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Abstract: Biomass can be considered a renewable energy source. It undergoes a gasification process
to obtain gaseous fuel, which converts it into combustible gaseous products such as hydrogen, carbon
monoxide, and methane. The process also generates undesirable tars that can condense in gas lines
and cause corrosion, and after processing, can be an additional source of combustible gases. This
study focused on the processing of tar substances with toluene as a model substance. The effect of
discharge power and carrier gas composition on toluene conversion was tested. The process was
conducted in a plasma-catalytic system with a new Ni3Al system in the form of a honeycomb. The
toluene conversion reached 90%, and small amounts of ethane, ethylene, acetylene, benzene, and C3

and C4 hydrocarbons were detected in the post-reaction mixture. Changes in the surface composition
of the Ni3Al catalyst were observed throughout the experiments. These changes did not affect the
toluene conversion.

Keywords: glide arc; tar decomposition; nickel catalyst

1. Introduction

Biomass can be a renewable energy source. To obtain gaseous fuel, biomass undergoes
gasification or fermentation processes. Biomass gasification is a conversion of biomass into
combustible gaseous products, such as hydrogen, carbon monoxide, and methane. This
process is carried out at elevated temperatures, and the products also include undesirable
substances, such as tar [1]. Tar is a complex mixture containing carcinogenic, mono- and
polycyclic aromatic hydrocarbons, which can condense in gas pipes and cause corrosion.
The composition and concentration of tars in the gas depend on the type of biomass, its size,
and the gasification conditions [2–5]. After processing, tars can be an additional source of
gaseous fuels such as H2, CO, and CH4.

The use of pyrolysis gas as a fuel obtained from biomass requires its purification
since gas engines require fuel of a specific purity. According to different sources, the
concentration of tar substances cannot exceed the value of 50–100 mg/m3, and their
content after gasification can reach up to 180 mg/m3 [3–5].

Common methods of tar removal are absorption, adsorption, and plasma treatment [3],
as well as plasma-catalytic and catalytic methods. The most effective catalysts used to
decompose tar from the biomass gasification product stream are nickel catalysts [6–9].
The disadvantages of catalytic processes are the high process temperature of 600–800 ◦C,
which is economically unfavorable, and the formation of carbon deposits on the cata-
lyst surface [5,10]. A way to solve these problems is to use non-equilibrium plasma
with a catalyst [11–13]. Most studies are conducted on supported or co-precipitated cat-
alysts [5,8,14,15]. The novelty of these studies is the use of a metal catalyst made of
Ni3Al intermetallic alloy strips with a high nickel content together with a gliding dis-
charge plasma.
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2. Results and Discussion
2.1. Studies on Changes of the Catalyst Surface after Toluene Decomposition Process

Scanning electron microscope observations revealed a complex morphology on both
front and side surfaces of the catalyst (Figure 1). Spherical particles were found (Figure 1b)
due to the over-melting of the surfaces of the high-voltage electrodes made of Al–Si
alloys. At the edge of the catalyst, nanofibers of complex composition were also observed
(Figure 1b,c). In addition, the surface of the catalyst was changed. New areas appeared;
their composition was different from the original catalyst composition (Table 1). New
elements (Si and C) were detected, and the amount of oxygen on the surface increased in
many places. The presence of oxygen may result from the oxidation of the catalyst surface,
but the new elements come from electrode corrosion and toluene processing.
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Figure 1. SEM images of the Ni3Al catalyst after toluene processing. (a) Facade morphology of the 
catalyst; (b) Spherical particles on the high voltage electrode surface of Al-Si alloy; (c) The edg-es of 
the catalyst are composite components of the nanofibers. 

Table 1. Elemental composition of the edge surface of the Ni3Al catalyst. 

Area 
Element [% wt.] 

Ni Al. Si O C 
1 20.49 6.20 20.95 32.74 19.63 
2 79.55 13.02 0.63 4.28 2.52 
3 31.42 11.40 10.18 28.21 18.78 
4 67.78 11.00 2.38 17.67 1.17 
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Figure 1. SEM images of the Ni3Al catalyst after toluene processing. (a) catalyst’s edge structure
(magnification 50×); (b) new deposits on catalyst’s edge arisen during toluene decomposition
(magnification 1000×); (c) new areas on catalyst’s edge (magnification 5000×).

Table 1. Elemental composition of the edge surface of the Ni3Al catalyst.

Area
Element [% wt.]

Ni Al. Si O C

1 20.49 6.20 20.95 32.74 19.63

2 79.55 13.02 0.63 4.28 2.52

3 31.42 11.40 10.18 28.21 18.78

4 67.78 11.00 2.38 17.67 1.17
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Analysis of the chemical composition by an EDS spectrometer revealed a significant
share of oxygen in the resulting nanofibers and at the edges of the catalyst (Figure 2). It
is a component of several chemical compounds formed in the process. Small amounts of
carbon were deposited on the resulting nanofibers. The nickel in the nanofibers comes
from the catalyst surface. It means that during the toluene conversion, the catalyst’s surface
was oxidized, and the resulting oxides form a new phase in the shape of fibers. The fibers
also include Al and Si. Aluminum can come from the catalyst material, but the presence of
silicon is the result of the corrosion of the electrodes. Therefore, the formation of nanofibers
is not a favorable process, as it indicates the ongoing corrosion processes of the electrodes
and the catalyst itself. Moreover, metallic nickel is an active phase in tar decomposition.
Therefore, the formation of nickel oxide and carbon deposits may limit the activity of
the catalyst.
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Figure 2. Chemical composition distribution on the front surface of the Ni3Al catalyst.

