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Abstract: Dry methanation of syngas is a promising route for synthetic natural gas production be-
cause of its water and cost saving characteristics, as we reported previously. Here, we report a simple
soaking process for the preparation of well-dispersed Ni/MgAl2O4-E catalyst with an average Ni size
of 6.4 nm. The catalytic test results showed that the Ni/MgAl2O4-E catalyst exhibited considerably
higher activity and better stability than Ni/MgAl2O4-W catalyst prepared by conventional incipient
wetness impregnation method in dry methanation reaction. The long-term stability test result of 335 h
has demonstrated that the deactivation of the Ni/MgAl2O4-E catalyst is inevitable. With multiple
characterization techniques including ICP, EDS, XRD, STEM, TEM, SEM and TG, we reveal that
the graphitic carbon encapsulating Ni nanoparticles are the major reasons responsible for catalyst
deactivation, and the rate of carbon deposition decreases with reaction time.

Keywords: dry methanation; Ni/MgAl2O4 catalysts; dispersion; deactivation; carbon deposition

1. Introduction

The process for direct combustion of coal usually releases many pollutants such as
SOx, NOx, COx, particulate matter (PM), etc., which has resulted in severe environmental
pollution [1,2]. Replacing coal with natural gas for combustion can improve the combustion
efficiency and significantly minimize pollution because of the high calorific value of natural
gas and low emission of pollutants for its combustion. Natural gas import has risen in
China in recent years in spite of the emergence of shale gas and combustible ice [3,4].
Therefore, the process of coal to synthetic natural gas has attracted considerable attention
in the past [5–7]. Methanation of syngas is a key process for the production of natural gas
from coal. Dry methanation of syngas with H2/CO ratio of 1 has the advantages of water
and cost saving compared with conventional methanation routes due to not needing to
adjust the H2/CO ratio of raw syngas through water-gas shift (Equation (1)) process before
the reaction [8,9]. However, most of the literature focuses on the conventional methanation
of syngas with H2/CO ratio of 3 (Equation (2)). Dry methanation of syngas with H2/CO
ratio of 1 has rarely been investigated thus far (Equation (3)).

CO + H2O = CO2 + H2 ∆H298K = −41.2 kJ/mol (1)

CO + 3H2 = CH4 + H2O ∆H298K = −206.1 kJ/mol (2)

2CO + 2H2 = CH4 + CO2 ∆H298K = −247.3 kJ/mol (3)

Nickel based catalysts are most widely used in conventional methanation of syngas
with H2/CO ratio of 3 or above due to its high activity and low cost [10–13]. Similar to this
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conventional methanation reaction, it was found that nickel-based catalysts can efficiently
catalyze dry methanation reaction from our previous study [8,9]. It is generally believed
that the metallic Ni nanoparticles are the active sites in methanation reaction since the
accessible Ni atoms can be reduced by the reducing syngas [14,15]. The main drawback of
the Ni catalysts is easily deactivated by production of coke that can affect catalyst lifetime,
especially at conditions of a low H2/CO ratio. It was reported by many researchers that the
presence of highly dispersed small metallic Ni nanoparticles on support can greatly reduce
the coking degree [16,17]. Therefore, developing highly dispersed nickel catalysts with
small size is highly desirable for dry methanation reaction since it results in an increased
surface area of the active phase and a consequent enhancement in the catalytic activity
and stability.

