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Abstract: In this paper, the optical and electronic properties of WSSe/BSe heterostructure are investi-
gated by first-principles calculations. The most stable stacking pattern of the WSSe/BSe compounds
is formed by van der Waals interaction with a thermal stability proved by ab initio molecular dy-
namics simulation. The WSSe/BSe heterostructure exhibits a type-I band alignment with direct
bandgap of 2.151 eV, which can improve the effective recombination of photoexcited holes and
electrons. Furthermore, the band alignment of the WSSe/BSe heterostructure can straddle the water
redox potential at pH 0-8, and it has a wide absorption range for visible light. In particular, the
solar-to-hydrogen efficiency of the WSSe/BSe heterostructure is obtained at as high as 44.9% at pH 4
and 5. All these investigations show that the WSSe /BSe heterostructure has potential application in
photocatalysts to decompose water.

Keywords: two-dimensional materials; WSSe/BSe heterostructure; band alignment; optical property;
first-principles calculations

1. Introduction

Since graphene was first prepared in 2004 [1], two-dimensional (2D) materials have
attracted much attention due to their excellent electronic, optical, thermal and catalytic
properties [2—6]. There are many kinds of elements in two-dimensional (2D) materials,
including almost all of the elements [7]. One of most popular layered materials is transition
metal dichalcogenides (TMDs), whose chemical composition is usually expressed by MX;,
in which the M and X represent a transition metal (Ti, Ta, W, etc.) and chalcogen (S, Se, Te,
etc.), respectively [8,9]. The monolayer TMD materials could be extensively applied for the
study of nano-devices [10], photocatalysts [11] and optoelectronics [12] because of their
novel electronic properties and a direct bandgap of 1.1-2.0 eV [13]. In addition, considering
their high flexibility and carrier transport properties in the atomic layer, TMDs are ideal
for applications in flexible substrates and suitable for flexible and portable electronic
devices [9,14].

To extend the application range of 2D materials, recently, many new 2D materials
have been predicted by the methods of global structure search and high throughput calcu-
lations [15,16]. For example, B,P¢ was found to possess a Janus structure, which provides
it with promising applications as a photocatalyst for water splitting and metal-ion batter-
ies [17]. In addition, instead of a covalent bond [18], forming a 2D van der Waals (vdW)
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heterostructure is a common method to improve the properties of layered materials [19-21].
These weak vdW forces combine two different layered materials, which keep the het-
erostructure energetically stable [22,23]. The interface of a 2D heterostructure can create
many interesting properties which enhance the electronic, optical and photocatalytic abili-
ties [24-26]. Thus, a number of 2D materials have been built and used as p—n junctions [27],
photocatalysts [28], field-effect transistors [29], etc. In detail, a vdW heterostructure with
a sandwich structure based on MoS; —graphene—WSe, was prepared by the mechanical
exfoliation method possessing a wide absorption spectrum, which demonstrates that the
heterostructure has a specific detectivity of up to 10!! Jones [30]. The graphene/MoS,
heterostructure was formed by chemical vapor deposition (CVD), and the heterostructure
was used in high-performance devices and circuits, with MoS, and graphene acting as the
transistor channel and contact electrodes, respectively. Importantly, the novel electronic
and optical properties of 2D heterostructures also can been tuned by electric fields [31],
external biaxial strain [32], defects [33], etc. The above reports show that vdW heterostruc-
tures can be used as candidates for high-performance nano-electronic and optoelectronic
devices.

Recently, the TMD materials with a Janus structure have widely been investigated,
since the MoSSe was grown using a synthetic strategy with vertical dipoles [34]. Then,
the Raman vibrational modes and electronic structures of the Janus MoSSe monolayer
were calculated by means of density functional theory (DFT) and compared with the cor-
responding experimental results. It was found that Janus monolayers have high activity
of hydrogen evolution on the base surface. Density functional calculation shows that the
activity comes from the mutual effect of structural strain and inherent defects of Janus
MoSSe [35]. Similarly, the Janus WSSe monolayer also has superior carrier mobility of
about 600 cm?-V~1.s~1, which is more advantageous than conventional TMD monolayers
and other Janus TMD materials [36]. Considering the pronounced electronic and optical
properties of the WSSe monolayer, it has been constructed as a heterostructure with MoSSe
and possesses intrinsic many-body effects. Both horizontal and vertical WSSe/MoSSe
heterostructures have type-II band alignment [37]. More recently, a boron selenide (BSe)
monolayer was studied as a semiconductor with an indirect bandgap [38]. Furthermore,
BSe-based heterostructures are also addressed by g-GaN/BSe [23], ZnO/BSe [24], blue
phosphorene/BSe [39], etc., which shows the promising applications for BSe-based het-
erostructures in electronics, spintronics, and optoelectronics.

