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Abstract: We report N-iodosuccinimide as the most efficient and selective precatalyst among the
N-halosuccinimides for dehydrative O-alkylation reactions between various alcohols under high-
substrate concentration reaction conditions. The protocol is non-metal, one-pot, selective, and easily
scalable, with excellent yields; enhancing the green chemical profiles of these transformations.
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1. Introduction

The C–O bond construction is one of the significant implements in organic synthesis
since it provides access to the production of cosmetics, fragrances, pharmaceuticals, and
dyestuffs [1]. Since alcohols are inexpensive and could effectively serve as alkylating
agents, their direct cross-coupling with O-nucleophiles could be a very desirable strategy
for avoiding an additional synthetic step for coupling reactions.

Activation of alcohols for nucleophilic substitution using a substoichiometric amount
of different catalysts, such as metal ions: [RuCp(o-EtOdppe)](OTs), CuBr2, NaAuCl4, Brøn-
sted, or Lewis acids (hypervalent [bis(trifluoroacetoxy)iodo]benzene catalyst has been
found to function as a Lewis acid) or other supporters such as organohalides or molec-
ular iodine in the presence of solvents has been touched on by some reviews [2–10] and
recently developed reports [11–14]. However, the requirement for toxic and costly reagents,
environmentally inappropriate solvents, multiple synthetic steps, and high temperatures
make such a synthetic protocol less desirable from a sustainability perspective. Therefore,
these disadvantages have challenged chemists to invent and develop novel methods for
direct dehydrative C–O coupling, using alcohols as electrophiles under environmentally
benign conditions.

We previously reported the role of N-halosuccinimides (NXSs) (chloro, bromo, or
iodo) as the mediator for the direct conversion of a hydroxyl group, forming new C–C
or C-heteroatom bonds. N-iodosuccinimide (NIS) was the most efficient and selective
mediator among the NXSs [15].

With our continuous research work on improving and developing greener proto-
cols [16–19], we now report the expanding role of NIS as a commercially available, metal-
free, and easy-to-handle precatalyst for direct dehydrative O-alkylation reactions between
various alcohols under high-substrate concentration reaction conditions (HCRC), and
leading to a practical, efficient, selective, and easily scalable method.

A high-concentration reaction condition in our case is defined as a concentration
where less than 0.2 mL of solvent/mmol of substrate and reagent was used.
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2. Results and Discussion

We began our investigations by using diphenylmethanol 1 with NIS as the precata-
lyst under solvent-free reaction conditions (SFRC), where the dimerization process was
observed (Scheme 1), resulting in the formation of symmetric ether 2 (entry 1, Table 1). For
the transformation of diphenylmethanol 1 without NIS, in the presence of MeOH 3 under
HCRC, no conversion of the starting material was observed [15].

Scheme 1. The conversion of diphenylmethanol 1 mediated by NIS under SFRC.

Table 1. The effect of the loading of NIS on the conversion of diphenylmethanol 1 under SFRC a.

Entry NIS (mol %) Conv. b (%) of 1 Yield c (%) 2

1 0.5 79 78 d

2 1 90 89 d

3 2 100 100
a Reaction conditions: diphenylmethanol 1 (0.5 mmol), 70–75 ◦C, 3.5 h. b,c Determined by 1H NMR spectroscopy.
d Benzophenone 1%.

The effect of NIS loading for the reaction of diphenylmethanol 1 in the absence of a
nucleophile source under SFRC was examined, and the results are presented in Table 1, and
in Supplementary Materials To increase the yield of the product, different concentrations
of the precatalyst were used. Employing 0.5 mol% of the precatalyst, the formation of
the corresponding product 2 with good yield was observed, accompanied by a trace of
oxidized alcohol (entry 1). By increasing the precatalyst loading to 1 mol%, we observed the
high conversion of the starting material 1 into the corresponding product 2, accompanied
by a trace of oxidized alcohol (entry 2). We found that for the quantitative conversion of the
starting material 1 to the dimeric ether 2, 2 mol% of the precatalyst was effective (entry 3).

