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Abstract: Copper catalysts were widely developed for CO2 conversion, but suffered severe sintering
at temperatures higher than 300 ◦C. Platinum was the most active and stable metal for RWGS
reactions. However, the high price and scarcity of platinum restrained its application. Downsizing
the metal particles can significantly improve the atom efficiency of the precious metal but the size
effect of Pt on RWGS reactions was still unclear. In the present work, the single atomic Pt on SrTiO3

was prepared using an impregnation leaching method, and the catalyst showed significant activity
for an RWGS reaction, achieving a CO2 conversion rate of 45%, a CO selectivity of 100% and a TOF of
0.643 s−1 at 500 ◦C. The structures of the catalysts were characterized using XRD, STEM and EXAFS.
Especially, the size effect of Pt in RWGS was researched using in situ FTIR and DFT calculations.
The results reveal that single Pt atoms are the most active species in RWGS via a “–COOH route”
while larger Pt cluster and nanoparticles facilitate the further hydrogenation of CO. The reaction
between formate and H* is the rate determination step of an RWGS reaction on a catalyst, in which
the reaction barrier can be lowered from 1.54 eV on Pt clusters to 1.29 eV on a single atomic Pt.

Keywords: size effect; single Pt atoms; SrTiO3; reverse water gas shift (RWGS)

1. Introduction

Global warming is becoming a rapid deterioration as a result of the huge release of
CO2 due to the extensive consumption of fossil energy. Upgrading CO2 into more valuable
products is considered as one of the most promising solutions for a CO2-neutral energy
supply [1–4]. RWGS reaction (Equation (1)) is an important process for converting CO2
to CO, which can be used as feedstock to produce value-added chemicals and synthetic
fuels [5,6]. The key issue of RWGS is how to lower the activation energy barrier of high
chemically stabile CO2 for obtaining high conversion rates and selectivity, and how to
improve the long-term stability by reducing the carbon deposition and inhibiting the
aggregation of active metal.

CO2 + H2 → CO + H2O ∆H0
298K = 41.5kJ/mol (1)

Supported noble metal catalysts are widely investigated for RWGS due to their high
activities. However, the high prices and rare resources of these noble metals limit their
application in large-scale production. Reducing the particle size to sub-nanoscale, such
as single atomic site catalyst, may enhance the atom efficiency of noble metals. Single
atomic metal catalysts are featured with isolated metal atoms anchored by the surrounding
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coordination species of solid supports as single atomic active sites, which are different
from Pt nanoparticles where the metal atoms are surrounded by the same metal atoms.
Therefore, the catalytic performances and the stabilities of highly dispersed metal species
are greatly influenced by the supports because the metal atoms are always coordinated by
the atoms on the surface of the support (mainly surface defects or Lewis basic sites) [7–9].
Both reducible (TiO2 [10–16], CeO2 [17–20], etc.) and irreducible supports (SiO2 [21],
Al2O3 [16,22,23], zeolite [24], MoS2 [3], Mo2C [25], etc.) have been adopted for loading
highly dispersed Pt. For the Pt loading on a reducible support, the reverse water gas shift
reaction was generally accepted as the redox mechanism via oxidation and reduction at the
Pt sites and the metal/oxide interfaces [16]. The reactive area was also proposed over a
Pt/CeO2 catalyst that Pt and ambient ceria (not solely the ceria on the Pt/CeO2 interface)
surrounding the Pt center participated in the RWGS reaction [18]. In addition, CO2 can
associatively adsorb on the surface defect sites to generate CO [18,26]. For the Pt catalysts
loading on an irreducible support, H2 and CO2 are both activated on a metal center and
the hydrogenation route may dominate the RWGS reaction [27]. The CO selectivity of a
catalyst in CO2 hydrogenation reactions is closely related with the CO binding strength that
may arise from the strong interactions (e.g., charge transfer) between the noble metal atoms
and the oxide support and the particle size of Pt [11,26]. A strong PM-CO bond strength
may lead to low CO selectivity. In similar results, a strong Co-CO bond strength was
also reported to benefit the CO2 methanation activity over a Co/CeO2-ZrO2 catalyst [27].
However, the particle size effect of Pt on RWGS has seldom been reported.

