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Abstract: Gasification of lignocellulosic biomass requires the effective removal method of tar. This
study focused on the application of specially designed Mg/Al-layered double hydroxides clinoptilo-
lite (Mg/Al-LDH@clinoptilolite) to improve the removal efficiency of tar, which would eventually
lead to enhancing the power efficiency of gasification, preventing damage to facilities, and deducing
durability improvement plans. Zeolite-layered double hydroxides impregnated with clinoptilo-
lite, a natural zeolite, and Mg/Al-layered double hydroxide incorporated into conventional water
scrubbers were prepared to enhance the removal efficiency of the tar and improve the quality of
the syngas produced during the gasification process. The simultaneous removal of moisture and
CO2 in the syngas was also investigated during the removal of the tar. The drastic decrease in tar
and CO2 concentration was confirmed, which triggered a relative increase in the effective content of
inflammable gas. The findings of the present study provide a practical approach to increasing power
efficiency and durability during the gasification of lignocellulosic biomass.

Keywords: lignocellulosic biomass; gasification; syngas; tar; CO2; clinoptilolite; Mg/Al-LDH
@clinoptilolite

1. Introduction

The South Korean Government announced its “2050 Carbon Neutrality Development
Strategy of the Republic of Korea” on 7 December 2020. According to this strategy, fossil
fuels should be replaced as major energy sources with renewable energy sources that
are both safe to use and have low carbon emissions to accelerate energy conversion and
thus facilitate carbon neutralization [1]. Currently, in Korea, approximately 40.4% of the
electricity produced uses coal as the energy source, which is higher than that in other major
countries such as the United States (24%), Japan (32%), and Germany (30%), implying that
the movement toward carbon neutralization needs to be emphasized [2,3]. Small-scale
dispersive gasification power generators that use thinning-out trees or waste wood as raw
materials instead of fossil fuels are more likely to aid in achieving carbon neutrality than
fossil fuels such as coal. Tar is composed of organic polymers with varying and complex
structures. The tar generated during the gasification of lignocellulosic biomass comprises
condensed hydrocarbons containing 1–5 benzene rings [4,5]. The main components of the
tar generated in this process are mixed oxygenates, heterocyclic ethers, alkyl phenolics,
polycyclic aromatic hydrocarbons (PAHs), and phenolic ethers. As the reaction proceeds
in the gasification reactor, the components of the tar change from high molecular-weight
PAHs to low-molecular-weight mixed oxygenates [6–10].

The tar produced by the gasifier reduces the gasification efficiency and quality of the
syngas, which is responsible for corrosion and blockage in the reactor, pipes, gas engine,
and turbines, leading to high maintenance costs for subsequent filtration systems and
generators [11].

Catalysts 2021, 11, 1111. https://doi.org/10.3390/catal11091111 https://www.mdpi.com/journal/catalysts

https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0001-7456-2856
https://orcid.org/0000-0002-1605-0577
https://orcid.org/0000-0002-2482-1749
https://doi.org/10.3390/catal11091111
https://doi.org/10.3390/catal11091111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/catal11091111
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal11091111?type=check_update&version=2


Catalysts 2021, 11, 1111 2 of 13

Existing methods for tar removal can be classified as primary and secondary [12].
Primary methods are based on the primary reduction of tar formation within the gasifier by
changing the catalyst or design of the reactor. However, even when primary methods are
adopted, the application of the secondary is required for better removal of tar downstream
of the gasifier [13,14].

