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Abstract: Nanozymes have the potential to replace natural enzymes, so they are widely used in
energy conversion technologies such as biosensors and signal transduction (converting biological
signals of a target into optical, electrical, or metabolic signals). The participation of nucleic acids leads
nanozymes to produce richer interface effects and gives energy conversion events more attractive
characteristics, creating what are called “functional nanozymes”. Since different nanozymes have
different internal structures and external morphological characteristics, functional modulation needs
to be compatible with these properties, and attention needs to be paid to the influence of nucleic
acids on nanozyme activity. In this review, “functional nanozymes” are divided into three categories,
(nanozyme precursor ion)/ (nucleic acid) self-assembly, nanozyme-nucleic acid irreversible binding,
and nanozyme-nucleic acid reversible binding, and the effects of nucleic acids on modulation
principles are summarized. Then, the latest developments of nucleic acid-modulated nanozymes are
reviewed in terms of their use in energy conversion technology, and their conversion mechanisms
are critically discussed. Finally, we outline the advantages and limitations of “functional nanozymes”
and discuss the future development prospects and challenges in this field.
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1. From “Enzyme” to “Nucleic Acid Modulation for Functional Nanozyme”
1.1. Enzyme

In the field of biology, enzymes are a class of macromolecular substances with biocat-
alytic functions. Only under suitable temperature and acid-base conditions can enzymes
change the physiological state of organisms by regulating their metabolic pathways, such
as by signal transduction, gene expression, gene silencing, etc., or by obtaining new bio-
logical traits or removing certain biological traits [1,2]. Enzymes usually exhibit excellent
catalytic efficiency and regio- and stereoselectivity, and they are widely used in biochemical
energy conversion, playing an important role in food risk-factor detection, medical disease
diagnosis and treatment, and environmental pollutant analysis [3,4].

Most natural enzymes are proteins or RNA, and some studies have pointed out
that enzymes can also be DNA. Natural enzymes lose their activity when encountering
nonphysiological conditions, and the preparation process of enzymes is complicated
and expensive [5,6]. Therefore, in the past few decades, scientists have been seeking to
synthesize compounds with properties similar to enzymes’ activity by chemical or physical
methods. These compounds are stable, economical, and able to adapt to nonphysiological
conditions to solve problems in practical applications [7,8].
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1.2. Nanozyme

In recent years, nanoparticles (NPs) with strong tolerance to the external environment
have shown dual characteristics, including biological properties and material chemical
properties, and these NPs are called “nanozymes”, which are expected to replace natural
enzymes [9,10]. In 2004, self-assembly triazacyclonane-functionalized thiols on the surface
of gold NPs exhibited RNase-like behavior that catalyzed the cleavage of phosphate
esters [11]. Then, to define this layer of gold nanoclusters, scientists proposed the concept
of a “nanozyme”. NPs with enzymatic activity were later described as nanozymes [12,13].
In 2007, Yan et al. reported for the first time that Fe3O4 nanoparticle (NP) catalysts
showed properties similar to peroxidase [14]. The publication of this work changed the
traditional concept of inorganic nanomaterials being biologically inert substances, revealed
the inherent biological effects and new characteristics of nanomaterials, and expanded
from organic composites to inorganic nanomaterials, which broke the boundary between
“inorganic” and “organic” in the traditional sense.

Moreover, by combining excellent physical and chemical properties with enzyme-
like catalytic activity, nanozymes can realize multifunctional biological applications from
detection to monitoring and treatment and have been widely studied in the fields of
medicine, chemistry, food, agriculture, and environment [15]. Compared with natural
enzymes, nanozymes have the following characteristics [15]:

(1) High stability: Inorganic nanomaterials are more adaptable to pH and temperature
changes than natural enzymes. Some nanozyme can be used under a wide range of pH
(3–12) and temperature (4–90 ◦C) conditions. In contrast, biological enzymes are usually
easily denatured and inactivated under extreme pH and temperature conditions.

(2) Low cost: The production process of enzymes is usually complicated and expensive,
while inorganic nanomaterials are easy to produce on a large scale with good catalytic
activity and low cost.

(3) Recycling: Inorganic nanomaterials are recyclable, and there is no significant loss
of catalytic activity in the subsequent cycles.

(4) Easy to be multifunctional: nanozymes have a large specific surface area and high sur-
face energy and can be combined with multiple ligands to achieve multifunctionality [16–19].

Nanozymes, as new stars in science, not only have the characteristics of materials
chemistry, including a large specific surface area, rich surface morphology, easy modifica-
tion, and unique size and shape, but also have more attractive biological characteristics,
including the ability to respond to physiological reactions and to catalyze biochemical
reactions [20–26].

1.3. Functional Nanozyme

Due to the excellent dual properties of nanozymes, some specific studies have shown
that they can respond well to the changes of biological macromolecules (proteins, nucleic
acids, polysaccharides, lipids).

(1) As for proteins, Zhang et al. [27] encapsulated transition metal catalysts (TMCs)
on the single-layer surface of gold nanoparticles to prepare a bio-orthogonal nanozyme. By
weakening the formation of a constant protein crown (hard corona), the long-term retention
of nanozyme activity in the cell is achieved.

(2) As for nucleic acids, Wang et al. [28] found that ssDNA adsorbed on g-C3N4 NSs
could improve the catalytic activity of the nanosheets.

(3) As for polysaccharides, Li et al. [29] synthesized soluble molecularly imprinted
nanozyme that can accurately hydrolyze the oligosaccharide maltohexaose.

(4) As for lipids, Zhang et al. [30] reported magnetic nanoparticles (iron oxide nanozyme).
After a nanozyme enters the cell, it exerts peroxidase activity in the acidic environment of
the lysosome, increases the level of ROS activity, destroys proteins, nucleic acids, lipids,
and other biological molecules, makes them lose their functions, and kills Escherichia coli.
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Overall, the structure and surface physicochemical properties of a nanozyme de-
termines whether it has the characteristics to cope well with biological macromolecules’
changes and thus to produce unique nanobiological effects.

