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Murray Raney used Nickel for the first time as a hydrogenation catalyst over one cen-
tury ago [1]. Since then, the field of Nickel catalysis has seen tremendous advances. During
the 1970s, Nickel found extensive use as a catalyst not only for cross-coupling reactions of
alkenes/alkynes, such as nucleophilic allylation, oligomerization, and cyclo-isomerization,
etc., but also for C/H activation, oxidative cyclization, and reduction reactions [2–6].

More recently, it has been used in the formulation of catalysts assessing important
environmental issues, such as CO2 chemical utilization, or as a dopant of molybdenum,
sulfide-containing catalysts for desulfurization processes [7].

Several key properties of nickel such as its thermal stability and redox behavior mean
Nickel-containing catalysts are still challenging for a very large range of innovative reaction
developments and industrialization. The purpose of this Special Issue is to update the
most recent advances concerning Nickel catalysts, supported or not, for innovative reaction
development. This issue consists of 12 articles, 2 review papers and 10 research articles.
Nine articles deal with catalytic application, Two are related to synthesis and one focuses
on modeling.

The first review deals with the promotion of Ni-based catalysts with Fe for catalytic
hydrogenation [8]. It is well known that Ni-based catalysts can be active in hydrogenation;
however, the selectivity in desired products can be very poor. Thus, the importance
of this promotion is pointed out herein. A second article deals with hydrogenation on
Ni-P catalysts. The alumina-supported Ni-P exhibited a high activity in acetophenone
hydrogenation and a remarkable selectivity to 1-phenylethanol due to the particle size of
the active phase [9].

The second review article is about biomass valorization and more specifically, Lignin
valorization using Ni-based catalysts [10]. The authors describe how to design efficient
Ni-based catalysts based on lignin conversion reactions. A second article is dedicated
to developing natural biomass with high Ni content to establish low-cost biochars with
wide-ranging applications in catalyzing the redox-mediated reactions of pollutants, as
described by the authors [11].

Two articles are related to pollution control—one dealing with reactive adsorption
desulfurization and the second one dealing with NOx removal. As reported, the first article
points out important results on NiO/ZnO-Al2O3-SiO2 catalysts, showing high activity for
Reactive adsorption desulfurization (RADS) [12]. In the second one, the authors clearly
show the potential of hydrotalcite-derived NiFe mixed oxides for NOx abatement with a
high resistance to SO2 [13].

Two articles present novelties in methanation applications. The first one on NiMnAl-
hydrotalcite-derived mixed oxides presented high performance in syngas methanation at
low temperatures. They pointed out the influence of MnOy and the embedding effect of
AlOx in the catalytic performances [14]. The second one presented the carbon deposition
behavior of novel catalyst prepared by combustion method in slurry methanation. The
authors pointed out the carbon type formed during the reaction and proposed its removal
by oxidative calcination which will not affect the catalyst structure [15].

Two articles are also focused on environmental issues through CO2 utilization via its
hydroboration over novel types of bis(phosphinite) (POCOP) pincer nickel complexes and
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through glycerol steam reforming over promising nickel supported on AlCeO3 leading to
hydrogen production [16,17].

Finally, the two last articles dealt with a new synthesis route of Ni-containing catalysts
and computational investigation of a nickel-based catalyst. Thus, the authors showed the
importance of the study of chemical and morphological transformations during Ni2Mo3N
synthesis from oxide precursors, the control of the synthesis being a crucial point in order to
develop a highly active and selective catalyst [18]. Finally, density functional theory (DFT)
methods have been employed to conduct computational investigations on nickel-mediated
reactions [19]. These powerful tools are also very important in order to predict or to confirm
experimental data.

In conclusion, as presented in this issue, the development of the new supports, the
addition of new promoters and the use of Ni-containing catalysts in novel applications
make these Ni-containing catalysts promising materials for improving the actual catalytic
process and for developing new ones such as assisted catalytic processes using plasma,
solar energy or electro-assisted catalysis [20–25].
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