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Abstract: Michael addition is one of the most important carbon–carbon bond formation reactions.
In this study, an (R, R)-1,2-diphenylethylenediamine (DPEN)-based thiourea organocatalyst was
applied to the asymmetric Michael addition of nitroalkenes and cycloketones to produce a chiral
product. The primary amine moiety in DPEN reacts with the ketone to form an enamine and is
activated through the hydrogen bond formation between the nitro group in the α, β-unsaturated
nitroalkene and thiourea. Here, the aim was to obtain an asymmetric Michael product through the
1,4-addition of the enamine to an alkene to form a new carbon–carbon bond. As a result, the primary
amine of the chiral diamine was converted into an enamine. The reaction proceeded with a relatively
high level of enantioselectivity achieved using double activation through the hydrogen bonding of
the nitro group and thiourea. Michael products with high levels of enantioselectivity (76–99% syn ee)
and diastereoselectivity (syn/anti = 9/1) were obtained with yields in the range of 88–99% depending
on the ketone.

Keywords: organocatalyst; enantioselectivity; cycloketone; thiourea catalyst; asymmetric synthesis;
Michael addition; diastereoselectivity

1. Introduction

In past years, reactions using metal complexes as catalysts have exhibited higher
catalytic activity than that of conventional Pt complex catalysts. However, metal catalysts
are expensive, and the residual metals can cause environmental problems due to disposal
after use and contamination of the products [1]. Therefore, the replacement of metal
catalysts with organic catalysts in some reactions may solve a significant portion of the
aforementioned problems. The Michael reaction is one of the most important carbon–
carbon bond formation methods. Several enantioselective Michael reactions using organic
catalysts are known. Among them, the proline-catalyzed reactions studied by Seebach
and Blarer in 1981 have received significant attention, and many related studies have
been conducted since [2–10]. Seebach and Blarer reported the Michael reaction of an α,
β-unsaturated nitroalkene using a chiral proline derivative [11,12]. In this experiment, the
ketone reacts with the amino group of proline by a dehydration condensation reaction to
form an enamine. Here, the enamine is the activated Michael donor, and the nitroalkene
is the Michael acceptor. In 2001, when List introduced proline as an organic catalyst
for the Michael reaction, the general applicability of proline and its derivatives gained
increasing interest [13–15]. List assumed that acetone reacts with chiral proline to form
an enamine intermediate. The reaction proceeds through a mechanism in which the nitro
group is activated through the carboxylic acid and hydrogen bonding. Furthermore, the
nature of the activation of the NO2 group through the hydrogen bonding was recently
explained [16–19]; this result was achieved by testing various ketones and nitroalkenes. As
a result, a relatively high yield was obtained in this experiment regardless of ring-forming
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and non-ring forming ketones and aromatic and aliphatic alkenes. Moreover, due to the
steric effects of chiral proline, the reaction exhibited relatively high diastereoselectivity
and mirror image selectivity. The advantage of this reaction is that the enamine form of
the product is hydrolyzed due to H2O generated by the reaction of ketone and proline,
and there is no need to add water separately. Subsequently, proline is regenerated, and
the product is obtained in high yields. Moreover, this reaction can be easily carried out at
room temperature. In 2006, Barbas modified the basic structure of proline and obtained a
high yield and stereoselectivity using the proline-based catalyst and an acid catalyst, with
brine as a solvent [20,21]. Recent experiments have reported high yields and selectivity
by replacing the carboxylic acid group in proline with thiourea to improve hydrogen
bonding [22]. Hydrogen bonding in thiourea was first reported by Jacobsen and has been
applied in various reactions. Since 2006, the thiourea-based catalysts have been applied in
Michael reactions as well [23,24].

Looking closely at the above-mentioned reactions using organic catalysts, the efficiency
of Michael reactions using chiral amine catalysts is evident [25–38]. Although it was
previously assumed that reactions using proline derivatives are limited, many previous
studies have reported Michael reactions that use proline derivatives as a basic structure.
Moreover, N-monoalkylated thiourea catalysts based on the basic chiral skeleton of (R, R)-
1,2-diphenylethylenediamine (DPEN) can be applied to various reactions, such as the Diels–
Alder reaction, Aldol reaction, and Michael reaction, with relatively good yields [9,10,39].