Among these biological macromolecules, nucleic acids have been known for specific
self-assembly properties and unique molecular recognition mechanisms [31]. First, the
double-stranded structure of nucleic acids has complementarity, and a series of DNA-based
nanomaterials can be developed based on this complementarity between strands [32].
Moreover, as a biological recognition molecule, a nucleic acid aptamer is essentially a
single-stranded DNA or RNA folded to form a specific secondary and tertiary conformation
that then binds to the target molecule with high affinity and specificity [31].

The increasing development of nucleic acid technology has promoted the progress
of studies on biochemical energy conversion related to biomacromolecule-modulating
nanozymes (energy conversion: the energy generated by the biochemical event is trans-
formed into other forms of energy, such as light energy, electric energy, new biological
energy, or new chemical energy) [33–37]. Specifically, nucleobases can provide lone pairs
of nitrogen and oxygen electrons, and nucleobases are an important structure of the nu-
cleic acid phosphate backbone. Thus, nucleic acid acts as a multidentate organic ligand,
which interfaces with metal ions, metal oxides, metal organic frameworks, and carbon
bases of nanozymes, transferring electrons to form functional nanozymes [38–41]. The
interaction between functional nanozymes and various interface components was analyzed
by generating energy conversion effects (biosensing and signal transduction) [42]. Like
target recognition conversion into an optical signal or electrical signal, the probe assem-
bled by gold nanozyme and aptamer AG3 converts the process of specific recognition of
murine norovirus into an optical signal [43]; the probe assembled by the gold nanoparticle–
graphene oxide hybrid and the respiratory syncytial virus antibody converts the process of
specifically recognizing RSV into an optical signal [44]. Like target substance activation
conversion into a metabolic signal, Fe3O4 NPs induce AMPK activation and enhance glu-
cose uptake, which has potential effects in diabetes care [45]; organic polymer nanozyme
SPNK induces the release of KYNase, which degrades kynurenine (Kyn) [1]. Consequently,
it may be true that nanozymes can control immunomodulation. By studying the interface
effects of nanozymes in these energy conversion events and analyzing the interactions
between various interface components, we further understand functional nanozymes [42].

1.4. Nucleic Acid Modulation for Functional Nanozyme

Since one of the centerpieces of the biochemical energy conversion mechanism is
the interface modulation event, more attention has focused on the strategy of interface
modulation for target assay. To the best of our knowledge, this article is the first to
analyze and summarize such phenomena. This article pays great attention to the interface
modulation of nucleic acids to nanozymes: modification, binding, immobilization, and
the resulting major changes in interface components in the structure of nanozymes, which
lead to an increase or decrease in enzyme catalytic activity [46–50]. The controllability and
accuracy of modulation technology is an important force for promoting the progress of
social civilization. To cater to the perfect control of enzyme activity in practical applications,
scientists have expended great effort in studying the crosstalk between nanozymes and
nucleic acids, which retains the advantages of nucleic acids but does not limit the properties
of nanozymes that need to be expressed.

In short, the crosstalk between nucleic acids and nanozymes has attracted widespread
attention in recent years. Our work showed that the advantages of nucleic acids can
compensate for the shortcomings of nanozymes and can improve the control of catalytic
activity. At the same time, the importance of studying the energy conversion mechanisms
of “nucleic acid modulated nanozymes” in terms of risk factor detection for food, medical
disease diagnosis and treatment, and environmental pollutant analysis was discussed.
Therefore, further research should be carried out to expand the applications of nanozymes.
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2. Crosstalk between Nanozyme and Nucleic Acid

Nucleic acid modulation of nanozymes is a key step in energy conversion events.
Studies have shown that nucleic acids can change the size, shape, composition, surface mod-
ification, and state of NPs through biological, chemical, and physical effects [51–54]. Here,
we scientifically discuss the construction of three types of crosstalk between nanozymes and
nucleic acids: (nanozyme precursor ion)/(nucleic acid) self-assembly, nanozyme-nucleic
acid irreversible binding, and NP-nucleic acid reversible binding.

2.1. Self-Assembly Nanozyme

The rich structural features of nucleic acids endow them with diverse binding capa-
bilities with NPs. Due to the noncovalent interactions that occur during the assembly of
NPs and nucleic acids, the assembled nanozymes have new interface effects and exhibit
the desired morphology, chemical-physical properties, and stimulus responsiveness.

Here, we summarize the interactions among components. Recent studies have con-
firmed that the presence of various elements commonly found in nuclein—oxygen and
nitrogen [55]. Nitrogen acts as an electron donor, and oxygen provides electron pairs,
which can hybridize or covalently coordinate with single or multiple metal ion precursors
(Figure 1); therefore, they can controllably modulate the enzyme activity and stability of
nanoparticles [56–60]. In addition, Chen et al. [59] introduced nanocarrier mesoporous
silica based on the study of noncovalent binding and discovered that the nucleic acid acted
on the platinum particle precursor ion to produce a “reversible” masking effect at the
active site.
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nucleic acids.

2.2. Irreversible Binding Nanozyme

Nucleic acids have a complex skeletal structure composed of bases, phosphate groups,
and ribose, so they have a wealth of modification sites [61,62], while NPs have the character-
istics of many surface active sites, strong adsorption, and a high density of valence electrons.
Researchers have made use of their rich properties, modified them, and accomplished the
irreversible combination of the two components. Many modification bridges have been
used to promote binding between NPs and nucleic acids (Figure 2), for example, -NH-
SiO2-, -biotin-streptavidin-, -NH-COOH-, -C-NH-, -S-, -magnetic bead-, and -NH- [63–69].
Binding at the interface perfectly merges the advantages of the two. Additionally, irre-
versible chemical modification may affect an NP’s characteristics and limit the number of
connections of nucleic acids. In summary, functional nanozymes have both the enzyme
activity of NPs and the target recognition function of nucleic acids, producing the desired
interface effect, which can be applied to biochemical energy conversion events.
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2.3. Reversible Binding Nanozyme