Analysis of the Ni3Al catalyst’s side surface after toluene decomposition using SEM
imaging (Figure 3) performed at high magnification showed a slight surface development.
No nanofibers were observed, and the oxygen- and silicon-rich areas occupy a small area.
The side surface of the catalyst is also not covered with carbon, i.e., there was no carbon
deposition. The amount of carbon on the surface is constant and much lower than on the
edges of the nanofibers (Table 2).
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Figure 3. SEM images of the Ni3Al catalyst surface after toluene decomposition. (a) side surface of
the catalyst (magnification 5000×); (b) new areas deposited on catalyst’s surface—(magnification
50,000×).

Table 2. Elemental composition of the side surface of the Ni3Al catalyst.

Area
Element, %wt.

Ni Al Si O C

1 74.01 12.38 20.95 9.33 3.15

2 83.94 9.97 0.55 3.30 2.24

2.2. Plasma-Catalytic Conversion of Toluene

A high conversion of toluene (90%) was obtained. Using a hydrogen concentration
of 36% and toluene concentrations of 2000 (B1), 3000 (B2), and 4500 (B3) ppm, a marginal
change in toluene conversion was observed with increasing discharge power. With the
discharge power above 2200 W, toluene conversion reaches similar values (above 85%),
regardless of its initial concentration (Figure 4). The increase in the initial concentration
of toluene increased its conversion. The minor influence of the discharge power on the
change in the toluene conversion indicates that the catalytic process affects the toluene
conversion to a greater extent than the plasma one. The observed effect of the change
in toluene conversion with increasing initial concentration is due to the increase in the
reaction rate on the catalyst’s surface.

With the increase in discharge power at an initial hydrogen concentration of 36%
(B3), a higher toluene conversion was achieved than at a H2 concentration of 32% (A3).
Furthermore, for the A3 series, as the discharge power increases, the conversion of toluene
decreases by about 5% (Figure 5). This may be due to the lower concentration of hydrogen
radicals generated in plasma (compared to the gas B3), which are involved in the activation
reaction of toluene in the catalytic process [16]. Moreover, the values of toluene conversion
obtained in the plasma-catalytic system are higher than in the homogeneous system [10]
throughout the investigated range of initial toluene concentration.
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Figure 4. Dependence of toluene conversion on its initial concentration and discharge power with
the Ni3Al catalyst, initial hydrogen concentration: 36%. Initial toluene concentration of 2000 (B1),
3000 (B2) and 4500 (B3).

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 4. Dependence of toluene conversion on its initial concentration and discharge power with 
the Ni3Al catalyst, initial hydrogen concentration: 36%. Initial toluene concentration of 2000 (B1), 
3000 (B2) and 4500 (B3). 

With the increase in discharge power at an initial hydrogen concentration of 36% 
(B3), a higher toluene conversion was achieved than at a H2 concentration of 32% (A3). 
Furthermore, for the A3 series, as the discharge power increases, the conversion of tolu-
ene decreases by about 5% (Figure 5). This may be due to the lower concentration of hy-
drogen radicals generated in plasma (compared to the gas B3), which are involved in the 
activation reaction of toluene in the catalytic process [16]. Moreover, the values of toluene 
conversion obtained in the plasma-catalytic system are higher than in the homogeneous 
system [10] throughout the investigated range of initial toluene concentration. 

 
Figure 5. Dependence of toluene conversion on initial hydrogen concentration and discharge 
power. The Ni3Al catalyst, initial concentration of toluene: 4500 ppm. Hydrogen concentration: 
A3—32%, B3—36%. 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1300 1500 1700 1900 2100 2300 2500 2700

To
lu

en
e 

co
nv

er
si

on
 

Discharge power, W

B3

B2 B1

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1300 1500 1700 1900 2100 2300 2500 2700

To
lu

en
e 

co
nv

er
si

on
 

Discharge power, W

B3

A3

Figure 5. Dependence of toluene conversion on initial hydrogen concentration and discharge power.
The Ni3Al catalyst, initial concentration of toluene: 4500 ppm. Hydrogen concentration: A3—32%,
B3—36%.

In the gas after the reaction, apart from the components introduced into the reactor, a
small amount of methane, C2–C4 aliphatic hydrocarbons, and trace amounts of benzene
were observed. No higher aromatic hydrocarbons were found.

