzyme with the CPS-functionalized support in phosphate-buffered saline
(PBS) solution at pH 7.5 and room temperature. The nitrogen of -NH2 groups of the enzyme
bind covalently to the terminal carbon atom of the propyl, with Cl− being the leaving
group. It exhibits enhanced immobilization efficiency (maximum 96%), maximum relative
activity (up to 96%), high stability and reusability (83% 56 days and 86.7% 10 cycles). This
behavior depends on the functional group (chloropropyl) used for the covalent attachment
for lipase immobilization, which establishes strong interactions between proteins and carri-
ers [122], which allows for preserving the activity of the enzyme and improving its thermal
and operational stability. On the contrary, the cross-linking using GA linker changes the
conformation of PPL and results in its deactivation [123]. Moreover, it could also damage
some important amino acid residues. Eventually, the physical adsorption preserves the
native conformation of the enzyme, but due to weak interaction between the enzyme and
support, the biocatalyst is very sensitive to change of the pH and temperature and shows
low operational stability.

Efficient immobilization is the result of the perfect matching of several factors depend-
ing on the enzyme, the process, the immobilization support and the additives used for mod-
ification supports [44,45]. In this frame, Carvalho et al. [124] have focused their attention.
They have immobilized lipase from Burkholderia cepacia (LBC) onto silica xerogel prepared
by a sol-gel technique treated with protic ionic liquid (PIL), N-methylmonoethanolamine
pentanoate and bifunctional agents (epichlorohydrin or glutaraldehyde). They had pre-
pared two supports for lipase immobilization, control silica xerogel (SC) and silica xerogel
produced with protic ionic liquid (SIL). Lipase immobilized by covalent binding with
epichlorohydrin (CBE) on control silica (CBE-SC) and onto silica produced with protic ionic
liquid (CBE-SIL). These supports had a surface area of 349.4 and 371 m2 g−1, respectively.
The prepared biocatalysts LBC-CBE-SC and LBC-CBE-SIL had enzymatic loading of 349.4
and 371.8 mg/g of support, respectively. Figure 15 shows the possible reaction mechanisms
of the silica support with functional activating agents epichlorohydrin and lipase. Evalua-
tions of these potentially useful biocatalysts in hydrolysis and transesterification reactions
were performed. The addition of protic ionic liquid (PIL) during the synthesis of the xerogel
silica support by a sol-gel method resulted in an improvement in their morphological and
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physicochemical characteristics. Bifunctional agents were an important factor in the yield
of enzyme immobilization. When epichlorohydrin was used, activity recovery yields of
up to 250% were obtained. In addition, biochemical characterization of the immobilized
systems under standard reaction conditions was performed (Michaelis–Menten constant,
pH and temperature optimum and operational stability in the hydrolysis of olive oil).
Further, the potential transesterification activity for three substrates: sunflower, soybean
and colza oils, was also determined, achieving a conversion of ethyl esters between 70%
and 98%.
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Figure 14. Preparation of Fe3O4@MCM-41/CPS for PPL covalent linking, Fe3O4@MCM-41 for PPL
adsorption and Fe3O4@MCM-41/APTS for PPL cross-linking with GA.
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4.3. Entrapment

Entrapment is the physical enclosure of enzymes in a confined space, allowing sub-
strates and product diffusion but retaining the enzyme. Immobilization of lipase into
silica nanoparticles is usually carried out by the sol-gel method using a silica precursor
(i.e., TEOS). However, lipase entrapment poses the problem that the confinement in a
small space prevents the contact with the water/oil interface and thus inhibits interfacial
activation. Furthermore, the natural substrate of lipase is quite bulky, creating diffusional
restrictions. For this reason, there are not many works describing lipase entrapment into
silica nanoparticles, and they are mostly focused on the advantages that can be obtained
with this type of technique, namely stability and the possibility of reusing the catalyst
a good number of times. Rhizomucor miehei lipase was entrapped in silica nanoparticles
having an oleic acid core (Figure 16) and used as catalysts for transesterification between
cottonseed oil and alcohol to obtain biodiesel [125]. The biocatalyst demonstrated good
reusability, being employed in 12 consecutive reaction cycles without substantial loss of
activity. The immobilized enzyme showed a good storage stability at room temperature,
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retaining 100% activity after 6 months, while the native lipase should be stored at 4 ◦C to
maintain its activity. This obviously constitutes a saving in economic terms, as there is no
need for low-temperature storage.
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Figure 16. Scheme of lipase entrapment within mesoporous silica with an oleic acid core.