Nucleic acids have parallel stacked bases, polymerized anionic phosphate backbones,
sugar rings, and active sites composed of large grooves and small grooves formed by
double-stranded structures [26], and these features allow nucleic acids to combine/separate
with nanozymes with high specific surface areas and rich surface chemical morphologies,
as expected in various analytical events based on competitive binding mechanisms [70].
In general, the addition of nucleic acids to the nanozyme reaction system increases the
interface components of the NPs, dramatically increases the free energy of the interface with
the NPs, and changes the structure-related properties of the interface, such as ionic valence
and electronic transfer. Moreover, it can be formed into a reversible binding nanozyme,
which preserves the characteristics of nucleic acids and NP as much as possible. Here, we
list the general influence of nucleic acid on NPs (Figure 3) as changes in the steric hindrance
effect, changes in the number of active sites, changes in the dispersion of NPs, changes
in the structure of NPs (such as oxygen vacancies), and changes in substrate activity in
producing highly active substances (such as hydroxyl radicals).
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3. Functional Nanozyme-Based Energy Conversion Events

Nucleic acid-modulated nanozymes were studied for energy conversion. First, im-
mobilized indicators, nanozymes, and receptors were required. Second, nucleic acid
modulation was required to achieve selective molecular recognition, which was the key
to the competitive binding of target substances. Finally, energy conversion events were
converted into a variety of optical signals (Figure 4), including changes in light absorption
and refraction, fluorescence, chemical or bioluminescence, and Raman scattering [71]. Here,
we discuss the energy conversion events from functional nanozymes.
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interface components (target, nucleic acid, substrate) was analyzed by generating energy conversion effects (biosensing).
Reprinted from reference [71].

3.1. “Self-Assembled Nanozyme”-Based Energy Conversion Events

Nucleic acids with rich and diverse structures are excellent reaction templates for
metal ions (metal precursor ions of nanozyme). Due to the noncovalent interaction between
the metal precursor ion and nucleic acid, the obtained nanozyme showed controllable
morphology, chemical and physical properties, and stimulus responsiveness to achieve
more precise positioning and assembly of metal ions nucleic acids [72]. DNA (deoxyri-
bonucleic acid) acted as a template that accurately assembled some metal ions to modulate
nanoclusters’ physical and chemical properties, including size, morphology, surface charge,
and surface-active sites. These modulations can result in changes in the absorbance, fluo-
rescence intensity, and electromagnetic properties of the nanoclusters [26,72]. Thanks to
these excellent modulation capabilities, the precise assembly of metals into nucleic acid
nanostructures creates nanozymes that can maintain a metal’s unique properties on the
atomic scale. These metal nanozymes, which can easily adjust physicochemical properties
by programming nucleic acids, paved a promising way for micro-trace detection and preci-
sion medicine. In summary, nanozyme energy conversion not only quantifies recognition
events but also amplifies small events.

Nucleic acid modulated single metal precursor ions. Chen et al. [58] developed a
method to in situ assemble a DNA-Pt hybrid NP in 7 min. Changing the DNA load can
modulate the growth of NPs, the dispersion of NPs, and the surface charge distribution of
NPs. The resulting noncovalent bonding and steric hindrance stopped the catalytic activity,
which was a highly anticipated phenomenon in sensor analysis events (Figure 5B). Based
on these results, a paper-based sensor was developed to achieve rapid quantitative analysis
of target nucleic acids with an LOD (limit of detection) as low as 0.228 nM.
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Figure 5. “Self-assembled nanozyme”-based energy conversion events: (A) Pt NPs synthesized with
C-rich sequence i-motif RET2 as the template, initiation of enhanced enzyme activity, conversion
of energy into a light signal. Reprinted with permission from reference [56]. Copyright 2014, The
American Chemical Society. (B) DNA-Pt hybrid NPs. The target nucleic acid recognition process
was converted into a weak optical signal. Reprinted with permission from reference [58]. Copyright
2017, Elsevier. (C) The nanozyme was formed by ssDNA and platinum precursors deposited on
silica (MS) in competition, and the target nucleic acid recognition process was converted into an
optical signal. Reprinted with permission from reference [59]. Copyright 2018, Springer Nature.
(D) Using a thrombin aptamer-Pt nanozyme, the recognition process of thrombin was converted
into an optical signal enhancement. Sandwich method of DLAA targeting thrombin (D-(a)) and
competitive DLAA targeting anti-thrombin IgA/G/M (D-(b)), (D-(b)-(A)), Bioassay using Pt-aptamer,
(D-(b)-(B)), Conventional competitive EIA. Reprinted with permission from reference [60]. Copyright
2008, The American Chemical Society.

Nonmodified nucleic acid modulated single metal precursor ions. Higuchi et al. [60]
synthesized a thrombin aptamer-Pt nanozyme complex through the covalent coordination
of lone-pair electrons on the base with Pt2+. It was interesting that no functional groups,
including biotin, thiol, etc., were used to modify the aptamer, while at the same time, the
enzyme-mimicking activity of the NPs was perfectly combined with the specific recognition
ability of the aptamer (Figure 5D). Meanwhile, its Km was comparable with that of hemin-
G4 [73–75]. This work led to three conclusions: first, smaller nanozyme complexes had
higher enzyme activity; second, enzyme active sites tended to be located on DNA-Pt
complexes rather than on independent Pt atoms after coordination; and third, stronger
coordination binding forced higher enzyme activity.

Codeposition products come from a hybrid of nucleic acids and a single metal precur-
sor ion. Chen et al. [59] found that single-stranded DNA (ssDNA) and platinum precursors
compete to form NPs when deposited on silica (MS). The steric hindrance caused by the
competition phenomenon cooperates with the noncovalent force of single stranded DNA
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(ssDNA) to combine with the masking effect of the active site of the Pt ion precursor. The
precursor active site masking effect achieves the purpose of “turning off” enzyme activity,
achieves controllable enzyme activity based on the target nucleic acid, and quickly detects
the target based on colorimetric methods (Figure 5C). The linear response of the target
concentration of this method is as wide as 5 nM to 100 nM and the LOD is 2.6 nM, and even
when there is only one base mismatch, it can be sensitively identified. At the same time,
this work found that the complementary sequence can better bind to the target and achieve
the purpose of “turning on” enzyme activity. Compatible opening and closing properties
are desirable for detecting events and have great potential in practical biochemical energy
conversion applications.