Furthermore, we continued our investigations by heating diphenylmethanol 1 with
methanol (MeOH) 3 mediated by NIS under HCRC, affording the corresponding ether 4 in
excellent yield [15]. (Scheme 1).

In searching for the optimal reaction conditions, different parameters, such as loading
of the NIS as the mediator and temperature for the reaction of diphenylmethanol 1 with
MeOH 3 under HCRC (Schemes 2 and 3), were first examined, and the results are presented
in the Tables 2 and 3 and in Supplementary Materials. To determine the effectiveness of
the NIS as the mediator, different concentrations of the precatalyst were employed. In the
reaction of diphenylmethanol 1 with MeOH 3 using 0.5 mol% of the precatalyst, the forma-
tion of the corresponding product 4 in good yield and accompanied by a small amount
of symmetric ether 2 was observed (entry 1). By increasing the precatalyst loading to 1
mol%, quantitative conversion of the starting material 1 into the corresponding product 4
was noticed, accompanied by a small amount of dimeric ether 2 (entry 2). Similar results
were achieved when the precatalyst loading was increased up to 2 mol% (entry 3). An
improvement of 100% yield, without forming the dimeric ether was attained by increasing
the precatalyst loading up to 3 mol% (entry 4).



Catalysts 2021, 11, 858 3 of 11

Scheme 2. The conversion of diphenylmethanol 1 in the presence of MeOH 3 mediated by NIS
under HCRC.

Scheme 3. The conversion of diphenylmethanol 1 in the presence of MeOH 3 mediated by NIS
under HCRC.

Table 2. The effect of the loading of NIS on the conversion of diphenylmethanol 1 with MeOH 3
under HCRC a.

Entry NIS (mol %) Conv. b (%) of 1 Relative Distribution c (%)

4 2

1 0.5 83 78 5
2 1 100 94 6
3 2 100 95 5
4 3 100 100 /

a Reaction conditions: diphenylmethanol 1 (0.5 mmol), MeOH 3 (1 mmol), 70–75 ◦C, 6 h. b Determined by 1H
NMR spectroscopy. c Yields calculated relative to alcohol 1.

Table 3. The catalytic effect of NIS on the conversion of diphenylmethanol 1 with MeOH 3 based on
the temperature under HCRC a.

Entry T(◦C) Conv. b (%) of 1 Relative Distribution c (%)

4 2

1 rt / / /
2 40–45 26 23 3
3 50–55 61 56 5
4 60–65 86 81 3 d

5 70–75 100 100 /
a Reaction conditions: diphenylmethanol 1 (0.5 mmol), MeOH 3 (1 mmol), 6 h. b Determined by 1H NMR
spectroscopy. c Yields calculated relative to alcohol 1. d Benzophenone 2%. rt—room temperature.

The effect of temperature on the course of the reaction was examined by the reaction
of diphenylmethanol 1 with MeOH 3 mediated by NIS under HCRC. When the reaction
was carried out at room temperature, no transformation took place (entry 1). When the
reaction was performed at 40–45 ◦C, the desired product 4 in low yield and a small amount
of dimeric ether 2 were obtained (entry 2). An increase of reaction temperature up to
50–55 ◦C provided the corresponding product 4 in moderate yield, accompanied by a small
amount of symmetric ether 2 (entry 3). Further optimization revealed that the reaction
could be performed smoothly by raising the temperature to 60–65 ◦C. An improvement by
100% yield without forming the symmetric ether was attained by increasing the reaction
temperature to 70–75 ◦C.

Screening on precatalyst loading and reaction temperature showed that 3 mol% NIS,
70–75 ◦C, and 6 h were the best conditions ensuring complete conversion of 1 into the
corresponding ether 4 (Scheme 4).
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Scheme 4. Optimal reaction conditions for the conversion of diphenylmethanol 1 into the
(methoxymethylene)dibenzene 4 mediated by NIS under HCRC.