Perovskite catalysts are becoming increasingly significantly advantageous in many
reactions, such as dry reforming of methane [28], Suzuki couplings [29], water splitting [30],
oxygen reduction [31] and automotive emissions control [32]. It is interesting that pal-
ladium (Pd) could reversibly move into and out of the perovskite lattice in the cycling
between oxidative and reductive atmospheres. This movement helped to suppress the
growth of metallic Pd particles [32]. A similar conclusion was also found on the Pd/SrTiO3
in Suzuki coupling reactions [29]. These results suggested that SrTiO3 may be a good
support for a Pt catalyst in redox reactions. Furthermore, the surface alkaline-earth-metal
Sr component was observed to enhance the adsorption and activation of CO2 [33]. Orlov
and Chen et al. reported that Rh/SrTiO3 achieved good activity and CO selectivity for CO2
hydrogenation and the superior activity was suggested to originate from the cooperative
effect between the highly dispersed sub-nanometer Rh clusters for the efficient dissociation
of H2/C2H6 and the reconstructed SrTiO3 with oxygen vacancies for preferential adsorp-
tion/activation of CO2 [34]. Recently, the size effects of Pt particles in Pt/CeO2 catalysts
among Pt single atoms, sub-nanoclusters (ca. 0.8 nm) and nanoparticles (3.8–9.3 nm) for
the WGSR were reported [35]. However, the size effects of Pt from single atomic to cluster
in RWGS reactions have not been discussed; for example, the reaction routes and the states
of intermediates on subnano metal catalysts may be different from nanocatalysts. In the
present work, single atomic Pt and Pt nanoparticles were prepared using impregnation
method followed by leaching. By means of in situ FTIR, the intermediate processes of Pt
single atoms and Pt nanoparticles in an RWGS reaction were compared. Then, the reason
for the different activities of Pt single atoms and Pt nanoparticles were explained from
energy using DFT calculation.

2. Results and Discussions
2.1. Catalytic Performances

The catalytic performances of catalysts in RWGS reactions are shown in Figure 1. The true
Pt content of catalysts determined using ICP-OES was as follows: Pt in Pt/SrTiO3 = 0.39%
and Pt in Pt/SrTiO3-L = 0.17%. Although the Pt content was significantly reduced by
leaching, the Pt/SrTiO3-L catalyst presented much higher CO2 conversions than pristine
Pt/SrTiO3 at different temperatures. Table 1 shows the TOF of a Pt/SrTiO3-L catalyst in
an RWGS reaction at different temperatures. Chen [36] studied an RWGS reaction over
the Pt/CeO2 catalyst; in his work, the best TOF of the sample with 1% Pt was 0.056 s−1 at
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300 ◦C. The Pt/SrTiO3-L catalyst showed a much higher TOF than the Pt/CeO2 catalyst;
the main reason is the difference of metal dispersion. Large Pt particles make many Pt sites
exist as invalid sites, so the TOF of Pt/CeO2 catalyst is smaller than Pt/SrTiO3-L catalyst
that loaded Pt in the form of a single atom and a cluster.
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Table 1. TOFs of Pt/SrTiO3-L catalyst in RWGS reaction at different temperatures.

300 400 500

TOF (s−1) 0.154 0.455 0.643

2.2. Textural Properties

In order to further characterize the dispersion state of Pt species in a catalyst, high-
resolution STEM images of the samples were taken. Figure 2a shows the HAADF-STEM
images of a Pt/SrTiO3 catalyst, in which the Pt nanoparticles are 2.72 nm in size. Figure 2b
shows the HAADF-STEM images of a Pt/SrTiO3-L catalyst. Single atomic Pt and small Pt
clusters composed of 2–8 atoms (atoms) can be seen. No Pt nano particles can be found on
the Pt/SrTiO3-L catalyst.

The crystal phase of SrTiO3 and the Pt/SrTiO3 catalyst were measured using XRD, and
the results are shown in Figure 2d. The synthesized SrTiO3 is highly consistent with the
standard diffraction pattern of SrTiO3 (JCPDS# 35-0734). Pt related species cannot be found
in all of the samples, indicating that the Pt species were well dispersed on SrTiO3. The
extended X-ray absorption fine structure (EXAFS) measurements are shown in Figure 2e.
Compared with the standard sample of Pt foil and PtO2, no obvious Pt-Pt bond was
observed in either of the samples. The peak at 1.58 Å belonging to Pt-O coordination in the
Pt/SrTiO3-L catalyst, was sharper than that of Pt/SrTiO3. The second peak at 2.8–3.2 Å,
belonging to PtO2 in Pt/SrTiO3-L catalyst, does not match the reference indicating that Pt
species are mainly in sub-nanoscale and in highly undercoordinated state [37,38]. It should
be mentioned that the EXAFS data were obtain ex situ. The valance state of Pt may not be
the true state of Pt in RWGS reactions.
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Table 2 shows the BET surface areas of the samples. After calcination at 1000 ◦C for 3 h,
the specific surface area of SrTiO3 was 17 m2/g. The Pt/SrTiO3 and Pt/SrTiO3-L catalysts
have a much smaller BET because loading Pt may block some of the pores in the catalyst
and acid treatment may damage the pore structure of the catalyst.