Nucleic acids with an i-motif structure modulate a single metal precursor ion. Fu et al. [56]
used G- or C-enriched sequences as templates to synthesize Pt nanozymes with particle
sizes of 1.7–2.9 nm. Studies have shown that the O atom in cytosine and the N atom in
guanine interact with platinum cations, and the binding force of AG22 (G-rich) and Pt2+

is much higher than that of RET2 (C-rich). The size, morphology, and surface charge
distribution of the nanozyme were controlled by adjusting the sequence of nucleic acids
and the concentration of Pt2+ (Figure 5A). In this work, a Pt nanozyme with a Pt0 content of
66% was synthesized with sequence RET2 of the i-motif structure as a template and showed
excellent activity in biochemical energy conversion. The Michaelis–Menten constant (Km)
was 0.0560 (using TMB as the substrate), which was higher than that of horseradish
peroxidase (HRP) [76].

Based on this research, Sun et al. [57] developed a C-enriched sequence stably loaded
bimetallic NP, AuxPty nanozyme, the precursor ion of Au- and Pt-coordinated nucleic
acids. When the Pt ratio was 27%, Au2Pt1 was produced, and its Km was 0.088 (using
TMB as the substrate), which is similar to that of HRP. Two interface effects from the
self-assembled nanozyme were also found. First, DNA prevented coagulation during the
bimetallic reduction process. Second, the coordination of nucleobases with Au+ reduced
the ratio of DNA-bound Pt2+ and simultaneously weakened the inhibitory effect of the
bimetallic platinum-based nanozyme activity caused by this reduction. The research used
the different forces between nucleic acids and different metals to adjust the enzyme activity
and stability of the NPs and enabled multicomponent metals to be stably coreduced,
thereby increasing the sulfurophilic function of NPs of different metals.

3.2. “Irreversible Binding Nanozyme”-Based Biosensors

The irreversible combination of nucleic acids and nanozymes has rich functions, in-
cluding high stability of modification performance, target specificity, flexibility of structure
conversion, and diversity of interface components, enabling more effective construction of
biosensors, which can be used to control enzyme activity and specifically recognize metal
ions, small molecules, nucleic acids, and proteins [77–79]. Indeed, such an “Irreversible
Binding Nanozyme” system possessed several inherent biosensing superiorities. Firstly,
nanozymes have target affinity and recognition ability after chemically modifying nucleic
acids. Additionally, nanozymes have the property of catalyzing optical signal enhancement
of substrate so that the target can be optically detected by visual inspection. Moreover, the
entire detection process does not require hours of molecular extraction or a few days of
conventional culture. Here, we briefly list some reports on nanozymes directly modified
with nucleic acids.

As shown in Table 1, most of the NPs that directly modify nucleic acids are Fe3O4
nanozymes, which were the first nanozymes discovered, and others are noble metal
nanozymes, all of which improve energy conversion efficiency due to the following
qualities. First, the encapsulated modified nanozymes show better conversion proper-
ties. Hu et al. [63] covalently bound amino-modified nucleic acids to Fe3O4 nanozymes
wrapped in SiO2 and showed that they can specifically recognize proteins and inhibit
nanozyme activity through steric hindrance. Target biometrics were transformed into
optical signals, and the LOD of thrombin recognition was 0.19 nM (Figure 6a). How-
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ever, Zhang et al. [66] coupled an amino-crosslinked chitosan-modified Fe3O4 nanozyme
through glutaraldehyde to an aminated thrombin aptamer to specifically capture thrombin,
and the thrombin recognition LOD was 1 nM (Figure 6d).

Table 1. Information regarding “irreversible binding nanozyme” activity changes used in biosensor research.

Nanozyme Target Nucleic Acid Enzyme
Activity Changes

Strategy for Target
Assay LOD References

Fe3O4 Thrombin
5′-NH2-(CH2)6-TTT
TTTTTTTGGTTGG
TGTGGTTG5′-G-3′

Inhibition
Target block the

substrate
diffusion

0.19 nM [63]

Fe3O4 Thrombin
1,5′-biotin-(CH2)6-AGT

CCGTGGTAGGGCAGG
TTGGGGTGACT-3′

Enhancement Target bound
aptamer-nanozyme 1 nM [66]

Fe3O4
Streptococcus

mutans

5′-biotin-TTTATACTAT
CGCATTCCTTCCGAG
GGGGGGGGGGGGGG
GGGGGGGGGGGGTC

GGT-3′

Inhibition
Target block the

substrate
diffusion

12 CFU/mL [64]

Fe3O4
Listeria

monocytogenes

5′-NH2-TTTTTTTTTTA
TCCATGGGGCGGAG
ATGAGGGGGAGGAG
GGCGGGTACCCGGTT

GAT-3′

Enhancement Target bound
aptamer-nanozyme 5.4 × 103 CFU/mL [65]

Fe3O4
Cardiac

troponin I

5′-CGCATGCCAAACG
TTGCCTCATAGTTCCC

TCCCCGTGTCC-3′
Enhancement Target bound

aptamer-nanozyme 3–10 CFU/mL [67]

Pt/Pd Salmonella

5′-biotin-ATAGGAGTC
ACGACGACCAGAAA
GTAATGCCCGGTAGT
TATTCAAAGATGAGT
AGGAAAAGATATGT
GCGTCTACCTCTTGA

CTAAT-3′

Inhibition
Target block the

substrate
diffusion

3–10 CFU/mL [68]

Pd Carcinoembryonic
antigen CEA

3′-NH2-AGGGGGTG
AAGGGATACCC-5′ Enhancement Target bound

aptamer-nanozyme 20 fg/mL [69]