In this paper, based on DFT, some interesting properties of the WSSe and BSe mono-
layers and the WSSe/BSe heterostructure are addressed. The WSSe/BSe heterostructure
is decided by the stacking structure with lowest binding energy, and the thermal stabil-
ity of the WSSe/BSe heterostructure is examined. Then, the interfacial properties of the
WSSe/BSe heterostructure are investigated according to the potential drop and charge
density difference. The optical absorption property and optical conversion efficiency
of the WSSe/BSe heterostructure are also studied. Our research can provide effective
guidance for the application of such vdW heterostructures in future nano-electronic and
optoelectronic devices.

2. Computing Method

Based on density functional theory (DFT), first-principles calculations were conducted
using the Vienna ab initio simulation package (VASP) [40,41]. The projector-augmented
wave method with energy cutoff of 550 eV was considered. The generalized gradient ap-
proximation (GGA) [42] of Perdew-Burke-Ernzerhof functional (PBE) was used to explain
the electron exchange and correlation potential [43-45]. For the accurate electronic and
optical properties, the Heyd-Scuseria-Ernzerhof (HSE06) method was utilized [46]. The
Grimme correction method (DFT-D3) was explored to describe the weak dispersion for the
vdW correction [47]. In the first Brillouin zone, 11 x 11 x 1 k-point mesh was employed.
The vacuum thickness of 25 A was considered to prevent the interaction of nearby layers.
In addition, the convergence criteria of total energy and the Hellmann—Feynman forces for
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the atoms of the system investigated in this work were 1 x 105 eV and 0.01 eV-A~?, re-
spectively. Furthermore, we built the model of monolayered WSSe, BSe and the WSSe /BSe
heterostructure with the initial lattice constants of 3.23, 3.25 and 3.24 A, respectively [48,49].
Then, we relaxed all of the systems and obtained the appropriate lattice constants.

3. Results and Discussion

First, the structures were optimized for the pristine WSSe and BSe monolayers shown
in Figure 1a,c, respectively, at 3.269 and 3.245 A for lattice constants. The bond lengths of
the W-S, W-Se and B-Se in the monolayered WSSe and BSe were obtained as 2.428, 2.542
and 2.099 A, respectively. Furthermore, using HSE06 calculations and the PBE method, the
band structures of both monolayered materials are calculated in Figure 1a,b, and one can
find that the WSSe has a direct bandgap of 2.077 eV (HSE results) with the conduction band
minimum (CBM) and the valence band maximum (VBM) located at the K points, while the
BSe possesses an indirect bandgap of 3.466 eV. The CBM of the BSe appears at the point
M, while the VBM is located at the I point. In addition, all these findings are consistent
with previous reports [50,51], which proves that our computational methods are accurate
and reliable.

I
)

Z\I

(b) (c)

Figure 1. The crystal structure of the (a) WSSe and (c) BSe monolayers; the band structure of the (b) WSSe and (d) BSe
monolayers calculated by HSE06 (red line) and PBE (blue marks) methods, respectively. The gray, grey, green and yellow

marks represent Se, W, B and S atoms, respectively. The Fermi level is set by 0 pointed by the gray dashed line.