Dolomite, which is inexpensive and excellent for tar removal, is typically used as
a catalyst [15–21]. However, it is difficult to apply in circulating fluidized bed reactors
owing to its weak mechanical strength and vulnerability to abrasion. Active alumina and
silica-alumina are also effective in removing tar. However, rapid loss of activity is observed
due to coke deposition on the catalyst surface. Tar removal methods using olivine have also
been extensively studied [22–26]. While the tar removal efficiency of olivine is relatively
lower than that of dolomite, it is highly resistant to mechanical abrasion. Nitrogen-based
catalysts exhibit the highest activity but have the disadvantages of high manufacturing
costs and vulnerability to deactivation by sulfur [14]. Sutton et al. [27] proposed five
conditions that need to be satisfied if a catalyst is to be used to remove tar generated during
the gasification process: (1) The catalyst should be effective in tar removal, (2) it should be
resistant to deactivation, (3) it should be readily regenerated, (4) it should be strong, and
(5) it should be a reasonable price.

Zeolites have been used as catalysts in various hydrocarbon conversion reactions
such as alkylation, cracking, hydrocracking, isomerization, dehydration, Fischer–Tropsch
reactions, methanation, and methanol synthesis [28]. However, research on the utilization
of zeolite for tar removal from biomass has been limited to the removal of phenol through
gasification methods involving the combination of the commercially available zeolite,
HZSM-5 catalyst, and palm shell [29], and zeolites have never been researched as catalysts
to remove tar and CO2 from gasification power generators. The advantages of zeolites over
amorphous catalysts are their acidity, resistance to nitrogen and sulfur compounds, low
rate of coke formation, greater thermal/hydrothermal stability, and easy regeneration [30].

This study aimed to enhance tar removal efficiency by supplementing conventional
gasification power generation processes with catalysts that satisfy the aforementioned
conditions. Simultaneously, we aimed to enhance the quality of syngas by increasing the
CO2 removal rate from the syngas compared to conventional methods and deduce methods
for reducing carbon emissions. To meet our aims, we produced Mg/Al-LDH@clinoptilolite
by impregnating clinoptilolite, a type of zeolite that is easy and inexpensive to excavate, as
it is naturally prevalent in Korea, with Mg/Al-layered double hydroxide, and applied these
catalysts to the wet scrubber processes marked in red in Figure 1. The overall goal was to
enhance the efficiency of power generation by improving the durability of the process and
the quality of the syngas.
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Figure 1. Schematic illustration of the different methods used for tar treatment. The processes
marked in red are applicable to this study and have been targeted for improvement.

2. Results and Discussion
2.1. Characteristics of Tar Production and Removal in Syngas

Through the analysis, it was confirmed that the tar in the syngas contained 19 com-
pounds. These compounds largely consisted of carbohydrates, furans, phenols, and guaia-
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cols, as shown in Table 1. The most prevalent compounds were guaiacols, comprising 41.5%
of the total compounds, followed by phenols (35.6%). The combustion of lignocellulosic
biomass, such as wood, generates various tar compounds, such as phenols and cresols.
If the combustion temperature reaches 900 ◦C, high-molecular-weight PAHs can also be
generated [31].

Table 1. The chemical composition of tar in syngas.