Second, the functionalized aptamer improved the energy conversion efficiency. For
example, Zhang et al. [64] conjugated biotinylated nucleic acids to streptavidin-modified
Fe3O4 nanozymes. This work described two types of nucleic acids: nonfunctionalized and
G4-hemin functionalized nucleic acid binding aptamers (Figure 6b). Among them, the
functionalized enzyme not only increased the specific recognition ability for Streptococcus
mutans but also enhanced the enzyme activity and recognized a target concentration in
saliva as low as 12 CFU/mL. However, Zhang et al. [65] conjugated carboxylated Fe3O4
nanozymes to aminoated nucleic acids and converted the nucleic acid-specific binding
events to Listeria monocytogenes into a colorimetric signal output (Figure 6c) with a visual
limit of 5.4 × 103 CFU/mL (Table 1). In another example, Wu et al. [69] used polyhistidine
peptides that underwent a Michael addition through cysteine to combine with sulfo-
SMCC-ylated G-quadruplex/heme (hCG). Pd nanozymes and carcinoembryonic antigen
aptamers (CEA Apt) were combined with toluidine blue. The bioconjugated probe hGQ-
peptide/CEA Apt/Pd NPs specifically recognized CEA with femtogram-level sensitivity
(Figure 6g). Sun et al. [67] used in situ chemical oxidation polymerization to prepare a
Au-PDA-Fe3O4 magnetic nanocomposite, fixed the thiolated G-rich sequence and HRP on
the nanocomposite through metal thiol bonds, and then added hemin (Figure 6e). Due to
the triple enzymatic activity of the nanomimic enzyme, G4-Hemin, and HRP, recognition
of the target cardiac troponin I was possible at the picogram scale. The downside was the
complicated functional design of the nucleic acid components, which was not an expected
property of the otherwise excellent detection tools.
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was converted into an optical signal. Reprinted with permission from reference [63]. Copyright 2013,
Royal Society of Chemistry. (b) A biotinylated nucleic acid was conjugated to an Fe3O4 nanozyme
modified with streptavidin, and the specific recognition process of S. mutans (Streptococcus mutans)
was converted into a weak optical signal. Reprinted with permission from reference [64]. Copyright
2019, The American Chemical Society. (c) An aminated nucleic acid was conjugated to a carboxylated
Fe3O4 nanozyme, which specifically bound to the L. monocytogenes (Listeria monocytogenes), producing
an optical signal. Schematic representation for the preparation of Fe3O4 NPC (c-A), the principle of the
Fe3O4 NP-based biosensor (c-B), and the Fe3O4 NPC catalyzed signal amplification biosensor (c-C).
Reprinted with permission from reference [65]. Copyright 2016, Elsevier. (d) Fe3O4 nanozymes were
coupled to aminated thrombin aptamers via glutaraldehyde, which specifically captured thrombin
events and converted them into an optical signal. Reprinted with permission from reference [66].
Copyright 2010, Elsevier. (e) A sequence of the thiolated G-rich aptamer was immobilized on
a Au-PDA-Fe3O4 magnetic nanocomposite through metal thiol interactions, and the identified
cardiac troponin I event was converted into an optical signal. Reprinted with permission from
reference [67]. Copyright 2019, Elsevier. (f) Biotin-modified Pt/Pd nanozymes and nucleic acids were
simultaneously immobilized on magnetic beads by streptavidin specifically to capture Salmonella
typhimurium, and the event was converted into an optical signal. Reprinted with permission from
reference [68]. Copyright 2020, Elsevier. (g) A bioconjugated hGQ-peptide/CEA Apt/Pd nanozyme
specifically recognized the carcinoembryonic antigen CEA and was converted into an optical signal.
Reprinted with permission from reference [69]. Copyright 2018, Elsevier.

Third, the amplification platform was connected through aptamers to amplify the
energy conversion efficiency. Zahra et al. [68] simultaneously immobilized biotin-modified
Pt/Pd nanozymes and nucleic acids on magnetic beads through streptavidin without
enrichment or DNA extraction, directly isolated Salmonella typhimurium from food samples,
and then amplified DNA using loop-mediated isothermal amplification (Figure 6F). The
total analysis time was less than 3 h, and the LOD was 3–10 CFU/mL (Table 1).

3.3. “Reversible Binding Nanozyme”-Based Energy Conversion Events

Many NPs can adsorb small molecules and polymers [80,81]. These adsorbed com-
pounds may change the interface between nanozymes and their substrates. Therefore,
through adsorption, the catalytic activity of the nanozyme is modulated [82].

The reversible combination of nucleic acids and nanozymes contributes to the modu-
lation of interface effects that help in the analysis of biological energy conversion [83–89].
First, nucleic acid structure not only exhibited a rich conformation but also generated
electrostatic forces with the polycation electrolyte due to the phosphate group (anionic
polyelectrolyte). Second, single-stranded nucleic acids had chain-like macromolecules,
phosphoric acid groups, and aromatic ring-rich structures. These features ensured the
reversible affinity of the nucleic acid structure. Subsequently, structural affinity was guar-
anteed by the effect of intermolecular forces (hydrophobic forces, van der Waals forces, elec-
trostatic forces, hydrogen bonding, aromatic ring stacking, complexation, chelation) [82].
Third, these interaction forces were very interesting because they changed the interface
effect, caused the interface components to crosstalk, triggered electron transfer, and con-
verted energy into an optical signal, such as changes in light absorption and refraction,
fluorescence, chemical or bioluminescence, and Raman scattering. Additionally, the surface
charge of nanozymes can be controlled not only by changing pH but also by adsorbing
small molecule anions. Accordingly, these characteristics ensure the application potential
of “Reversible Binding Nanozyme” in label-free, transplantable, and visualized targeted
detection or therapy. Here, we review and analyze the relevant reports of NP–nucleic acid
reversible binding.
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3.3.1. Physical Properties Changes

Interfacial forces cause changes in the physical properties of interface components,
such as steric hindrance/physical barriers, physical adsorption, and dispersion [90–92].