Table 2. The BET results of samples.

Sample SrTiO3 Pt/SrTiO3 Pt/SrTiO3-L

BET(m2/g) 17 11 9

2.3. H2-TPR

H2-TPR was used to characterize the redox properties of catalysts and the results are
shown in Figure 3. There is only one H2 consumption peak centered at 373 ◦C on SrTiO3,
ascribed to the surface oxygen [39]. This peak is obviously widened on the Pt/SrTiO3
catalyst arising from the activation effect of Pt on the oxide support surface [40,41]. As
for the reduction in the Pt related species on the Pt/SrTiO3 catalyst, two peaks at 68 and
201 ◦C, appearing that can be assigned to the reduction in the Pt nanoparticles and the
oxygen on interfaces between Pt and the SrTiO3 support. The significantly weakened H2
consumption peak of Pt over Pt/SrTiO3-L catalyst is also located at 68 ◦C, but has a much
smaller peak area, suggesting that a part of Pt atoms strongly interact with the support.
Two overlapped H2 consumption peaks at 300–400 ◦C of the Pt/SrTiO3-L catalyst can be
ascribed to the reduction of the interface oxygen of Pt-O-SrTiO3 and the surface oxygen of
SrTiO3 without interaction with Pt [42].
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2.4. In Situ FTIR
2.4.1. CO2 and H2 Co-Adsorption on SrTiO3 Support

Figure 4a,b shows the in situ FTIR of CO2 and the H2 co-adsorption on SrTiO3. The
peaks at 2400–2300 cm−1 are assigned to the linear adsorption of CO2 [2,18,25]. The peaks
at 1650–1680 cm−1 and 1300cm−1 are assigned to asymmetric and symmetric stretching of
COδ−

2 , respectively [18]. All of the species desorb with the elevation in the temperature.
At temperatures higher than 200 ◦C, CO2 molecules mainly physically and weakly adsorb
on the SrTiO3 support. The formate species (1559 cm−1) on SrTiO3 can only be found at
temperatures higher than 150 ◦C, indicating that SrTiO3 also participates in the formation
of formate intermediates.
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When the in situ FTIR characterization was performed at first for CO2 adsorption and
then for purging by H2, the peaks of all of the CO2 derived species reduced quickly and
could be detected clearly at temperatures higher than 200 ◦C, suggesting that a bare SrTiO3
support cannot adsorb and activate CO2 efficiently.

2.4.2. CO2 and H2 Adsorption on Pt/SrTiO3 and Pt/SrTiO3-L

(1) CO2 pre-adsorption and purging by H2

The in-situ DRIFT spectra of adsorbed species on the Pt/SrTiO3 catalyst under CO2
pre-adsorption and then purging by H2, are shown in Figure 5a–c. Physically adsorbed
CO2 molecules on both catalysts at 50 ◦C can be found as indicated by the peaks at
2200–2400 cm−1. The faster CO2 desorption behavior on Pt/SrTiO3 indicates that CO2
adsorbing on Pt nanoparticles is more stable than those on Pt single atoms and clusters.
The peaks at 2000–2100 cm−1 were assigned to CO adsorbing atop metallic Pt atoms [43,44].
Both catalysts show similar behavior in CO adsorption with the elevation of temperature:
the peak intensity becomes weaker because of desorption and the peak position redshifts
due to a lower surface coverage. The peaks of Pt (CO) species on Pt/SrTiO3-L are much
sharper and narrower than those on the Pt/SrTiO3 catalyst, indicating the narrower size
distribution of Pt species. The peaks at 1914–1929 cm−1 are ascribed to CO on Pt nanoparti-
cles or clusters [45]. The peaks in this region on a leached sample are significantly lower
than those on pristine Pt/SrTiO3, indicating the removal of Pt nanoparticles by leaching.
After excluding the influence of support and CO2 products, the peaks at 1566–1539 and
1357–1395 cm−1 can be assigned to the formate species produced in the co-adsorption
reaction [2,13,25], as shown in Figure 5c,f. Compared with those on SrTiO3 in Figure 4b,d,
the signals of formate on Pt/SrTiO3 and Pt/SrTiO3-L present at 50 ◦C, suggesting that Pt is
the more active species, rather than the SrTiO3 support for CO2 hydrogenation to formate.
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(a–c) and Pt/SrTiO3-L catalyst (d–f).