Compounds CAS No Detected Mass-to-Charge
Ratio (m/z) %

Carbohydrates 7.3

Corylone 80-71-7 112, 69, 55 5.4

levoglucosan 498-07-7 60, 57, 73 1.9

Furans 1.2

(5H)-furan-2-one 497-23-4 55, 84, 27 1.20

Phenols 35.6

Phenol 108-95-2 94, 66, 65 9.1

o-cresol 95-48-7 108, 107, 79 4.8

m- or p-cresol 108-39-4 108, 107, 79 8.6

2,6-dimethylphenol 576-26-1 122, 107, 77 3.4

3-ethylphenol 620-17-7 107, 122, 77 5.2

catechol 120-80-9 110, 64, 63 2.2

4-methylcatechol 452-86-8 124, 123, 78 2.3

Guaiacols 41.5

guaiacol 90-05-1 109, 124, 81 11.2

2-methoxy-4-methylphenol 93-51-6 138, 123, 95 1.9

4-ethylguaiacol 2785-89-9 137, 152, 15 9.8

4-vinylguaiacol 7786-61-0 135, 150, 107 2.7

eugenol 97-53-0 164, 103, 77 3.8

vanillin 121-33-5 152, 151, 81 4.4

trans-isoeugenol
97-54-1

164, 149, 103
1.5

cis-isoeugenol 164, 77, 149

acetoguaiacone 498-02-2 151, 166, 123 6.2

Table 2 lists the concentrations of the generated tar compounds in the water scrubber
column and the final discharged gas. With this, the changes of the tar in the syngas after
each removal process can be monitored. In this study, syngas consecutively passed through
the water scrubber filled with a ceramic filter; a column filled with clinoptilolite and a
column filled with Mg/Al-LDH@clinoptilolite at an SV of 0.3 m·s−1. The removal rate for
each compound is shown in Figure 2, while Figure 3 depicts the subsequent changes in the
total ion chromatogram pattern.
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Table 2. Concentrations of generated tar compounds and the tar compound content in the syngas for each removal process.

No. Chemical Species
Syngas

from Cyclone After Scrubber After
Mg/Al-LDH@Clinoptilolite

mg/Nm3 mg/Nm3 mg/Nm3

1 Carbohydrates Corylone 101.20 64.7 23.6

2 levoglucosan 12.34 7.9 2.1

3 Furans (5H)-furan-2-one 23.50 15.2 3.4

4

Phenols

Phenol 359.90 122.4 34.6

5 o-cresol 67.40 32.8 18.2

6 m- or p-cresol 181.20 96.8 45.2

7 2,6-dimethylphenol 11.3 4.8 1.3

8 3-ethylphenol 76.90 45.2 13.6

9 catechol 18.21 11.2 2.5

10 4-methylcatechol 21.38 8.9 1.8

11

Guaiacols

guaiacol 31.30 18.1 9.4

12 2-methoxy-4-methylphenol 58.90 43.2 12.6

13 4-ethylguaiacol 26.30 18.4 9.3

14 4-vinylguaiacol 152.10 78.9 34.2

15 eugenol 38.20 26.28 6.7

16 vanillin 61.40 15.4 8.4

17 trans-isoeugenol
21.30 18.7 11.7

18 cis-isoeugenol

19 acetoguaiacone 87.60 48.9 23.8

Total - - 1263.7 629.8 251.3
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Catalysts 2021, 11, 1111 5 of 13
Catalysts 2021, 11, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. TIC (Total Ion Chromatogram) of quantified compounds in wood tar wastewater with 

internal standards from SPA sampling (Y-axis: Relative intensity). Tar species and content ratios in 

syngas: after passing through (a) water scrubber column and (b) Mg/Al-LDH@clinoptilolite. 

The total tar removal rates after passage through the water scrubber and clinoptilolite 

and Mg/Al-LDH@clinoptilolite columns were 50.2 and 80.1%, respectively, indicating that 

the removal rate increased by 29.9% due to catalyst contact. 

2.2. Reformation Characteristics of Inflammable Gas in Syngas 

Figure 4 illustrates the changes in the contents of H2, CO, CH4, and CO2 in the syngas 

after tar removal by passing through the water scrubber and Mg/Al-LDH@clinoptilolite 

columns. After consecutive passage through the water scrubber and Mg/Al-LDH@clinop-

tilolite columns, the proportion of H2 increased from 18.9% to 21.8%, that of CO increased 

from 18.2% to 21.5%, and that of CH4 increased from 3.2% to 4.4%, while the proportion 

of CO2 decreased from 13.5% to 9.3%. A comparison with the corresponding values ob-

tained from the conventional method, where only the water scrubber was used, showed 

that the proportion of inflammable gaseous components H2, CO, and CH4 increased by 

15.3%, 18.1%, and 4.7%, respectively, while that of CO2, which is a key contributor to car-

bon emissions, decreased by 31.1%. 

 

Figure 4. Change in content of H2, CO, CH4, and CO2 in syngas for which tar removal was performed by passing through 

the water scrubber and Mg/Al-LDH@clinoptilolite column (a): composition ratio %, (b): rate of change %. 