Nucleic acid physically blocked the interaction between the nanozyme and substrates
and modulated the biochemical energy conversion. Wang et al. [93] compared the different
interface effects between nucleic acids and MnO2 and between nucleic acids and GO and
found that, unlike nucleic acid adsorption to GO through aromatic ring accumulation
and hydrogen bonding forces, nucleic acids bind MnO2 through phosphate backbone
coordination. The interface between the anionic polyelectrolyte nature of the nucleic
acid itself and MnO2 generates an electrostatic force, which increases the spatial distance
between the substrate and the nanozyme MnO2 (steric hindrance) and shuts down the
activity of the nanozyme (Figure 7A). Interestingly, after complementary strands were
added, these nucleic acids could compete to bind to the single strands on MnO2, which
was desirable for biological detection events. In addition, MnO2 was dissolved by thiols to
release the adsorbed nucleic acid to achieve the detection of glutathione (LOD 383 nM),
which cannot be achieved by other metal oxides (such as Fe3O4, CeO2, TiO2), and this
property can be used in targeted delivery.

This phenomenon agrees with the earlier work of Pautler et al. [82]. On the one
hand, nucleic acids coordinated with CeO2, consistent with hard soft acid base theory
(HSAB). The nucleic acid played the role of a hard base, and CeO2 played the role of
a hard acid. CeO2 also controlled the surface charge through pH and inorganic anions
and generated electrostatic forces with nucleic acids (Figure 7B). The forces of these two
phenomena effectively led nucleic acids at concentrations as low as 5 µM to bind tightly
to the nanozyme, resulting in a steric hindrance effect, thereby outputting an optical
signal that inhibited the activity of the nanozyme. These findings provide meaningful
insight into low-concentration nucleic acid modulation of nanozyme-related biochemical
energy conversion.

In contrast, nucleic acids physically adsorb both nanozymes and substrates, shorten the
spatial distance of interface components, and modulate transduction events. Liu et al. [94]
noted that positively charged Fe3O4 NPs tightly adsorbed to the phosphate backbone of
nucleic acids and then assembled into negatively charged NPs. Next, the ssDNA anchored
on Fe3O4 NPs, on the one hand, generated electrostatic forces; on the other hand, the
base generated hydrogen bonds and aromatic ring accumulation forces, both of which
cooperated to bring the substrate closer to the nanoparticles. Ultimately, the enzyme
activity was enhanced. Based on this work [94], Li et al. [95] analyzed the content of ATP
in blood with a linear concentration range of 0.50–100 µM (Figure 7C), which can be used
to diagnose ATP-indicative diseases [96,97] and is better than most methods that have been
reported [98–103].

Overall, compared with other published electrochemical signals, fluorescent signals,
and colorimetric signals, nucleic acid-modulated nanozymes caused changes in physi-
cal properties and then converted them into an optical signal, which was expected to
improve sensitivity.

3.3.2. Chemical Properties Changes

Interfacial forces cause changes in the chemical properties of interface components,
such as active sites, active products, and reaction activity.
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and inhibited enzymatic catalysis, which was converted into a weak optical signal. Reprinted with
permission from reference [93]. Copyright 2018, The American Chemical Society. (B) A nucleic acid
was tightly bound to the nanozyme, resulting in a steric hindrance effect, inhibition of enzymatic
catalysis, and conversion of energy into a weak optical signal. Reprinted with permission from
reference [82]. Copyright 2013, The American Chemical Society. (C) The ssDNA anchored on the
Fe3O4 nanozyme minimized the distance between the substrate and the NP. The energy change came
from the enhancement of enzyme catalysis, and it was converted into a light signal. Reprinted with
permission from reference [95]. Copyright 2019, The American Chemical Society. (D) DNA acted
on Au NPs to reduce the spatial distance from TMB, enhanced enzyme catalysis, and enhanced the
conversion into a light signal. Reprinted with permission from reference [104]. Copyright 2015, The
American Chemical Society. (E) DNA acted on the CoOOH nanozyme to reduce the spatial distance
with TMB, enhanced enzyme catalysis, and enhanced the conversion into a light signal. Reprinted
with permission from reference [105]. Copyright 2018, Elsevier.

Hizir et al. [104] found that when present in pairs as opposed to single bases, different
bases expressed different nanozyme activities. Experiments confirmed that nucleobases
and Au NPs were combined by hydrogen bonding, and the combined NPs were negatively
charged. Moreover, functional NPs shorten the spatial distance from the positively charged
substrate TMB through electrostatic forces and hydrogen bonds to enhance enzyme activity
(Figure 7D). Li et al. [105] utilized the same mechanism to modulate CoOOH nanozymes
(Figure 7E). In their work, the detection limit was 0.069 U/mL for the cancer marker M.
Sssl MTase.

The nucleic acids changed the chemical properties of the nanozymes and the substrates
and modulated biochemical energy conversion. There are divergent opinions in existing
reports on the modulation of CeO2 NPs by DNA, and it can be said that there are some
conflicts [82,91,106]. Dingding et al. [107] selected nanorods, nanocubes, and nanoparticles
as research objects to explore the modulation of ssDNA on these three nanozymes with
different morphologies. This work produced the following results:

(1) Spatial distance: DNA acted on NPs, causing the surface charge of NPs, the
dispersion of CeO2 NPs, and the spatial distance from the substrate to change. However,
the changes in spatial distance were not the main reason for the changes in nanoparticle
enzyme activity.

(2) Active site: DNA acted on NPs, causing changes in the Ce3+ content on the surface
of NP. However, the change of Ce3+ in the active site was not the main reason for the
change in NPase activity. Further research, in other reports, showed that DNA acted on the
substrate through bases, which was not confirmed in this work [28,94,95,104,105].

The final conclusion of this work was that DNA was coordinated with NP through
phosphoric acid groups, which resulted in different exposed crystal faces of NPs with
different morphologies, thereby changing the enzyme activity (Figure 8A). Interestingly,
although the interaction between the phosphate backbone and nanoparticles was in line
with HSAB theory, this study focused on the inherent properties of the material, specifically
the three morphologies of NPs and the difference in chelation between the phosphate
backbone, which means that the active sites of the three DNA–NPs were different [108–110].
Compared with the research of Pautler et al. [82], which focused on external factors, nucleic
acid-wrapped NPs were found to block the contact between NPs and the substrate and to
inhibit enzyme activity under physiological conditions.