(2) CO2 and H2 co-adsorption

The DRIFT spectra of the adsorbed species were collected under H2 and CO2 co-
adsorption, and the results are shown in Figure 6. From Figure 6b,e, the Pt/SrTiO3-L
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catalyst has stronger and narrower peaks of CO atop Pt at 2071 cm−1 [44,45]. The peaks of
CO on Pt clusters (1900–2000 cm−1) are very small. The Pt/SrTiO3 catalyst has obviously
broad peaks at 2072 cm−1 (CO atop Pt atoms) and 1927 cm−1 (CO on Pt nanoparticles),
indicating the multiple CO-derived species on the Pt/SrTiO3 catalyst. From Figure 6c,f, the
peaks of formate (1800–1200 cm−1) on the Pt/SrTiO3-L catalyst are very weak suggesting
that the formate species could convert to CO immediately. However, those species on
the Pt/SrTiO3 catalyst are still robust, even at 400 ◦C, indicating the strong adsorption of
formate on the Pt nanoparticles.
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According to the above three groups of in situ FTIR results, the reaction path and gas
activation site can be reasonably speculated. The SrTiO3 support has no activity for an
RWGS reaction, but intermediate species appeared on its surface when CO2 was introduced.
This shows that CO2 is activated to generate intermediate species. After the addition of
Pt, H2 can be cracked on the surface of the metal, thereby making the catalyst active. As
for the two catalysts, the Pt/SrTiO3-L catalyst showed a more obvious consumption of
intermediate products than the Pt/SrTiO3 catalyst, which might lead to the higher activity
of the Pt/SrTiO3-L catalyst.

2.5. DFT Results and Reaction Mechanisms

According to the in situ FTIR results, sub-nano Pt is more active than Pt nano particles
for the formation of formate and CO2 can only be physically adsorbed on Pt/SrTiO3.
Formate species may convert to CO immediately over the Pt/SrTiO3-L catalyst, which only
has single Pt atoms and Pt clusters. To consolidate these conclusions, we further conducted
DFT calculations to explore the possible reaction mechanism of RWGS over a catalyst.

The SrTiO3 [110] surface (Figure 7) can provide six isolated sites to anchor six Pt atoms.
While, further increasing the number of Pt atoms, there were not enough sites on the surface
to isolate the Pt atoms, which made the formation of Pt clusters occur gradually. The Pt
atoms tend to occupy the surface vacancy preferentially and hate to form Pt-Pt bonds when
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the Pt content is low. From the in situ FTIR results, metallic Pt dominates the Pt species.
Therefore, the Pt1 single atom and Pt7 metal cluster are used for the RWGS reaction as
representatives. For comparison, we chose the models of the SrTiO3 [110] surface loaded
with isolated Pt atoms (Pt1/SrTiO3) and Pt7 cluster (Pt7/SrTiO3) to investigate the size
effect of Pt on the RWGS’s performance. In the work of Chunyang Dong et al., the density
functional theory of Pt nanoparticles was performed. The results show that it is difficult to
form CO on Pt nanoparticles [46].
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We screened possible intermediates and reaction routes for CO2 hydrogenation
over Pt1/SrTiO3 and Pt7/SrTiO3. The results are shown in Figure 8. On both surfaces,
our calculations support the COOH intermediates mechanism in the RWGS reaction,
CO2→COOH→CO, which is consistent with the results of in the situ FTIR. Taking the
reaction on Pt1 as the example, the reaction starts by H2 dissociated adsorption with an
exothermic energy of 1.43 eV. Next, CO2 shows a physical adsorption with an adsorption
energy of −0.05 eV, suggesting the physically adsorption of CO2 on Pt. In the presence
of dissociated H atoms on Pt sites, the CO2 can react with the H atoms to form COOH.
The reaction barrier and reaction energy of this hydrogenation reaction over two catalysts
are 0.72 (Pt1/SrTiO3) and 0.71 eV (Pt7/SrTiO3), respectively. The COOH intermediate
over Pt1/SrTiO3 then further reacts with a nearby H atom to produce CO and H2O with
an energy barrier of 1.29 eV. The generated water desorbs into the gas phase, leaving
behind the adsorbed CO molecule. However, this process on Pt7/SrTiO3 needs much the
higher energy of 1.54 eV, indicating that the reaction between formate and H* is the rate
determination step of the RWGS reaction and that Pt1 is more active than Pt7. The strong
adsorption of formate (in situ FTIR results) on the Pt cluster and nanoparticle may retard
the reaction between the COOH intermediate and nearby H.