  

Figure 3. TIC (Total Ion Chromatogram) of quantified compounds in wood tar wastewater with internal standards from
SPA sampling (Y-axis: Relative intensity). Tar species and content ratios in syngas: after passing through (a) water scrubber
column and (b) Mg/Al-LDH@clinoptilolite.

The total tar removal rates after passage through the water scrubber and clinoptilolite
and Mg/Al-LDH@clinoptilolite columns were 50.2 and 80.1%, respectively, indicating that
the removal rate increased by 29.9% due to catalyst contact.

2.2. Reformation Characteristics of Inflammable Gas in Syngas

Figure 4 illustrates the changes in the contents of H2, CO, CH4, and CO2 in the
syngas after tar removal by passing through the water scrubber and Mg/Al-LDH@
clinoptilolite columns. After consecutive passage through the water scrubber and Mg/Al-
LDH@clinoptilolite columns, the proportion of H2 increased from 18.9% to 21.8%, that of
CO increased from 18.2% to 21.5%, and that of CH4 increased from 3.2% to 4.4%, while
the proportion of CO2 decreased from 13.5% to 9.3%. A comparison with the correspond-
ing values obtained from the conventional method, where only the water scrubber was
used, showed that the proportion of inflammable gaseous components H2, CO, and CH4
increased by 15.3%, 18.1%, and 4.7%, respectively, while that of CO2, which is a key
contributor to carbon emissions, decreased by 31.1%.

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. TIC (Total Ion Chromatogram) of quantified compounds in wood tar wastewater with 

internal standards from SPA sampling (Y-axis: Relative intensity). Tar species and content ratios in 

syngas: after passing through (a) water scrubber column and (b) Mg/Al-LDH@clinoptilolite. 

The total tar removal rates after passage through the water scrubber and clinoptilolite 

and Mg/Al-LDH@clinoptilolite columns were 50.2 and 80.1%, respectively, indicating that 

the removal rate increased by 29.9% due to catalyst contact. 

2.2. Reformation Characteristics of Inflammable Gas in Syngas 

Figure 4 illustrates the changes in the contents of H2, CO, CH4, and CO2 in the syngas 

after tar removal by passing through the water scrubber and Mg/Al-LDH@clinoptilolite 

columns. After consecutive passage through the water scrubber and Mg/Al-LDH@clinop-

tilolite columns, the proportion of H2 increased from 18.9% to 21.8%, that of CO increased 

from 18.2% to 21.5%, and that of CH4 increased from 3.2% to 4.4%, while the proportion 

of CO2 decreased from 13.5% to 9.3%. A comparison with the corresponding values ob-

tained from the conventional method, where only the water scrubber was used, showed 

that the proportion of inflammable gaseous components H2, CO, and CH4 increased by 

15.3%, 18.1%, and 4.7%, respectively, while that of CO2, which is a key contributor to car-

bon emissions, decreased by 31.1%. 

 

Figure 4. Change in content of H2, CO, CH4, and CO2 in syngas for which tar removal was performed by passing through 

the water scrubber and Mg/Al-LDH@clinoptilolite column (a): composition ratio %, (b): rate of change %. 

  

Figure 4. Change in content of H2, CO, CH4, and CO2 in syngas for which tar removal was performed by passing through
the water scrubber and Mg/Al-LDH@clinoptilolite column (a): composition ratio %, (b): rate of change %.