Here, we found that the nucleic acid concentrations used in the two studies were
different (0.5 µM in the study of Dingding [107], 5 µM in the study of Pautler [82]), and
the NPs were also different (composition, size, morphology). The morphology [111–114]
and size [115–119] of NPs play an important role in catalytic activity. Therefore, it was
impossible to compare the two studies in parallel or to objectively speculate that different
nucleic acid concentrations will have different effects on NP activity. However, spatial
distance and active sites do not always exist in isolation in energy conversion events of the
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interaction between nucleic acids and NP; sometimes, they coexist, and one of the factors
plays a major role that is more easily observed by researchers.
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Figure 8. For the “reversible binding nanozyme”, the changes in the active sites of the interface
components were used to modulate energy conversion events: (A) An interaction occurred between
the nucleic acid and NP interface, the active sites exposed by NPs of different morphologies were
different, and the energy of the enzyme-catalyzed process was modulated to change the optical signal.
Reprinted with permission from reference [107]. Copyright 2018, Institute of Physics. (B) The aptamer
shut down the active site of MnCo2O4, inhibiting the enzymatic process and converting into a weak
optical signal. Reprinted with permission from reference [120]. Copyright 2018, Elsevier. (C) Nucleic
acid enhanced the ability of the g-C3N4 nanosheet to obtain electrons, increased the number of
active sites, and increased the conversion into an optical signal. Reprinted with permission from
reference [28]. Copyright 2017, The American Chemical Society. (D) MoS2 NSs (nanosheets) adsorbed
ssDNA, increased the enzyme activity, and enhanced the optical signal. Reprinted with permission
from reference [121]. Copyright 2020, Royal Society of Chemistry.

Some studies also focus on the same kind of NP. One modulation mechanism involved
the addition of aptamers, which increased the interface components and closed the active
sites, thereby inhibiting enzyme activity. Lunjie et al. [120] reported that aptamers reversibly
bind MnCo2O4 through electrostatic interactions, thereby switching the oxidase activity of
the NP (Figure 8B). The enzymatic activity mechanism of MnCo2O4 includes the formation
and elimination of oxygen vacancies (defects left by the escape of oxygen ions from the
nanocrystalline lattice), which are the active sites of the NP, and stability (redox cycle),
accelerating the electron transfer between NP and substrate TMB.

Another modulation mechanism involved the addition of aptamers, which increased
the ingredient in the reaction system and closed the active sites of the NP’s interface, thereby
inhibiting enzyme activity. Wang et al. [28] studied the interface force between ssDNA and
g-C3N4 nanosheets and made three important findings (Figure 8C). First, ssDNA bound to
nanosheets through electrostatic interactions with the aromatic ring of the base. Second,



Catalysts 2021, 11, 638 16 of 24

ssDNA bound to the substrate (TMB) through electrostatic interactions with the aromatic
ring and hydrogen bonding with the base. Third, TMB with a conjugated structure was
adsorbed on the surface of nanosheets through the accumulation of aromatic rings. As a
new interface component, ssDNA affected the interface between the nanosheet and the
substrate. ssDNA was multivalently bound to nanosheets, increasing the number of active
sites. Additionally, ssDNA has simultaneous affinity for the nanosheets and substrates,
shortening the spatial distance and making electron transfer events easier. The reason
why this mechanism of modulating enzyme activity was classified based on active site
changes was that the aromatic ring structure of the nanosheets had a weak interaction
with the substrate, and the addition of nucleic acids produced new interactions with the
interface components, breaking the original conjugation between TMB and the nanosheets,
increasing the amount of active sites of nanosheets (stronger electron-acquiring ability), and
changing the chemical and biological energy at these interfaces. Finally, the colorimetric
signal was converted into an output signal. Because of interface modulation, enzyme
activity was enhanced by at least a factor of 4. Finally, in the end, the team applied this
mechanism to the detection of CD63 exosomes produced by a breast cancer cell line (MCF-7)
with a detection limit of 0.19 × 107 particles/µL.

In the same way, Zhao et al. [121] found that after polymer MoS2 nanosheets adsorbed
ssDNA through van der Waals forces, the negative charge of the nanosheets increased, and
the electrostatic force between nanosheets and TMB increased (Figure 8D). The interface
effect showed that as soon as the activity of the nanosheets increased, the transfer speed of
electrons from TMB to H2O2 was accelerated. Because of interface modulation, enzyme
activity increased by 4.3 times. The energy change of the interface was shown as an optical
signal, which can monitor CEA visually and detect at least 50 ng/mL.

In addition to the above reasons, there was another reason why this mechanism
may one day attract greater attention despite it being only indirectly related to these
reports. The reason is that the interfacial reactions had not yet been introduced in biological
macromolecules, and the appearance of highly active intermediates increased the interface
components, making the interfacial reactions more exciting.

It has long been reported that free radicals can promote enzyme activity. Kitajima et al. [122]
and Mochida et al. [123] proposed a free radical reaction chain in which Pt NPs trigger the
cleavage of O-O bonds to generate highly active hydroxyl radicals, promote H2O2 to obtain
electrons, and ultimately promote H2O2 oxidation and decomposition. Ma et al. [124]
proposed that based on the free radical chain reaction triggered by accelerated electron
transfer, the speed of electron transfer was accelerated, which led to the formation of the
catalytic intermediate hydroxyl radical (Figure 9A). Chen et al. [125] further expanded on
this research and proposed two points of view. First, PtPd bimetallic nanosheets increase
Pt reactivity. Second, the large surface area structure of the nanosheets increases the
reaction contact area of Pt. In addition to the changes in the structure of the reactants, the
mechanism of the free radical chain reaction [122,123] was also shown to be correct. In
short, some researchers agree that Pt acts as an intermediate reactant (electron acceptor
transition carrier) in the catalytic process [126,127] to promote the activation of H2O2 into
hydroxyl radicals, and then, hydroxyl radicals and TMB undergo redox reactions on the
surface of the nanosheets (Figure 9B).