Changes in the concentrations of the individual components were small. A decrease
in the concentration of hydrogen and carbon dioxide was observed. Hydrogen was used
for the methanation of CO or hydrogenation of acetylene. A part of the hydrogen was
used to bind the oxygen formed from the dissociation of CO2. As a result, the carbon
monoxide content was increased by up to 5%. It is a very beneficial effect because, instead
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of non-combustible carbon dioxide, the concentration of combustible carbon monoxide
increases in the pyrolysis gas, which increases the calorific value of the gas.

Changes in the concentration of C2 hydrocarbons were observed depending on the
discharge power and initial hydrogen concentration. The highest ethylene and ethane
concentrations (about 0.3% mol) were obtained using 36% hydrogen and 3000 ppm of
toluene. In this system, the relationship between the different C2 hydrocarbon components
is also interesting. With increasing discharge power, the amount of ethylene and ethane
increases, and the concentration of acetylene decreases. The temperature of the catalytic
bed also depends on the discharge power. The measurement at 140 ◦C was carried out
immediately after the measurement at the highest discharge power. The low discharge
power and higher catalyst temperature resulted in the presence of ethylene and ethane in
the reaction products instead of acetylene (Figure 6). At high discharge powers, acetylene
is hydrogenated to ethylene and ethane on the Ni3Al catalyst.
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Figure 6. Dependence of C2 hydrocarbon concentration on discharge power and temperature at the initial hydrogen
concentration of 36%, initial toluene concentration of 2000 ppm.

3. Experimental Procedure

The research was conducted in a synthetic pyrolysis gas containing CO, CO2, H2,
and N2. A constant initial concentration of CO and CO2 of 10 and 12.5% and two initial
hydrogen concentrations of 32 and 36% (series A, B, respectively) were used. The rest of
the gas was nitrogen. Gases of 99.95–99.99% purity were used in this study, and Bronkhorst
mass flow controllers regulated their flow rates. The mixed gases were saturated with
toluene, which was used as a model substance for tars [5,11–13,17,18] and its starting
concentration was 2000, 3000, and 4500 ppm. After setting the discharge power, it was
left to stabilize the process conditions for 10 min, and then the gas was collected for
chromatographic analysis. Three gas analyses were performed under each condition. The
entire measurement for a given value of the discharge power lasted approx. 30 min.

The total gas flow rate was 1000 Nl/h. The reactor described in [4] was used for
this study. The discharge power was in the range of 1500–2700 W. The gas upstream
and downstream of the reactor was analyzed using gas chromatography. The gas was
analyzed with two chromatographs: Agilent 6890 N with FID and TCD detectors (Agilent
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Technologies, CA, USA) and the Schincarbon (Restek, PA, USA) column for permanent
gases, C2, C3 hydrocarbons, and Chrompack 9001 with FID detector and HP5 column
for toluene determination. The decomposition of toluene in a plasma-catalytic system
with the Ni3Al honeycomb catalyst (Figure 1) and the effect of discharge power, hydrogen
concentration, and initial concentration of toluene on its conversion were investigated. The
same catalyst bed was used in all experiments. The SEM images were collected at the end
of the studies.

Preparation of the Catalyst

The Ni3Al intermetallic catalyst consisted of (expressed in atomic %) 83.7% Ni, 16%
Al, 0.2% Zr, 0.1% B. Intermetallic alloys, such as Ni3Al, are advanced materials with a wide
area of potential applications. The advantages of Ni3Al alloys are high strength at elevated
temperature, relatively low density, and high corrosion resistance, which predisposed those
materials to many high-temperature applications [19,20]. For several years, Ni3Al alloys
have also been used as catalysts, mostly in the decomposition of organic compounds [21–23]

The catalyst was made from approximately 50 µm thick Ni3Al foils obtained by
sequential thermo-plastic treatment, including cold-rolled to 90% reduction and annealed
temperatures up to 1200 ◦C for 1.5 h under argon atmosphere. One of the Ni3Al foils was
folded with a wave’s height of 0.8 mm. After that, two strips, corrugated and straight, were
rolled together to form a honeycomb structure with 12 mm height and 40 mm diameter
(Figure 7). More details of the procedures are given in the papers [24,25]. The surface
investigation was performed using a Quanta 3D FEG scanning electron microscope coupled
with an energy dispersive X-ray spectrometer (EDS).
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Figure 7. The Ni3Al catalyst of a honeycomb structure before the toluene decomposition process.

4. Conclusions

The catalyst changed on the edges due to soot formation and electrode material depo-
sition. This change did not influence the toluene decomposition. On the side surface of
the catalyst, no carbon deposits were observed. In the combined plasma-catalytic system
using the Ni3Al honeycomb catalyst, toluene can be decomposed with high conversion
rates, higher than those obtained in the homogeneous system (without the catalyst). Us-
ing a discharge power above 2200 W, toluene conversion reached similar values (above
85%), regardless of its initial concentration. Under these conditions, the initial hydrogen
concentration influenced the process. In the combined plasma-catalytic system with Ni3Al
as the catalyst, it was found that with the increase in the discharge power, the amount of
acetylene decreases, and the amount of ethylene and ethane increases.
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