2.3. Processing and Recirculation of Tar Wastewater

To recirculate the treated water, we referred to the literature method [32] to control the
pH using NaOH and optimally designed the treatment unit using the jar test to determine
the amount of Ca(OH)2 and powdered activated carbon (PAC) to be added, which act as a
coagulant aid and coagulant, respectively. Table 3 lists the pH, turbidity, and suspended
solid (SS) contents of the tar after each process of cohesion and precipitation. NaOH was
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added to the raw water of low pH to increase the pH to 8.7, and the addition of PAC caused
the turbidity and SS content to be reduced to 12.7 nephelometric turbidity units (NTU)
and 15 mg/L, respectively, due to cohesion. The chemical oxygen demand (COD) and
ammonium-nitrogen (NH4

+-N) components of the treated water that passed through the
clinoptilolite decreased drastically. As illustrated in Figure 5, the final treated water had
low concentrations of tar components, while its pH was approximately 6, indicating that it
could be reused as circulating water in the water scrubber of the integrated gasification
combined cycle power plant. This implies that the treated water released along with the
aggregated sludge can be recirculated as tap water.

Table 3. Change in pH, turbidity, and SS contents at each processing step.

Analysis Items Raw Wastewater NaOH + Ca(OH)2 Injection PAC Injection Zeolite
(Clinoptilolite)

pH 4.9 8.7 5.9 5.9

Turbidity (NTU) 41.7 129.0 12.7 8.8

SS (mg·L−1) 75.0 155.0 15.0 11.2

CODcr (mg·L−1) 2249.6 2136.8 1140.3 326.8

NH4
+-N(mg·L−1) 31.2 22.4 15.8 2.6
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treatment.

The utilization efficiency of purified syngas was estimated by calculating the cold gas
efficiency (CGE), as shown in Equation (1). The CGE is calculated by the ratio of the total
heat input to the total heat output of the syngas [33,34].

CGE =
LHV(H2 + CO + CH4)gas × Vgas

LHVf uel × m f uel
× 100 (%) (1)

Syngas low heating value (LHV): LHVsynG : HHVsynG − 2.0MJ/m3(H2 vol + 2CH4 vol)

Syngas high heating value (HHV):HHVsynG : 12.7MJ/m3COvol + 12.8MJ/m3H2 vol +

39.9MJ/m3CH4 vol where LHVgas is the LHV of syngas (MJ/Nm3); LHVfuel is the LHV of
waste (MJ/kg); Vgas is the flowrate of syngas (Nm3/h); mfuel is the feeding rate of waste
(kg/h).

The total heat produced by the syngas was calculated using the percent concentrations
of H2, CO, CH4, and the flow of the syngas. As a result, the energy utilization efficiency cal-
culated from the CGE value increased by 11.14%, from 74.32% when the gas passed through
the water scrubber to 85.46% when the gas passed through the Mg/Al-LDH@clinoptilolite
column.
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Studies not relevant to tar removal, such as those related to CO2 capture [35–37], have
confirmed that the efficient removal of CO2 from syngas demonstrated in this study was
mostly caused by clinoptilolite and Mg/Al-LDH@clinoptilolite. Davarpanah et al. [35]
conducted a study on the adsorption capacity of clinoptilolite toward CO2 emitted from
industrial processes at moderate temperatures. According to their findings, clinoptilolite
is a promising adsorbent that can be used to directly remove CO2 from different flue gas
sources at working temperatures. Furthermore, according to Megias-Savago et al. [36], the
ability of zeolites and LDH zeolites to capture CO2 is highly dependent on the aluminum
concentration in the zeolite framework and its cationic nature. For LDHs, the combination
of a high specific surface area combined with a high pore volume appears to be a decisive
factor in obtaining high adsorption [36]. Murge et al. [37] also evaluated the CO2 capture
characteristics of various zeolite-based sorbents and reported adsorption values of 114 and
190 mg CO2·g−1 under atmospheric and 5 bar pressures, respectively. They also observed
that the adsorption capacity of the zeolites was affected by the presence of alkali metal
ions. Biomass gasification plants need to be equipped with wet scrubber gas cleaning to
produce syngas that meets the specifications for use in various applications. To be used
in internal combustion engines for power generation, the particulate and tar contents
of syngas are required to be approximately 30 mg·Nm−3 and less than 100 mg·Nm−3,
respectively [5,38]. The scrubber is operated in the co-current mode to remove tar and
prevent backfire. The dehydration section is utilized to separate microdrops of water
included in the syngas during its purification by passing through the water scrubber tower.
This step is necessitated by the reduction in efficiency, corrosion, condensation, and hydrate
formation, which occur in the presence of moisture. The heavy insoluble tar (C20–C40
or higher) is typically collected in the conical base of the scrubber along with the inert
substances and unreacted dust separated from the syngas and removed through the screw
pump. The relatively lighter water-soluble substances are discharged along with water as
tar wastewater [39]. As shown in previous studies, the wet scrubber method is the most
commonly used of the various tar removal methods (Figure 1). Therefore, the present study
is the first attempt to enhance the removal efficiency of the tar and CO2 by improving
refining parts in syngas while also taking advantage of the wet scrubber method.