Enormous efforts have been devoted to preparing highly dispersed nickel-based
catalysts. One way is to develop a suitable catalyst preparation method, such as co-
precipitation [18,19], deposition–precipitation [20,21], sol–gel routes [22,23], atomic layer
deposition [24,25], etc. He et al. [26] prepared highly dispersed 30.4 wt.% Ni-0.5CeO2 with
Ni crystallite size of 8.4 nm by a co-precipitation method, which is smaller than that of
18.3 wt.% Ni/CeO2 prepared by incipient wetness impregnation (14.2 nm). Le et al. [27]
have reported that the 10 wt.% Ni/Al@Al2O3 catalyst prepared by deposition–precipitation
exhibits higher Ni dispersion with Ni particle size of 3–4 nm than that of impregnation
catalyst. Lakshmanan et al. [28] synthesized 55 wt.% Ni@SiO2 core–shell catalyst with Ni
mean sizes of 8.0 nm via a sol–gel method, which is far more dispersed than that of 33 wt.%
Ni/SiO2 catalyst with Ni mean sizes of 24.5 nm prepared by a wet impregnation method.
Gould et al. [29] reported that Ni/Al2O3 prepared by atomic layer deposition shows higher
dispersed Ni nanoparticles as small as 3.0 nm than that of impregnated Ni/Al2O3 with
Ni average size of 15 nm. However, several of these preparation methods often require
sophisticated operation procedures or strict control of experimental parameters. The
sol–gel process involves the use of complex and expensive alkoxide precursors as well
as a series of sophisticated operation such as hydrolysis and condensation, etc. [30,31],
which always make this method costly and time-consuming. For co-precipitation and
deposition–precipitation processes, the pH value of solution should be strictly controlled
by adding a basic precipitation agent such as urea, ammonia, NaOH or K2CO3 in the
preparation procedure. Otherwise, it will result in the poor reproducibility of catalyst
preparation [32,33]. Atomic layer deposition has proven to be a powerful technique for the
preparation of highly dispersed Ni catalysts with precise control. However, it suffers from
several issues including high precursor cost, low deposition rate and limited scalability,
which limit its large-scale commercial application [34–36]. Therefore, it is still necessary to
develop a facile approach for synthesis of highly dispersed Ni catalyst.

Magnesium aluminate spinel (MgAl2O4) has unique optical properties, electrical prop-
erties, high melting point (2135 ◦C), high mechanical strength, chemical inertness and the
acceptable catalytic properties. Thus, it has applications in many important areas, such as
optically transparent ceramic, neutron radiation resistance, humidity sensors, refractories,
catalyst and catalyst support [37,38]. For applications as catalyst support, MgAl2O4 is
widely used in a variety of reactions, such as SCR of NOx, dehydrogenation reaction,
reforming reaction and other type of reactions due to its high thermal stability. In this work,
we synthesized a well-dispersed Ni/MgAl2O4-E catalyst with an average Ni nanoparticle
size of 6.4 nm using a facile method. It was found that high activity and stability were
achieved on Ni/MgAl2O4-E catalyst for dry methanation reaction at 400–450 ◦C, which is
superior to that of Ni/MgAl2O4-W catalyst synthesized by conventional incipient wetness
impregnation method. The catalyst structure evolution and deactivation behavior during
long-term stability test of 335 h were probed by using ICP, EDS, XRD, STEM, TEM, SEM
and TG. We disclosed that the deactivation of Ni/MgAl2O4 catalyst is attributed to the
encapsulation of Ni nanoparticles by graphitic carbon.
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2. Results
2.1. Catalyst Characterization

The basic physicochemical characteristics of Ni/MgAl2O4-W and Ni/MgAl2O4-E
samples are listed in Table 1. The specific surface areas for the Ni/MgAl2O4-W and
Ni/MgAl2O4-E samples are 242.7 and 220.3 m2/g, respectively. It is obvious that the SBET
values of these two samples have no significant difference. The corresponding pore sizes
are 3.5 and 8.6 nm, and the corresponding pore volumes are 0.40 and 0.57 cm3/g. The
pore sizes were calculated from the desorption branch of the N2 adsorption–desorption
isotherms using the Barrett–Joyner–Halenda (BJH) method. Ni/MgAl2O4-E has larger
pore sizes and pore volumes than Ni/MgAl2O4-W. It is obvious that the pore size of the
Ni/MgAl2O4-E is the same to that of MgAl2O4 support, while for Ni/MgAl2O4-W, it is
lower than that of MgAl2O4 support. The Ni contents were measured at 5.2 and 4.9 wt.%
for the Ni/MgAl2O4-W and Ni/MgAl2O4-E samples, respectively, by ICP-OES analysis.