Next, we constructed the heterostructure composed by WSSe and BSe monolayers. As
the lattice parameters of the WSSe and BSe monolayers shows very small lattice mismatch
(about 0.74%), they are suitable to be designed as a heterostructure, which can induce a
precise stacking configuration. Here, we considered 12 possible highly symmetric stacking
patterns for the WSSe/BSe heterostructure, as presented in Figure 2. y-1, y-2, y-3, v-4, v-5
and y-6 stacking are similar with v-7, y-8, -9, y-10, y-11 and y-12 stacking, respectively,
by exchanging the site of the S and Se atoms in the WSSe layer. For y-1, W and Se (or S)
atoms are put on top of B atoms and Se atoms, respectively. The y-2 style is obtained by
changing the positions of B and Se atoms from the y-1 configuration. Meanwhile, for y-3,
W atoms are positioned on top of the hexagonal center of the BSe, and Se (or S) atoms are
located on top of Se atoms in BSe layer. y-4 can be constructed by locating the Se (or S)
atoms on the top of the hexagonal center of BSe and W atoms on the top of the Se atoms in
the BSe layer. For the y-5 style, Se (or S) atoms are positioned on the top of the hexagonal
center of BSe, and W atoms are located on the top of B atoms. y-6 is built by changing the
positions of W and Se (or S) fromm y-5.
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Figure 2. The different stacking patterns of WSSe/BSe heterostructure: (a) y-1; (b) v-2; (¢) v-3; (d) v-4; (e) v-5; (f) v-6; (g)
¥-7; (h) v-8; (i) v-9; (j) v-10; (k) y-11; (1) v-12.

For all those representative highly symmetric stacking patterns, we judged the most
stable one by calculating the binding energy (Ey,) as follows:

Ep, = (Ewsse-Bse — Ewsse — Epse)/A 1)

where Ewsse/Bses Ewsse and Epse are the energy of the WSSe/BSe heterostructure and the
original WSSe and BSe monolayers, respectively. A is the area of the cell. The obtained Ey,
and interface distance (dj) are addressed in Table 1. The y-10 stacking patterns possesses the
lowest binding energy of —25.444 meV/A~2, which is smaller than that in the vdW bonding
in weak interlayer interactions in graphites of about —18 meV/A~2, demonstrating that
the WSSe/BSe heterostructure is formed by vdW interactions [52]. In addition, the bond
lengths of the W-S, W-Se and B-Se in the monolayered WSSe and BSe only show a slight
change in the heterostructure, which further explains the weak vdW interactions between
the interface of the heterostructure. Therefore, all of the following investigations are focused
on the y-10 stacking configuration.

Table 1. The binding energy (Ep,, meV/ A~2), interface distance (di, A), and bond length (L, A) of
W-S, W-Se and B-Se in WSSe and BSe, respectively.

Conﬁguration Eb dif Lw_s Lw_se LB—Se
v-1 —18.444 3.783 2422 2.534 2.101
Y-2 —24.889 3.283 2.421 2.537 2.101
v-3 —18.556 3.774 2.422 2.538 2.101
v-4 —25.000 3.279 2.421 2.538 2.100
Y-5 —24.000 3.355 2.421 2.538 2.101
Y-6 —24.444 3.332 2.421 2.538 2.101
v-7 —18.889 3.884 2.423 2.537 2.101
Y-8 —25.333 3.397 2.423 2.537 2.100
v-9 —19.000 3.873 2.423 2.537 2.101

v-10 —25.444 3.397 2.423 2.536 2.101
v-11 —23.778 3.478 2.423 2.536 2.101
v-12 —24.223 3.486 2.423 2.536 2.101

Then, we evaluated the thermal stability of the WSSe /BSe vdW heterostructure by ab
initio molecular dynamics (AIMD) simulation with a Nosé-Hoover heat bath scheme [53].
In this simulation, due to the lattice translation constraint, we builta 6 x 6 x 1 supercell for
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the WSSe/BSe vdW heterostructure including 252 atoms. After completing the simulation
calculations, as shown in Figure 3a, the WSSe/BSe vdW heterostructures were still integral
after 5 ps at 300 K, demonstrating their pronounced thermal stability at room temperature.
Moreover, with the simulation step, the change in the total energy of the WSSe/BSe
vdW heterostructure and the fluctuation in temperature are shown in Figure 3b, which
demonstrates a convergence with the simulation. It is worth noting that the y-8 WSSe/BSe
vdW heterostructure shows little difference in the binding energy (about 0.111 meV /A~2)
compared with the y-10 WSSe/BSe vdW heterostructure, and so the thermal stability of
the y-8 WSSe/BSe vdW heterostructure was also addressed in Supplementary Figure S1, in
the Supporting Information, which suggests that the y-8 WSSe /BSe vdW heterostructure
possesses a thermal stability at room temperature.
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Figure 3. (a) The AIMD snapshots for the WSSe/BSe vdW heterostructure; (b) the total energy and temperature fluctuations
during AIMD simulations for the WSSe /BSe heterostructure.