High temperatures above 700 ◦C are required for repeated regeneration when ac-
tivated carbon is used for water and CO2 adsorption in tar mist, aerosols, and syngas.
Furthermore, activated carbon is difficult to apply in purification processes because of
the risk of explosion caused by spontaneous reaction with moisture upon exposure to the
external environment [40,41]. However, when the zeolite is used as an alternative to acti-
vated carbon, its regeneration temperature is relatively lower (below 300 ◦C). In addition,
zeolite, being an inorganic adsorbent, can be safely exposed to the external environment.
The porous structures of zeolite absorbents enable the removal of internal impurities in
addition to moisture through the micropores, indicating that zeolites are suitable for use in
purification processes [42,43]. Therefore, it is plausible that the zeolite played a significant
role in removing moisture from the tar mist, aerosol, and syngas that passed through the
water scrubber, although we did not conduct experiments for the quantitative evaluation
of moisture removal in this study. Favvas et al. [44] also utilized clinoptilolite in their study
on the dehydration of hydrocarbon-based fuels. The maximum water/vapor adsorption
was measured to be 8 mmol/g at 22 ◦C, which proves the efficiency of zeolite at removing
moisture from syngas.

Therefore, in this study, clinoptilolite, a natural zeolite that is inexpensive and easily
excavated from open-air mines in Korea, and the corresponding Mg/Al-LDH@clinoptilolite
have been utilized for the efficient removal of tar components that cannot be removed
using conventional water scrubbers. Enhanced removal of CO2 and dehydration of syngas
have also been achieved. The effectiveness of clinoptilolite was thoroughly demonstrated
by the results obtained in this study.
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3. Materials and Methods
3.1. Materials

The natural zeolite clinoptilolite (Ca, Na2(Al2Si7O18)6H2O)) was procured from a
mining and processing manufacturer (H Trade). The zeolite was crushed and screened for
particles smaller than 100 mesh (254 µm). The particles were then washed with distilled
water (clinoptilolite:distilled water ratio (wt), 1:3) that had been subjected to reverse
osmosis filtration and deionization (RO/DI), followed by drying at 105 ◦C. The selectivity
affinity order of the cation exchanger (SIR-600) was Cs+ > Rb+ > K+ > NH4

+ > Ba2+ > Sr2+

> Na+ > Ca2+ with a micropore size of 4 Å. The chemical composition of clinoptilolite is
listed in Table 4 [45].

Table 4. The chemical composition of clinoptilolite used in this study.

Chemical
Component Percent (%) Chemical

Component Percent (%)

SiO2
Al2O8
Fe2O8
MgO
CaO

66.50
14.70
1.68
1.25
1.82

Na2O
K2O
P2O5
H2O

1.90
3.25
0.04
8.04

3.2. Mg/Al-LDH@Clinoptilolite Preparation

The layered double hydroxides (LDHs) were synthesized by adding 30 g of the
natural clinoptilolite prepared in Section 3.1 to distilled water, followed by the addition of
0.024 mol Mg(NO3)2·6H2O and 0.008 mol Al(NO3)3·9H2O. The mixed solution was then
stirred at a speed of 150 rpm while adding 2 mol Na2CO3 solution to achieve a pH of
9–10. Subsequently, N2 gas was injected as fine bubbles using a woodstone while stirring
for 30 min. After 2 h of stirring, the precipitate was dried for 24 h at 105 ◦C, followed
by calcination in a muffle furnace for 2 h at 400 ◦C [46,47]. Microstructure scheme of
Mg/Al-LDH@clinoptilolite was shown in Figure 6.