Encouraged by these promising results, we applied the obtained optimal reaction
conditions to direct dehydrative O-alkylation reactions between different alcohols mediated
by NIS under HCRC (Scheme 5), and the results are collected in Table 4.

Scheme 5. Transformation of benzyl and tertiary alkyl alcohols with alkyl alcohols mediated by NIS
under SFRC, under HCRC or in solution.

Table 4. Transformation of benzyl and tertiary alkyl alcohols with alkyl alcohols mediated by NIS under SFRC, under
HCRC or in solution a.

Entry R1, R2, R3 R–OH,
Time (h) Product Conversion b (%)

(Yield c (%))

1 g R1 = R2 = H, R3 = Ph
1

/
(3.5)

 

100
“(99) [15]”

2 R1 = R2 = H, R3 = Ph
1

MeOH
3

(6)
100

3 g
R1 = Me, R2 = H, R3 =

Ph
5

/
(4.5)

100
(99)

4
R1 = Me, R2 = H, R3 =

Ph
5

MeOH
3

(6)

100 d

(90)

5
R1 = Cl, R2 = H, R3 =

Ph
8

MeOH
3

(24)

100
(99)
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Table 4. Cont.

Entry R1, R2, R3 R–OH,
Time (h) Product Conversion b (%)

(Yield c (%))

6 R1 = R2 = H, R3 = Ph
1

EtOH
10

(24)

100 d

(89)

7 R1 = R2 = H, R3 = Ph
1

iPrOH
12

(24)

100 d

(88)

8 R1 = R2 = H, R3 = Me
14

MeOH
3

(24)

67 e

“(61) f [15]”

9 R1 = H, R2 = R3 = Me
16

MeOH
3

(24)

93
“(90) [15]”

10 C6H5(CH2)2C(CH3)2
18

MeOH
3

(24)

74
“(64) [15]”

11 R1 = R2 = R3 = H
20

MeOH
3

(24)

“2 e [15]”
-

12 g R1 = Me, R2 = R3 = H
22

/
(24)

100
(99)

13 R1 = Me, R2 = R3 = H
22

MeOH
3

(24)
10 d

14 R1 = Cl, R2 = R3 = H
25

MeOH
3

(24)
-

15
R1 = Me, R2 = H, R3 =

Ph
5

TMSOEt
27

(24)

100 e

“(89) [15]”

a Reaction conditions: alcohol (0.5 mmol), NIS (2–10 mol %), MeOH, EtOH, iPrOH, or TMSOEt (0.55 mmol-1 mL), 50–85 ◦C, 3.5–24 h.
b Determined by 1H NMR spectroscopy. c Isolated yields. d Oxidized alcohol and dimeric ether 4–6%. e Oxidized alcohol 2–9%. f Specific
rotation [α] = +15◦. g Reactions was performed under SFRC.
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Effective transformation with MeOH 3, mediated by NIS, was observed in the reaction
with additional derivatives of diphenylmethanol bearing EDG or EWG on the aromatic
rings affording the corresponding products in excellent yields. We checked the reaction
of phenyl(p-tolyl)methanol 5 with NIS as the mediator, in the absence or in the presence
of MeOH, wherein in both cases we established the quantitative formation of the dimeric
ether 6 (entry 3, Table 4) or the corresponding ether 7 (entry 4, Table 4). Etherification
of (4-chlorophenyl)(phenyl)methanol 8 with MeOH 3, mediated by NIS under HCRC,
provided the corresponding product 9 in excellent yield (entry 5, Table 4).

Furthermore, we performed the reaction of diphenylmethanol 1 catalyzed by NIS,
in the presence of EtOH 10, under HCRC, which efficiently and successfully resulted in
the formation of the corresponding ether 11, accompanied by a small amount of dimeric
ether 2 and oxidized alcohol (entry 6, Table 4). The transformation of diphenylmethanol 1
catalyzed by NIS in isopropyl solution (i-PrOH) 12, provided the corresponding ether 13 in
high yield, accompanied by a small amount of oxidized alcohol (entry 7, Table 4).