In this study, the asymmetric Michael reaction was applied to a cycloketone using
(R, R)-1,2-diphenylethylenediamine (DPEN) as a catalyst. This reaction was also carried
out in a previous study where the primary amine group of the DPEN-based catalyst was
not N-monoalkylated [8,40]. The dehydration condensation reaction of the ketone and the
diamine produces an enamine. Subsequently, thiourea is introduced on the other amine
group, and double hydrogen bonding occurs between the nitro group of the nitroalkene
and thiourea. The regeneration of the catalyst is achieved through the hydrolysis of the
activated enamine. The reaction course is determined by the attack on the electrophically
activated b-position of nitroethene [16–19]. The water previously produced during the
1,4-addition hydrolyzes the enamine form of the product, thereby regenerating the catalyst.
In addition, previously unreported additives were added to increase reactivity. The Michael
reaction described in this study was expected to proceed with the following mechanism
(Scheme 1): In particular, the presented reaction can be an attractive alternative to other
known methodologies for the synthesis of 5-membered cyclic nitrones.
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Scheme 1. Mechanism of the Michael reaction of ketones and nitroalkenes using a thiourea-based 
catalyst. 
Scheme 1. Mechanism of the Michael reaction of ketones and nitroalkenes using a thiourea-based catalyst.
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2. Results and Discussion
2.1. Asymmetric Michael Reaction of Various Ketones and α, β-Unsaturated Nitroalkenes Using a
Thiourea Catalyst

In a previous study [8,40], the optimized conditions for the stereoselective Michael
addition reaction of acetophenone and nitrostyrene were investigated. Based on these
conditions, various cycloketones, acetone and nitrostyrene derivatives were reacted in the
presence of the catalyst, solvent, and a phenol group derivative (Table 1). This reaction was
performed using various phenol derivatives as additives under predetermined and opti-
mized conditions (Table 1 entry 1, 2, 3, 4, 5). Reactions with 4-nitrophenol gave relatively
high yields and enantioselectivity, whereas reactions with phenol and 4-chlorophenol gave
moderate yields. In addition, when catalyst 1b was used under the condition of using
4-nitrophenol as an additive, lower yield and ee were confirmed compared with the case
optimized in the previous literature [16–19].

Table 1. Asymmetric Michael reaction of various ketones and α, β-unsaturated nitroalkenes, using a
thiourea catalyst.
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Furthermore, this reaction was performed using various ketone substrates under
predetermined and optimized conditions (Table 1). Reactions involving acetones provided
relatively high yields and enantioselectivity, whereas reactions involving cycloketones
provided relatively low yields for sulfur and oxygen-substituted cycloketones. This result
can be explained by the fact that the ketone reacts with the amino group of the catalyst
to form an enamine. Due to the steric hindrance caused by the ring of the cycloketone, it
is difficult for the nucleophile to approach the electrophilic nitroalkene. In addition, as
the size of the ring decreases, the diastereoselectivity and enantioselectivity decrease, as
described above.

2.2. Reaction According to the Type of Acetone and α, β-Unsaturated Nitroalkynes

To verify the applicability of this reaction for aliphatic ketones under optimized
conditions, acetone was reacted with various α, β-unsaturated nitroalkenes. Compared
to aromatic ketones, acetone exhibited poor reactivity toward this reaction. Therefore,
10 equivalents of the catalyst were used for the experiment (Table 2).

The reaction of acetone with α, β-unsaturated nitroalkene proceeded for a longer
duration when the nitroalkene attached to a phenyl ring with an electron-donating group
was used (entry 12, Table 2). However, in the case of phenyl rings substituted with electron-
withdrawing groups (entries 2, 3, and 6), it was confirmed that the reaction proceeded well
overall, and the duration was relatively short. This general trend can be confirmed based
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on entry 6. The reason for the increase in the reaction time is that the nucleophile is unable
to approach the electrophile due to the interference caused by the 2-OMe group.

Table 2. Reaction of acetone with α, β-unsaturated nitroalkenes.
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2.3. Asymmetric Michael Reaction Using a Thiourea Catalyst

These reactions were performed using various nitroalkene substrates attached to
phenyl rings containing electron-withdrawing or -donating groups. When the nitroalkene
bearing a phenyl ring with a halogen at the para position was used, the reaction exhibited
slightly lower enantioselectivity than that using trans-β-nitrostyrene. Similarly, reactions
using 2-furyl, 2-thienyl, and 2-naphthyl nitroalkenes (Table 3, entry 7, 8, and 9, respectively)
exhibited relatively good enantioselectivities. In particular, the reaction with the 2-furyl
derivative afforded the highest yield. Moreover, the nitroalkene attached to a phenyl ring
with an electron-donating methoxy group at the fourth position showed a slightly higher
yield and stereoselectivity than that with an electron-withdrawing nitro group at the fourth
position. In the case of aliphatic alkenes, the reaction did not proceed. Scheme 2 shows the
reaction mechanism proposed for the Michael reaction presented below.