Catalysts 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 

 

Figure 6. Microstructure scheme of Mg/Al-LDH@clinoptilolite. 

3.3. Syngas Source and Tar Removal Process 

Wood chips obtained by crushing thinning-out trees were used as raw materials in 

the experimental apparatus, and their characteristics are presented in Table 5. The syngas 

was produced as in Figure 7 at a site adjacent to the gasification power generation demon-

stration plant with a generation capacity of 500 kWe (raw material input: 20 ton/d) in 

Goseong, Gangwon-do, South Korea. A portion of the 25.176 Nm3/min of synthetic gas 

generated by the gasification demonstration facility was fed into the experimental appa-

ratus, and the bench-scale syngas refining reactor used in this experiment is shown in 

Figure 8.  

Table 5. Characteristics of the raw materials (wood chips) used to produce syngas. 

 Value Unit 

C 46.2 

w/w (%) 

H 6.1 

O 31.2 

S 0.01< 

N 0.07 

Cl 0.03 

Water 17.2 

Volatile Matter 67.8 

Fixed Carbon 13.7 

Non-volatile Matter 1.3 

Low Heating Value 13.9 MJ∙kg−1 

Figure 6. Microstructure scheme of Mg/Al-LDH@clinoptilolite.

3.3. Syngas Source and Tar Removal Process

Wood chips obtained by crushing thinning-out trees were used as raw materials
in the experimental apparatus, and their characteristics are presented in Table 5. The
syngas was produced as in Figure 7 at a site adjacent to the gasification power generation
demonstration plant with a generation capacity of 500 kWe (raw material input: 20 ton/d)
in Goseong, Gangwon-do, South Korea. A portion of the 25.176 Nm3/min of synthetic
gas generated by the gasification demonstration facility was fed into the experimental
apparatus, and the bench-scale syngas refining reactor used in this experiment is shown in
Figure 8.
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Table 5. Characteristics of the raw materials (wood chips) used to produce syngas.

Value Unit

C 46.2

w/w (%)

H 6.1

O 31.2

S 0.01<

N 0.07

Cl 0.03

Water 17.2

Volatile Matter 67.8

Fixed Carbon 13.7

Non-volatile Matter 1.3

Low Heating Value 13.9 MJ·kg−1
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Figure 8. Schematic diagram of bench scale syngas refining reactor. 1st column: water scrubber with water spray volume
5 L·min−1, diameter 280 mm, height 500 mm, filled with ceramic ring filter (height 300 mm), spray water temperature
below 20°C, 2nd column: reactor filled with prepared clinoptilolite, diameter 260 mm and height 500 m, 3rd column: reactor
filled with prepared Mg/Al−LDH@clinoptilolite, diameter 260 mm and height 500 m (Gasifier structure and operation
parameters source: Samyang Econergy Inc. in Korea).

The gas was injected from the lower end of the first column with the inflow rate set
to 0.4 Nm3·min−1. The gas was then consecutively passed through the second and third
columns, which can be replaced with cartridges, with a superficial velocity (SV) of 0.3 m·s−1.
The reactor was constructed considering the main target substances for removal in each
column: (1) water scrubber column: water-soluble light tar (C10–C20); (2) clinoptilolite
column: fine persistent aerosol (tar mist, vapor, CO2) and heavy non-soluble tar (C20–C40
and higher); (3) Mg/Al-LDH@clinoptilolite column: heavy non-soluble tar (C20–C40 and
higher) and CO2.