Candida antartica B lipase (CALB) was entrapped silica aerogel, showing an increase
in thermal, storage and operational stability [126]. However, the stabilization was lower
than in the previous case. In fact, the activity dropped to about 50% after 5 months of
storage at room temperature. Furthermore, there was a continuous decrease of the ac-
tivity during reuse of up to 50% after 12 reaction cycles. Cazaban et al. [127] made a
comparison between in situ entrapment and adsorption/covalent surface immobiliza-
tion of Thermomyces lanuginosus lipase (TLL) into/on bio-mimetic silica. Entrapment was
carried out by mixing etramethyl orthosilicate (TMOS) polyethyleneimine (PEI) and the
enzyme solution at pH 8. Covalent attachment was performed by functionalizing silica
particles with octyltrimethoxysilane (OTMS) to provide a hydrophobic environment and
(3-Glicidoxypropyl) methyldietoxysilane (GMDES) to provide aldehyde groups for cova-
lent linking (see Figure 17). The stability of the biocatalyst obtained by adsorption/covalent
linking was similar to the one of the free enzyme, possibly due to the formation of a pro-
tein multilayer, where not all the lipase molecules are covalently linked to the support.
The biocatalysts obtained by entrapment were much more stable. However, the yield
in the synthesis of biodiesel was higher for the lipase immobilized on the silica surface
(88% vs. 55%). The biocatalyst obtained by lipase entrapment is probably more affected
by diffusional restrictions. Furthermore, a hyperactivation effect of lipase was observed
when immobilized on the hetero-functionalized surface of the nanoparticles with a 420%
increase in activity, due to the support functionalization with hydrophobic groups.
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5. Conclusions

In this review, we have focused the attention on the use of lipases for biodiesel pro-
duction. We have summarized the main results obtained in the production of successful
biocatalysts prepared by using several mesoporous supports and by different immobiliza-
tion procedures. Mesoporous silica materials such as MCF, silica nanoflowers, SBA-15
and core–shell magnetic silica particles have proven to be very suitable for the immobi-
lization of lipase thanks to the great thermal and mechanical stability, controlled textural
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characteristics and the presence of abundant surface hydroxyl groups, which allows for
easy chemical surface functionalization. Great interest has been addressed to the synthesis
of supports formed by functionalized mesoporous silica materials with magnetically re-
sponsive magnetite composites, which combine the advantages of both mesoporous silica
and magnetic nanoparticles, facilitating the separation of the biocatalyst. Moreover, by
combining the properties of natural organic macromolecule materials, i.e., polysaccharide,
cellulose, protein, etc., with the properties of inorganic carriers, efficient supports for lipases
immobilization can be prepared. We have highlighted the drawbacks connected to the
large-scale production of enzymatic biodiesel. In fact, even if the enzymatic process can
use cheap and low-quality feedstock with a high free fatty acid content, the cost remains
not competitive with the chemical catalysis one, due to the high enzyme costs and those
connected to the immobilization procedures. Further studies are needed to overcome the
present technological challenges and to lower the enzyme costs, improving the overall
process economics towards industrial production of enzymatic biodiesel. Efforts must
be addressed in the design and development of innovative, inexpensive immobilization
techniques that allow high enzyme stability, preserving its activity.
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