To understanding the CO behavior of desorption or hydrogenation on the catalysts,
we further calculate the CO hydrogenation to CHO. The reaction barriers of CO hydrogena-
tion are 1.88 and 1.07 eV on Pt1/SrTiO3 and Pt7/SrTiO3, respectively. The high reaction
barrier on Pt1/SrTiO3 means that the generated CO molecule tends to desorb rather than
hydrogenate. In contrast, on Pt7/SrTiO3 the same reaction barrier of CO hydrogenation and
RWGS indicates that the CO prefers to be hydrogenated to produce other hydrogenated
products (e.g., CH2O, CH3OH, CH4 etc.).
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3. Experimental Method
3.1. Catalyst Synthesis

The SrTiO3 supports were prepared using a hydrothermal method. In 20 mL anhy-
drous ethanol, 4.39 g (0.015 mol) titanium isopropoxide (Ti[OCH(CH3)2]4, 97%, Sigma-
Aldrich) (St Louis, MO, USA) was dissolved then 1.2 g of sodium hydroxide dissolved
in 10mL deionized water was added into the above solution. The obtained mixture was
treated at 80 ◦C for 2 h to obtain precursor A. In 10mL deionized water, 3.165 g of (0.015 mol)
strontium nitrate was dissolved in 20 mL of deionized water, and then 1.2 g of sodium
hydroxide was added dropwise to obtain precursor B. Precursors A and B were mixed
and sealed in a Teflon container and kept at 150 ◦C for 2 h. The obtained product was
centrifuged and washed several times with deionized water, then dried at 80 ◦C for 48 h.
After that, the product was grinded to 80 mesh and heated at 1000 ◦C in a muffle furnace
for 3 h to obtain well crystalized SrTiO3.

The Pt/SrTiO3 catalyst was prepared using impregnation method. A certain amount
of tetraammineplatinum dinitrate (H12N6O6Pt, Macklin, 99%, Newport Beach, CA, USA)
was dissolved in 25 mL of an Ethylenediamine (Aladdin, 99%, Seattle, WA, USA) solution
(0.001 g/mL of Pt) and then mixed with 5 g SrTiO3 under stirring. After a 24-h immersion
at room temperature, the catalyst was dried at 80 ◦C for 48 h. The obtained product was
grinded to 80 mesh and heated at 350 ◦C at 5 ◦C/min for 3 h.

The Pt/SrTiO3-L catalyst was prepared by leaching Pt/SrTiO3 catalyst. A total of 2.5 g
of a Pt/SrTiO3 catalyst was put into 50 mL HCl solution with a pH = 2 for 3 h. The product
was centrifuged and washed several times with deionized water, then dried at 80 ◦C for
48 h.

3.2. Characterizations
3.2.1. Powder X-ray Diffraction (XRD)

XRD patterns were collected on a Bruker D8 Advance X-ray diffractometer (Billerica,
MA, USA) using Cu Kα (λ = 1.5406 Å) radiation. Samples were tested on 2θ = 10◦–90◦ at a
scan rate of 10◦ min−1.

3.2.2. BET and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-OES)

Specific surface areas and pore structures of the catalysts were measured using ASAP
2020 Plus physisorption micromeritics (Micromeritics, Norcross, GA, USA). The true
loading amount of Pt in a catalyst was measured on a Thermo IRIS Intrepid II (Waltham,
MA, USA).
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3.2.3. H2-Temperature-Programmed Reduction (H2-TPR)

Temperature-programmed-reduction (TPR) experiments were performed in a packed-
bed flow microreactor (L = 22 inch, O.D. = 1/2 inch) in AutoChem II 2920 (Micromeritics).
Samples of 50 mg mixed with 200 mg of SiO2 were first pretreated under agron at 100 ◦C
for 1 h. The sample then was cooled to 25 ◦C and heated from 25 ◦C to 700 ◦C in 10 ◦C/min
under 10% H2/He.