3.4. Tar Sampling and Analysis Method

The tar sampling protocol proposed by van de Kamp, W. L., et al. [48] was used.
Briefly, this method consists of a series of six impingement bottles passing through syngas.
The first bottle acts as a moisture collector. Then the gas passes through four impingement
bottles filled with acetone to dissolve the tar. The last bottle is left empty for the collection of
the final condensate. We analyzed the chemical composition of the tar by the two methods
proposed by Dufour et al. [49] on using wood pyrolysis tar to improve the accuracy of
the lignocellulosic tar analysis. First, the sampled tar was pretreated using the procedures
listed in Figure 9, and the tar composition was analyzed using the following two methods.
The first method employed a typical cold-trapping technique in solvent-filled impingers,
followed by liquid injection. The second involved the application of multibed solid-phase
adsorbent (SPA) tubes and thermal desorption (TD). Both methods are based on gas
chromatography (GC) and mass spectrometry (MS). The GC-MS analysis conditions are
listed in Table 6.
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Figure 9. Pre-treatment method for tar (liquid-liquid extraction (LLE)).

Table 6. GC/MS analysis conditions for tar generated from biomass gasification plants.

First Method (GC/MS) Second Method (TD–GC/MS)

Instrument Perkin Elmer Clarus 600 GC/MS (Waltham,
MA, USA)/(Detector: Clarus 600T)

GC/MS(TD–GC/MS), using a TurboMatrix thermal
desorber (Perkin-Elmer) and a Clarus 600 GC/MS

(Perkin-Elmer). (Detector: Clarus 600T)
Column HP-5MS-UI, (5%-Phenyl)-methylpolysiloxane (Agilent J&W, Folsom, CA, USA)

Carrier gas Helium (Alphagaz 2, Air Liquide, Nancy, France), 1.2 mL/min
GC oven 40 ◦C, 5 min, 10 ◦C/min, 320 ◦C

Inlets Split less, Heater 250 ◦C

3.5. Analysis of Syngas

The gas samples were collected in 2 L polyvinyl fluoride gas sampling bags and
analyzed using a gas chromatograph (SRI 8610, SRI Instruments, Torrance, CA, USA)
equipped with a thermal conductivity detector (GC-TCD). The gases, H2, CO, CH4, CO2,
and N2, were separated and quantified using a Carbosphere 80/100 (6 ft × 1/8 in stainless
steel column (Alltech Associates Inc., Deerfield, IL, USA). The method involved injecting
500 µL of the gas sample into the gas chromatograph. The temperature of the column
was maintained at 100 ◦C, and the run time was set to 6 min. The detector and injector
temperatures were set to 150 ◦C and 120 ◦C, respectively. The TCD cell was maintained at
140 ◦C, and the GC was maintained at a pressure of 25 psi. Argon (Nexair, Memphis, TN,
USA) was used as the carrier gas.

4. Conclusions

A natural zeolite (clinoptilolite) catalyst impregnated with Mg/Al LDH was incorpo-
rated into a water scrubber, which purified the generated wastewater, enabling its reuse.
The syngas from the lignocellulosic biomass gasification system was found to contain 19 tar
compounds, including carbohydrates, furans, phenols, and guaiacols. Guaiacols were the
most prevalent, accounting for 41.5% of the compounds, followed by phenols (35.6%). The
tar removal rate after passing through the water scrubber was 50.2%. However, the total
tar removal rate after passing through the clinoptilolite and Mg/Al-LDH@clinoptilolite
columns was 80.1%, indicating that catalyst contact enhanced the tar removal rate by
29.9%. Compared to the conventional method of only passing the syngas through the
water scrubber, the proportions of inflammable gaseous components, such as H2, CO, and
CH4, increased by 15.3%, 18.1%, and 4.7%, respectively, while that of CO2, which is a key
contributor to carbon emissions, decreased by 31.1%.
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