The effective and selective transformation was observed in the reaction with tertiary
benzyl and alkyl alcohols. 2-Phenylpropan-2-ol 16 was readily mediated by NIS under
HCRC to afford quantitative yields of target ether 17 in methanol solution [15] (entry 9,
Table 4). α,α-dimethylbenzenepropanol 18 catalyzed by NIS, in the presence of MeOH 3
under HCRC was successfully converted into their corresponding ether 19 [15] (entry 10,
Table 4).

In the case of 1,1-diphenylethanol in the presence of a substoichiometric amount of
NIS (0.5 mol% NIS, 70–75 ◦C, 24 h) under SFRC, 1,1-diphenylethene in the quantitative
yield was observed, while in the presence of MeOH, EtOH, and i-PrOH increasing the
amount of NIS up to 5 mol%, under HCRC, the formation of the corresponding alkene
in high yield, accompanied by the formation of benzophenone (12–30%) was observed.
We further investigated reactions of primary benzyl alcohols bearing EWG and EDG
on the aromatic ring with MeOH under HCRC. In the case of primary unsubstituted
benzyl alcohol 20, in the presence of MeOH, mediated by NIS, and under HCRC, only a
trace amount of benzaldehyde was observed [15] (entry 11, Table 4). The transformation
of 4-methylbenzyl alcohol 22 catalyzed by NIS in the absence of MeOH, under SFRC,
was efficiently and selectively converted into the dimeric ether 23 (entry 12, Table 4).
Etherification of 4-methylbenzyl alcohol 22 with MeOH under HCRC or in solution, using
NIS as the precatalyst was not efficient (entry 13, Table 4). 4-chlorobenzyl alcohol 25 in the
presence of MeOH, mediated by NIS was unable to undergo conversion (entry 14, Table 4).

Furthermore, we performed the reaction of phenyl(p-tolyl)methanol 5 with NIS as the
mediator in the presence of ethoxytrimethylsilane (TMSOEt) 26 as the nucleophile source,
where the ethoxy functional group was introduced efficiently into the organic molecule
27 [15], (entry 15, Table 4).

Additionally, to verify the synthetic value of the reported procedure, synthesis of
(methoxymethylene)dibenzene 4 was accomplished at 10 mmol scale with high yield.

It was reported that the I–N bond of NIS as a precatalyst was activated by its reaction
with the addition of alcohol. Consequently, it seems possible that transient halogen bonding
could be necessary for the catalytic activity of NIS. Based on all the presented results, a
potential explanation indicates the formation of HOI from the decomposition of NIS as
the precatalyst by its reaction with the addition of alcohol [20–23]. The halogen bonding
adducts are not the activated species. Instead, halonium (X+) transfer will generate the
intermediate resulting succinimide anion and HOI, promoting the etherification reaction.

HOI decomposes, forming I2 and HIO3. Iodine is well known for forming HOI and
HI in aqueous reaction media, providing the regeneration of HOI for further activity as a
catalyst. It could be seen that the formation of water through the etherification reaction
as the only by-product of the reaction could accelerate the reaction. The assumption that
NIS was a precatalyst providing HOI, I2, and protons during the system, which could
correspond to nucleophilic substitution acceleration, was indicated to be reasonable [15,18].
To get insight into the precatalyst’s thermal stability, thermal gravimetric analysis (TGA)
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on the NIS was accomplished. It was observed that degradation of the NIS did not occur at
25–200 ◦C [15].

To further extend this etherification protocol’s scope, we studied the impact of NIS as
the precatalyst for direct etherification of diphenylmethanol 1 with primary benzyl alcohols
bearing an electron-withdrawing, as well as electron-donating, substituent on the aromatic
ring under SFRC (Scheme 6). The results are collected in Table 5. Direct etherification of
diphenylmethanol 1 with unsubstituted benzyl alcohol 20 was carried out using NIS as the
precatalyst under SFRC, leading to the corresponding ether 29 in high yield. In contrast, a
small amount of oxidized alcohol and aldehyde were detected as side products (entry 1,
Table 5). In the case of the reaction of diphenylmethanol 1 with 4-methylbenzyl alcohol 22
using NIS as the precatalyst under SFRC, the formation of the corresponding ether 30 in
good yield, with a small amount of oxidized alcohol and dimeric ether 2 as side products
(entry 2, Table 5), was detected. In the case of the reaction of diphenylmethanol 1 with
4-chlorobenzyl alcohol 25, mediated by NIS under SFRC, we observed the quantitative
conversion of the starting material 1 into the corresponding ether 31, accompanied by a
small amount of oxidized alcohol (entry 3, Table 5).