Table 3. Asymmetric Michael reaction of the cycloketones and various α, β-unsaturated nitroalkenes
using the thiourea catalyst.
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As shown in Figure 1, the expected energy of transition state 1 (TS 1) was confirmed
through density functional theory (DFT) calculations. The calculated results show that,
compared to TS 2 (anti), TS 3 (anti), and TS 4 (syn), the syn structure of TS 1 is most stable,
based on their respective Gibbs free energies. In addition, the minor TS 3 exhibited the
highest free energy compared to other TS structures. Furthermore, as shown in Scheme 3,
cyclohexanone reacts with the primary amine of the catalyst to form an enamine. The
double bond and thiourea are located on the same side in TS 1 and TS 3, which causes
less steric hindrance. Advantageously, the hydrogen bonding between the nitro group of
the nitroalkene and thiourea of the catalyst causes the aromatic substituent on the alkene
to be positioned in a manner similar to that of TS 1 and TS 2 with relatively lower steric
hindrance; therefore, the nucleophilic enamine approaches the electrophile from the bottom.
It is predicted that the syn (2R, 1S) conformation is more predominantly produced. The
above reaction focuses on the double hydrogen bonds between thiourea and the nitro
group. A non-polar aprotic solvent that does not interfere with hydrogen bonding is most
beneficial. Furthermore, it was confirmed that the addition of an acid catalyst promotes the
hydrolysis of the enamine to obtain a higher yield of the product. Based on the transition
state, the ketone reacts with the amino group of proline to form the enamine, and the
thiourea on the other side is hydrogen-bonded to the two oxygen atoms of the nitro group.
Hence, the enamine attacks the nucleophile from below. This reaction exhibits relatively
high enantioselective and diastereoselective results. When the ketone and the catalyst react
to form an enamine, the double bond is formed closer to the nitroalkene. Moreover, the
aromatic substituted nitroalkene is located in the direction of thiourea with relatively fewer
steric hindrances.

2.4. Application of Pancracin Intermediate Products to the Asymmetric Michael Reaction of
Ketones with α, β-Unsaturated Nitroalkenes

This reaction is potentially useful in organic synthesis for carbon–carbon bond formation.
For example, the nitro compound 4k was readily converted into 3-phenyloctahydroindole, 5a.
Moreover, we found that, in the presence of Zn powder, 4l was easily hydrogenated into
the corresponding nitrone 5a with 95% yield. The structure of nitrone 5a was determined
using 1H nuclear magnetic resonance spectroscopy and mass spectrometry, which agreed
well with the relative configuration described above (Scheme 3) [22,41].
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3. Materials and Methods
3.1. Instruments and Reagents

IR spectrum was recorded using NICOLET 380 FT-IR spectrophotometer of Thermo
electron corporation (Thermo Fisher Scientific Inc., Waltham, MA, USA), and optical
rotation was measured using an auto digital polarimeter (model name: A20766 APV/6w,
Rudolph Research Analytical, Hackettstown, NJ, USA). 1H NMR and 13C NMR spectra
were obtained using Varian Gemini 300 (300, 75 MHz, Agilent, Santa Clara, CA, USA),
Varian Mercury 400 (400, 100 MHz, Agilent, Santa Clara, CA, USA) and Bruker Avance
500 (500, 125 MHz, Bruker BioSpin GmbH, Silberstreifen 4, 76287 Rheinstetten, Billerica,
MA, USA) using TMS as internal standards. Chiral HPLC analysis was performed using
a Jasco LC-1500 Series HPLC system (JASCO, 4-21, Sennin-cho 2-chome, Hachioji, Tokyo
193-0835, Japan). All reactions were carried out under an argon environment in well-dried
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flasks in an oven. Toluene (CaH2), THF (Na, benzophenone), and CH2Cl2 (CaH2) reaction
solvents were purified before use. The reagents used in this study were products such as
Aldrich (Louis, MO, USA), TCI (Tokyo, Japan), and if necessary, purified or dried by a
known method. Merck’s silica gel 60 (230–400 mech) was used as a stationary phase for
column chromatography.