We also calculated the projected band structure for the WSSe/BSe vdW heterostructure,
shown in Figure 4a, obtained by using HSE06 calculations. We found that the WSSe/BSe
vdW heterostructure has a direct bandgap of 2.151 eV, which means that it is a semiconduc-
tor. It is interesting that both the VBM and CBM of the heterostructure are donated from
the WSSe layer, exhibiting a type-I band alignment, as shown in Figure 4a. Furthermore,
we calculated the projected density of states of the WSSe/BSe vdW heterostructure shown
in Figure 4b, which can further prove the type-I band alignment in the WSSe/BSe vdW
heterostructure. Previous studies have shown that a potential photocatalyst should possess
decent electronic characteristics, which can be used to decompose water [54]. Firstly, the
band gap should be between 1.23 and 3.0 eV. Secondly, the band edge positions of the
photocatalyst should meet the water redox potentials, which means that the potential
of the VBM should be lower than —5.67 eV and the potential of the CBM of materials
should be higher than —4.44 eV [39]. The calculated bandgap (2.151 eV) of the WSSe/BSe
vdW heterostructure reveals the suitable bandgap value as a photocatalyst to decompose
water [12], and the band edge positions of the monolayered WSSe, BSe and WSSe/BSe
vdW heterostructure are calculated in Figure 4c, showing that the band alignments of these
layered materials all possess decent potential for the oxidation and reduction reactions to
decompose water at pH 0.
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Figure 4. (a) The projected band structure and (b) the projected density of states of the WSSe/BSe vdW heterostructure;
(c) the band edge positions of the WSSe, BSe and the WSSe /BSe vdW heterostructure, and the potentials of redox at pH 0
and 7 to decompose water are also shown.

Considering the influence of the pH value, the reduction and oxidation potentials
are obtained from the value of the pH as: Eequction = —4-44 eV + pH x 0.059 eV, and
Eoxidation = —5-67 €V + pH x 0.059 eV, respectively [55]. As shown in Figure 4c, the band
alignment of the WSSe/BSe vdW heterostructure still possesses decent band edge position
energy level for the water redox potentials at pH 7, but the WSSe monolayer is not suitable
for the photocatalyst for the hydrogen evolution reaction (HER). Furthermore, we investi-
gated the potentials of the oxygen evolution reactions (OER) and HER to decompose water
at different pH compared with the band edge energy of the WSSe/BSe vdW heterostructure
in Figure 5, showing that the WSSe/BSe vdW heterostructure still can induce the OER and
HER at pH 0 to 8 to decompose the water.

-3.5

-4.0

-4.5

S50F

55}

Redox Reaction Potential (eV)

60}
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Figure 5. The potentials of the OER and HER of the water splitting as a function of the pH value with
respect to the band edge positions of the WSSe/BSe vdW heterostructure.

As for the interfacial properties of the vdW heterostructure in this work, the charge
density differences (Ap) were investigated by:

Ap = pwsse/BSe — PWSSe — PBSe )

where pwsse/Bse, Pwsse and ppse mean the charge density difference of the WSSe/BSe
heterostructure and the isolated WSSe and BSe layers, respectively. As shown as Figure 6a,
the cyan regions represent the negative values of chargers, and the yellow regions represent
the positive values, which shows that the charge redistribution is mainly around the
interface of the WSSe/BSe vdW heterostructure. In addition, the Bader charge analysis
method [56,57] was used to calculate the charge transfer between the WSSe and BSe layers.
We found that there are only 0.0047 transferred electrons from the BSe layer to WSSe
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layer. Moreover, the electrostatic potential drop across the interface of the WSSe/BSe vdW
heterostructure is calculated in Figure 6b, which indicates that the WSSe layers present a
slightly lower potential than the BSe layers in their corresponding heterostructure. This
contributes to the formation of a built-in electric field, which is also an important factor for
carrier migration.

—_
O

~
®

Electrostatic potential (eV)

A
o H] 10 1 20 25
z(A)

Figure 6. (a) The charge density and the (b) potential drop of the WSSe/BSe vdW heterostructure;
the cyan and yellow regions indicate the loss and gain of the electron, respectively; the isosurface of
charge difference was set to 1074 lel.

We further investigated the optical properties of the WSSe/BSe vdW heterostructure.