Similarly, scientists found that if and only when the concentration of NP was appropri-
ate, free radicals could promote enzyme activity. Vinita et al. [128] studied Au@MoS2-QD
NPs and noted that NPs act as electron acceptor transition carriers, triggering the instan-
taneous decomposition of H2O2 into hydroxyl radicals and promoting electron transfer
between H2O2 and TMB, accelerating the production of blue-green light (Figure 9C). In
the same year, Wu et al. [129] published the peroxidase activity mechanism of MoSe2
nanosheets, which accelerated the acquisition of electrons by H2O2 from TMB and accom-
plished the catalytic oxidation of TMB (Figure 9D). Interestingly, the process of accelerating
electron transfer was caused by hydroxyl radicals, but the nanosheets consumed hydroxyl
radicals and simultaneously acted as electron transfer media carriers. Perhaps we can
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speculate that a certain concentration of nanosheets can more noticeably promote the
generation of hydroxyl radicals and accelerate the electron transfer of TMB.
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Figure 9. Nanozymes modulate energy conversion events by catalyzing the production of free radi-
cals from the interface components: (A) Pt nanozyme, reprinted with permission from reference [124].
Copyright 2011, Elsevier. (B) PtPd nanozyme on GNs (graphene nanosheets), reprinted with permis-
sion from reference [125]. Copyright 2014, Elsevier. (C) Au@MoS2-QDs(quantum dots) nanozyme,
reprinted with permission from reference [128]. Copyright 2018, Elsevier. (D) MoSe2 nanozyme,
all of which promoted enzyme activity by generating highly active hydroxyl radicals, which were
converted into light signals. Reprinted with permission from reference [129]. Copyright 2018, Royal
Society of Chemistry.

These studies showed that some NPs’ biochemical reactions produced hydroxyl free
radicals. Therefore, scientists cannot help but predict that enzymes’ biochemical events
based on the modulation of biological macromolecules are not an exception. For example,
Wang et al. [93] once speculated that in the reaction system of nucleic acids, nanozymes,
and substrates Fe3O4 NPs and H2O2 coexisted to produce highly reactive hydroxyl radicals
(Fenton Chemical), which can degrade nucleic acids. In fact, the experimental results
showed that the nucleic acid was not cleaved. This speculation seems unsupported.

In fact, are there any hydroxyl radicals in the interface reaction between nucleic
acids and NPs to modulate enzyme activity? Wang et al. [28] speculated that with the
help of nucleic acids, g-C3N4 nanosheets acted on H2O2 to generate hydroxyl radicals to
promote enzyme activity. Experiments have shown that functional nanosheets can indeed
catalyze the production of intermediate hydroxyl radicals, but this was not the reason
for the enhanced enzyme activity of nanomaterials. Zhao et al. [121] also predicted that
the interface component nucleic acid should be added to assist nanosheet MoS2, catalyze
the decomposition of H2O2 to generate hydroxyl radicals, and promote electron transfer
between TMB and H2O2 at the interface. Unfortunately, it was confirmed that it was not
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the generation of highly active free radicals but the role of nanosheets that accelerated
electron transfer.

Based on these reports, we preliminarily believe that in the interfacial reaction of
nucleic acids and reversible modulation of nanozymes, hydroxyl radicals, which are highly
active substances, have not yet been proven. However, in the catalytic reaction of NPs,
hydroxyl radicals do exist. Therefore, whether nucleic acids act on nanozymes to inhibit
the formation of hydroxyl radicals or whether nucleic acids replace some of the functions
of hydroxyl radicals is worthy of further exploration.

4. Conclusions and Outlook

In this article, we focus on the study of nucleic acids as a new interface component
that participates in the interface effect of nanozyme biochemical energy conversion events.

Nucleic acids increase the interface free energy of NPs; that is, accompanied by new
interface effects, such as the valence state of ions at the interface, the transfer of electron
motion and other structure-related properties have undergone considerable changes and
therefore have changed the chemical properties of NPs (enzyme activity).

First, the controllable dissociation of nucleic acids confers the reversibility and speci-
ficity of nanozyme activity. In addition, the controllable adsorption of nucleic acids by
nanozymes converts nucleic acid-specific recognition events into analytical events that
can amplify detectable signals, increasing the sensitivity of biochemical energy conversion
events. Therefore, in the field of nutrition and safety, there have been an increasing number
of studies on functional nanozymes. We analyzed representative examples of the energy
conversion of three types of functional nanozymes.

Although many achievements have been made, the modulation of nanozymes is
still in the preliminary stage, and there are still many technical roadblocks to practical
applications that need to be overcome. Here, a brief summary of the current challenges:

(1) It should be admitted that there are conflicting conclusions about nucleic acid-
modulated nanozymes in the current reported research. Perhaps there were dif-
ferences in the morphology and composition of nanozymes in different studies or
there are other reasons for the differences, so in-depth research is needed.

(2) Self-assembled nanozymes require a relatively long assembly time, irreversible bind-
ing nanozymes have a relatively high cost, and reversible binding nanozymes require
further study of the mechanism of their effective modulation. These three points are
the focus of future research.

(3) At present, most functional nanozymes require solution systems for reactions. There-
fore, it is still a huge challenge to extend the reaction to solid-phase systems (such
as paper-based systems) and to construct cheap, portable integrated devices without
sacrificing the activity of the interface components.

(4) Nanozymes have high catalytic activity and excellent biocompatibility. Nanozymes
have been used as antibacterial agents to promote wound healing [130,131]; to as-
sist in tumor cell therapy (such as magnetic hyperthermia, chemodynamic therapy,
photothermal therapy, and photodynamic therapy [132–136]); and to alleviate the
symptoms of metabolic diseases (such as glucose metabolism: diabetes [45], immune
metabolism: inflammation and cancer [137,138]). Most of the nanozymes reported
are metal oxides (such as iron oxide, manganese oxide, copper oxide, cerium oxide,
etc.) or noble metals (silver, gold, platinum, palladium, cobalt, etc.). They can be de-
graded and metabolized in the body, and the released metal ions are cytotoxic. There-
fore, it is necessary to study the modulation mechanism of biomacromolecules with
nanozymes to solve the biocompatibility, targeting, and safety issues of nanozymes in
the biomedical field.
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