Scheme 6. Direct etherification of diphenylmethanol 1 with primary benzyl alcohols 20, 22, and 25,
mediated by NIS under SFRC.

Table 5. Direct etherification of diphenylmethanol 1 with primary benzyl alcohols 20, 22, and 25,
mediated by NIS under SFRC a.

Entry. R Conversion. b (%) of 1
(Yield c (%))

1 H 100 d

(88)

2 4-Me 96 e

(73)

3 4-Cl 100 d

(90)
a Reaction conditions: Diphenylmethanol 1 (0.5 mmol), primary benzyl alcohols 20, 22, and 25 (0.65 mmol), NIS
(6–10 mol%), 70–75 ◦C, 24 h. b Determined by 1H NMR spectroscopy. c Yields calculated relative to alcohol 1.
Values in parentheses are isolated yields. d Oxidized alcohol and aldehyde 6–10%. e Oxidized alcohol and dimeric
ether 18%.

We previously presented the stereochemical pathway of the etherification between (S)-
(−)-1-phenylethanol 14 and MeOH 3, mediated by NIS, affording the corresponding ether
15 in moderate yield (entry 8, Table 4) and accompanied by a small amount of oxidized
alcohol. The specific rotation of pure product 15 provided the value [α] = +15◦, disclosing
that we are not dealing with totally SN1 or SN2 cases but with the combination of both. It
could be seen that the dimerization process is the SN1 and the final etherification is the SN2
mechanism, (Scheme 7).
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Scheme 7. Plausible reaction mechanism.

3. Materials and Methods

Chemicals used for synthetic methods were provided from commercial resources (Sigma
Aldrich, St. Louis, MO, USA; Merck, Darmstadt, Germany; Fluka, Seelze, Germany). Reac-
tions were observed by thin-layer chromatography (mobile phase: dichloromethane/hexane
9:1) with silica gel coated plates (Silica gel/TLC cards; DC-Alufolien-Kieselgel, Sigma
Aldrich, St. Louis, MO, USA), and detected by UV (Camag, Muttenz, Switzerland) lamp
(254 nm). Column chromatography (CC) was performed using silica gel Kieselgel 60 (Fluka,
Sigma-Aldrich, St. Louis, MO, USA, particle size: 0.063–0.200 mm). Using a Varian INOVA
300 NMR, Ljubljana, Slovenia instrument, 1H and 13C NMR spectra were recorded using
CDCl3 as the solvent with SiMe4 (TMS) as an internal reference. Melting points were
measured using Buchi-Melting Point M-560 equipment, BUCHI Switzerland.
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General procedure for etherification of alcohols mediated by NIS on half mmol scale:
A mixture of benzyl alcohol (0.5 mmol), and N-iodosuccinimide as a mediator (3–10 mol%),
which had been powdered in a mortar in the case of solid-state reactants, was placed in a
4 mL screw-capped vial, followed by adding liquid component alkyl alcohol (1 mmol-1 mL)
and heated to 70–75 ◦C for 6 h–24 h. TLC detected the progress of the reaction mixture.
After cooling down to room temperature the mixture was diluted with ethyl acetate (15 mL),
washed thoroughly with Na2S2O3 (2 × 3 mL), NaHCO3 (2 × 3 mL), and distilled water
(2 × 5 mL), and dried over anhydrous Na2SO4. The solvent was evaporated under reduced
pressure, and the crude reaction mixture obtained was determined by 1H NMR.