The solar-to-hydrogen (STH) efficiency is critical, which is also influenced by the pH values.
The efficiency of the STH (ys111) is decided by:

1ISTH = ffabs X Ncu ®)

where #,,5 and 7, are called the efficiency of light absorption and carrier utilization,
respectively. Additionally, the 7, is calculated as:

fg; P(hw)d(hw)
abs = T B (o) d (o)

4)

in which the P(hw) is demonstrated for the solar energy flux of AM1.5G by the energy of
hw for phonon, and where Eg is used for the bandgap of the heterostructure. The 7y is
obtained by:
AG hw
feu = f ( ) ®)
[e P E, d(hw)

where the potential difference is described by AG, which explains water splitting of 1.23 eV.
E is the energy of the phonon in water splitting, calculated by:

Eg, (x(Hz2) > 0.2, x(02) > 0.6)

E—= Eg +02- X(HZ)/ (X(HZ) <0. 2 X(OZ) Z 06) (6)
E¢ +0.6 — x(02), (x(H2) > 0.2, x(O2) < 0.6)
Eg 4+ 0.8 — x(Hz2) — x(O2), (x(Hz) < 0.2, x(O2) < 0.6)

where the overpotential of HER and OER are addressed by x(Hz) and x(O,), respectively.
Generally, 0.2 and 0.6 eV are suggested to be the required overpotentials for the HER
and OER, as reported by a previous experimental study [58]. We calculated the 5grry of
the WSSe/BSe vdW heterostructure at different pH values, as shown in Figure 7a. The
WSSe/BSe vdW heterostructure possesses a novel solar-to-hydrogen efficiency at pH 4
or 5, of about 44.9%, which is higher than that for other 2D heterostructures, such as
PtS, /arsenene [59], arsenene/GaS and arsenene/GaSe [22]. In addition, the WSSe /BSe
vdW heterostructure also possesses decent solar-to-hydrogen efficiency, of about 21.4%
and 25.4% at pH 0-3 and pH 6-8, respectively.
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Figure 7. The calculated (a) STH efficiency at different pH values and (b) optical absorption of the WSSe/BSe vdW

heterostructure.

The WSSe/BSe vdW heterostructure’s ability to absorb light is also obtained by:

alw) = 2 [dw) + 8] —e1<w>}m @)

[

where ¢1(w) represents the real parts of the dielectric constant, and ¢, (w) represents the
imaginary parts, as shown as Figure 7b. The peaks of optical absorption for the WSSe, BSe
and the WSSe/BSe vdW heterostructure are 2.11 x 10°,1.44 x 10° and 1.61 x 10° cm ™},
located at the wavelengths of 523, 511 and 266 nm, respectively, which means that the
WSSe monolayer and the WSSe/BSe vdW heterostructure possess novel optical absorption
properties in the visible-light region. However, the WSSe does not have decent redox
potential of HER for water splitting; thus, the WSSe/BSe vdW heterostructure is more
suitable for use as a photocatalyst for water splitting.

4. Conclusions

In conclusion, we have systematically investigated some interesting features of the
2D WSSe, BSe and WSSe /BSe heterostructure by means of first-principles calculation. Our
results demonstrate that the WSSe /BSe heterostructure can be constructed by vdW forces
with thermal stability. Furthermore, the WSSe/BSe vdW heterostructure preserves the
semiconductor feature of the original layered materials with a direct bandgap of 2.151 eV,
and exhibits type-I band alignment. Furthermore, the WSSe, BSe and WSSe/BSe vdW
heterostructure possess decent band edge positions to induce the HER and OER for water
splitting at pH 0, while the WSSe/BSe vdW heterostructure still has excellent potential for
redox reactions, decomposing the water at a pH value of 0-8. Furthermore, the WSSe /BSe
vdW heterostructure can exhibit a novel STH efficiency, of up to about 44.9%, and a broader
visible-light absorption range. All these findings demonstrate that the WSSe/BSe vdW
heterostructure could be used as a potential photocatalyst to decompose water, and is a
potential candidate for use in high-performance nano-electronic and optoelectronic devices.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ catal11080991/s1, Figure S1: The AIMD snapshots for WSSe/BSe vdW heterostructure
with -8 stacking style; the total energy and temperature fluctuations during AIMD simulations for
WSSe/BSe heterostructure with y-8 stacking style.
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