3.2.4. Scanning Transmission Electron Microscopy (STEM)

Samples were characterized by FEI Tecnai G2 F30 Field Emission Transmission Elec-
tron Microscope (Hillsboro, OR, USA) and Titan ETEM Themis (Bangalore, India). The
particle size distribution was obtained by measuring no less than 100 particles via ImageJ
software (Shenzhen, China).

3.2.5. In Situ Fourier-Transformed Infrared Spectroscopy

In-situ DRIFTS experiments were performed on a Thermo Scientific Nicolet iS50. The
following two kinds of intake experiments were carried out:

(1) The samples were firstly exposed to 10%CO2 in He at room temperature for 30 min
and then 10%H2 in He treatment for 10 min.

(2) The samples were treated under a mixed gas of 5%H2+5%CO in He.
During these two processes, the IR spectra were collected at various temperatures

under gas purging.

3.2.6. Density Functional Theory (DFT) Calculation Details

All of the density functional theory (DFT) calculations were performed using the
Vienna ab-initio simulation package (VASP). The projector-augmented wave (PAW) method
was used to represent the core-valence interaction [45,46]. The plane wave energy cutoff
was set to 400 eV. The generalized gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional and local Hubbard term U correction was
used in our calculations. The values of U are 3.5 for Ti. The Brillouin zone was sampled
at Gamma point with the 1 × 1 × 1 k-point meshes for the SrTiO3 [110] surface. The
energy and force criterion for the convergence of the electron density are set at 10−5 eV
and 0.05 eV/Å, respectively. In order to research the size effect of Pt on SrTiO3, the size of
single Pt atoms and clusters (sever atoms) on the SrTiO3 [110] surface were both calculated,
considering the RWGS reaction on large Pt particles were studied extensively.

3.2.7. Extended X-ray Absorption Fine Structure

The k-edge extended X-ray absorption fine structure spectrum (EXAFS) of Pt was
collected at the synchrotron radiation source (SSLS) center in Singapore, where the X-ray
beam was monochromated with channel-cut Si [111] crystals. The k-edge absorption data
of Pt was recorded in the transmission mode. Pt foil and PtO2 were used as references. The
working energy of the storage ring was 2.5 GeV, and the average electron current was less
than 200 mA. The ATHENA module implemented in the IFEFFIT software package used
to extract and process the acquired EAXFS data according to standard procedures. Using
the Bessel window function, the k3-weighted Fourier transform (FT) of χ(k) in R space was
obtained in the range of 0–14.0 Å−1.

3.3. Activity Tests

All of the catalysts were performed in a fixed-bed reactor under atmospheric pressure.
An electromagnetic flowmeter was used to control the flow rate of the feed gas. For the
activity and stability test, 200 mg of a catalyst (80 mesh) mixed with 300mg of quartz
sand (Macklin, AR, 50–80 mesh) was loaded in the center of a quartz tube (i.d. 10 mm).
The gas flow of the reactants into the reactor was kept at 50 mL min−1 (gas hourly space
velocity = 6000 h−1). After purging by He for 30 min at 200 ◦C, the temperature of the tubu-
lar furnace was elevated to the reaction temperature for testing. Descending temperature
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was used for the activity test. The gas products were analyzed using a gas chromatograph
equipped with a flame ionization detector (FID) and a TCD (Fuli, GC9790plus, Taizhou,
China). The RWGS activity of the catalyst was measured by the ratio of converted CO2 to
total CO2.

4. Conclusions

In the present work, the single platinum atoms and nanoparticles on SrTiO3 were
prepared. The single atomic Pt catalyst showed excellent activity at temperatures higher
than 300 ◦C, reaching a TOF of 0.643 s−1 and 100% of CO selectivity at 500 ◦C in the RWGS
reaction. The size effects of Pt in the RWGS reaction were researched using the DRIFTs
and DFT methods. The results revealed that single Pt atoms have the highest activity and
CO selectivity in RWGS via a “–COOH route”, while Pt metals of a larger particle size
facilitate the further hydrogenation of CO. The reaction between formate and H* is the
rate determination step of the RWGS reaction over Pt/SrTiO3. The strong adsorption of
formate (in situ FTIR results) on Pt clusters and nanoparticles may retard this reaction step.
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