The scale-up procedure for the synthesis of (Methoxymethylene)dibenzene 4 with
MeOH 3, mediated by NIS: A mixture of diphenylmethanol 1 (10 mmol, 2.2425 g), 3 mol%
NIS (67.5 mg, 0.3 mol), which had been previously powdered in a mortar, was transferred
to a 20 mL screw-capped glass scintillation vial, MeOH 3 (20 mmol, (800 µL) was added,
and heated at 70–75 ◦C for 6 h. TLC followed the progress of the reaction mixture. Upon
completion of the reaction, the mixture was cooled to room temperature. Finally, the crude
reaction mixture was purified by column chromatography to obtain a pure product in
excellent yield (colorless oil, 2.1725 g, and 90%).

4. Conclusions

In conclusion, we have presented an efficient, selective, one-pot, metal-free method-
ology for direct C–O bond formation from readily available alcohols, using NIS as a
metal-free and easy-to-handle precatalyst under HCRC. In the case of 1,1-diphenylethanol
mediated by NIS under SFRC, dehydration resulting in 1,1-diphenylethene was observed,
while phenyl-substituted primary and secondary alcohols under the same conditions
gave dimeric ethers. Phenyl-substituted primary, secondary, and tertiary alcohols un-
der HCRC gave alkyl ethers, while under the same conditions 1,1-diphenylethanol gave
1,1-diphenylethene. The large scale synthesis of methoxymethylene)dibenzene 4 was per-
formed, with excellent yield. Moreover, etherification could also be achieved by cross
coupling two different benzyl alcohols and mediated by NIS as the precatalyst under SFRC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11070858/s1, General Information, Optimisation of Reaction Conditions, Scheme S1.
The conversion of diphenylmethanol 1 mediated by NIS under SFRC, Figure S1: The effect of load-
ing of NIS on the conversion of diphenylmethanol 1 under SFRC, Scheme S2. The conversion of
diphenylmethanol 1 in the presence of MeOH 3 mediated by NIS under HCRC, Figure S2: The
effect of loading of NIS on the conversion of diphenylmethanol 1 with MeOH 3 under HCRC,
Scheme S3. The conversion of diphenylmethanol 1 in the presence of MeOH 3 mediated by NIS
under HCRC, Figure S3: The catalytic effect of NIS on the conversion of diphenylmethanol 1 with
MeOH 3 based on temperature, under HCRC, Characterization Data of Isolated Final Products,
Measurements of Specific Rotation, 1H NMR and 13C NMR Spectra of Isolated Final Products,
Figure S4. 1H NMR and 13C NMR spectra for (methoxymethylene)dibenzene (4), Figure S5: 1H
NMR and 13C NMR spectra for (±) 4,4′-(oxybis(phenylmethylene))bis(methylbenzene) (6), Figure S6:
1H NMR and 13C NMR spectra for (±) 1-(methoxy(phenyl)methyl)-4-methylbenzene (7), Figure S7:
1H NMR and 13C NMR spectra for 1-chloro-4-(methoxy(phenyl)methyl)benzene (9), Figure S8: 1H
NMR and 13C NMR spectra for (ethoxymethylene)dibenzene (11), Figure S9: 1H NMR and 13C
NMR spectra for isopropoxydiphenylmethane (13), Figure S10: 1H NMR and 13C NMR spectra
for 4,4’-(oxybis(methylene))bis(methylbenzene) (23), Figure S11: 1H NMR and 13C NMR spec-
tra for ((benzyloxy)methylene)dibenzene (29), Figure S12: 1H NMR and 13C NMR spectra for
(((4-methylbenzyl)oxy)methylene)dibenzene (30), Figure S13: 1H NMR and 13C NMR spectra for
(((4-chlorobenzyl)oxy)methylene)dibenzene (31), Figure S14: Thermal Gravimetric (TG) analysis of
the NIS. References [24–33] are cited in the Supplementary Materials.

Author Contributions: Conceptualization, S.S.; formal analysis, N.A. and S.S.; Investigation, N.A.
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