3.2. Experimental Method
3.2.1. Synthesis of N-Mono-Thiourea Catalyst

(R, R)-1.2-diphenylethylenediamine (200 mg, 0.942 mmol) was dissolved in toluene
(1.00 mL), followed by the addition of isothiocyanate (0.140 mL, 0.942 mmol) at 0 ◦C for 1 h
Stir. After completing the reaction with distilled water, extraction with dichloromethane
(20 mL × 3 times), dehydration with MgSO4, filtration, concentration under reduced pres-
sure, and column chromatography (SiO2, EtOAc:CH2Cl2 = 1:6) to isolate the product
(Scheme 4).
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3.2.2. Asymmetric Michael Reaction of Chitons and α,β-Unsaturated Nitroalkenes Using a
Chiral Thiourea Catalyst

At room temperature, a thiourea catalyst (7.3 mg, 0.020 mmol), 4-nitrophenol (5 mol%)
and trans-β-nitrostyrene (30 mg, 0.20 mmol) were put into a reaction vessel and then
dissolved with water (1.0 mL) in air conditions, followed by cyclohexanone (0.21 mL,
2.0 mmol), which was added and stirred for 5 h. After terminating the reaction with
distilled water, extraction with dichloromethane (20 mL × 3 times), dehydration with
MgSO4, filtration, concentration under reduced pressure, and column chromatography
(SiO2, EtOAc: hexanes = 5:1) were used to isolate the product.

3.2.3. Synthesis of 3-Arylhexahydroindole 1-Oxides

To a solution of the 4k (300 mg, 1.08 mmol) in THF (5 mL), zinc powder (707 mg,
10.8 mmol) was added and a solution of NH4Cl (57 mg, 1.08 mmol) in water (2 mL). The
mixture was stirred vigorously at room temperature for 6 h and filtered. The residual solids
were washed with THF, and the combined filtrates were concentrated. The residue was
purified by flash column chromatography on silica gel (CH2Cl2/MeOH, 95/5) to provide
197 mg (95%) of 5a as a white, solid foam.

3.2.4. General Procedure of the Racemic Michael Addition

To the trans-β-nitrostyrene (0.3 mmol), ketone (5 equiv.) and 20 mol% of DL-Proline
were added to dichloromethane (0.1 M), and the reaction mixture was stirred at ambient
temperature. The reaction conversion was monitored by TLC. After completion of about
12 h, ethyl acetate (0.2 mL) was added to the reaction product. This solution was washed
twice with water (2× 1.0 mL), dried over magnesium sulfate (anhydrous), and concentrated
to yield the desired product. The product was purified by chromatography on a silica gel
column eluted with mixed solvent (hexanes/EA, 5/1).

3.3. Results of DFT Calculations and Discussion

Density functional theory (DFT) calculations were performed using Gaussian 16 and
Gauss-View 6.0 programs. DFT calculations were performed to show the mechanisms
of substrates and catalysts. The optimized geometry was described using the B3LYP/6-
31G(d,p) level. After the shapes of reactants, intermediates (IM), transition states (TS), and
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products were fully optimized, zero-point energy (ZPE) was obtained through vibrational
frequency calculation at the same level of theory, and the minimum or transition state of
the potential energy surface (PES) was obtained. Enthalpy correction and entropy with
temperature were calculated at 298 K and 1 atm pressure.

Compound Characterization Data, Copy of NMR and MASS Spectra, Copy of GC
Chromatograms, DFT Calculations for all Calculated Structures of the compounds men-
tioned in the text (see Supplementary Materials).

4. Conclusions

The asymmetric 1,4-addition reaction of various ketones with nitroalkenes was cat-
alyzed using a DPEN-based thiourea catalyst to form enamines that act as nucleophiles.
Due to the double activation of the electrophilic nitro group of the alkene through hydrogen
bonding with thiourea of the catalyst, this Michael 1,4-addition reaction generated products
with relatively high enantioselectivity and diastereoselectivity. In addition, it is eco-friendly
by using water as a solvent, and the reactivity is increased by adding 4-nitrophenol. The
enamine form of the product is hydrolyzed by the H2O molecules, and the catalysts used
are recovered after the reaction. In addition, to verify the general applicability of this
reaction, several experiments were conducted using various ketones and nitroalkenes,
which produced good results. However, a large number of catalysts and additives were
used here. Therefore, the future task of optimizing these reaction conditions still remains
and needs to be studied further. In addition, the drug development of chiral compounds
using this synthetic approach is ongoing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11081004/s1.
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