The XRD patterns of Ni/MgAl2O4-W and Ni/MgAl2O4-E samples are presented in
Figure 1. These two samples show the characteristic diffraction peak of MgAl2O4 spinel
(JCPDS 21-1152). Ni/MgAl2O4-W displays a distinct diffraction peak at 2θ of 51.8◦, which
is attributed to the (200) plane of metallic Ni (JCPDS 04-0850), while for Ni/MgAl2O4-E, a
broadly weak diffraction peak of metallic Ni at 51.8◦ is observed. The average crystallite
sizes of Ni, which were calculated by using Scherrer equation based on the diffraction
of Ni (200), are 9.6 (±2.0) and 5.6 (±1.4) nm for Ni/MgAl2O4-W and Ni/MgAl2O4-E
samples, respectively. This result suggests that Ni possesses smaller average size and
higher dispersion on MgAl2O4-E than MgAl2O4-W.

Table 1. Physicochemical characteristics for the Ni/MgAl2O4-W and Ni/MgAl2O4-E samples.

Sample Ni Content
(wt.%)

dNi (200)
(nm) SBET (m2/g)

Pore Size *
(nm)

Pore Volume
(cm3/g)

MgAl2O4 - - 327.6 8.6 0.89
Ni/MgAl2O4-E 4.9 5.6 (±1.4) 220.3 8.6 0.57
Ni/MgAl2O4-W 5.2 9.6 (±2.0) 242.7 3.5 0.40

* BJH desorption average pore diameter.
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Figure 2 shows the STEM images of the freshly reduced Ni/MgAl2O4-W and
Ni/MgAl2O4-E samples. The histograms of Ni particle size distribution for these two
samples were obtained by statistical analysis of counting more than 300 Ni particles.
Ni/MgAl2O4-E shows the average Ni nanoparticle size of about 6.4 nm with a narrow
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size distribution in the range of 3–11 nm, whereas the Ni/MgAl2O4-W shows the aver-
age Ni nanoparticle size of about 10.1 nm with a wide size distribution in the range of
5–19 nm. The Ni nanoparticle sizes obtained from STEM are well consistent with the
ones calculated from XRD data. It indicates that Ni/MgAl2O4-E has better dispersion of
Ni nanoparticles on MgAl2O4 support than Ni/MgAl2O4-W.
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2.2. Catalytic Activity and Stability

We assessed the catalytic performance of the Ni/MgAl2O4-W and Ni/MgAl2O4-E
catalysts for dry methanation at 0.1 MPa and GHSV of 10,000 mL h−1 gcat.

−1, as shown in
Figure 3. The CO conversion (XCO) increases from 51.5% to 91.6% when the temperature
increases from 350 to 400 ◦C over Ni/MgAl2O4-E catalyst. It reaches the equilibrium
CO conversion calculated, assuming no carbon formation occurs at 450 ◦C, and then
surpasses them at higher temperatures, while remaining far below the ones calculated,
assuming carbon formation occurs, suggesting that carbon formation occurred in the
reaction system. Above 450 ◦C, the XCO and XH2 decreases with increasing reaction
temperature due to the limitation of chemical equilibrium. The selectivity of CH4 (SCH4 )
decreases from 61.9% to 49.6% and then stays at 50–48%, while the selectivity of CO2
(SCO2 ) increases from 33.8% to 46.6% and maintains at 47–45% when the temperature
increases from 350 to 400 ◦C and above. The carbon balances are above 95% at all tested
temperatures as shown in Table S1. For Ni/MgAl2O4-W catalyst, when the reaction
temperature increases from 350 to 400 ◦C and above, the XCO increases from 8.0% to
46.8% and then approaches to the equilibrium conversion calculated, assuming no carbon
formation occurs. Meanwhile, the SCH4 decreases from 74.6% to 52.7% and then holds at
48.1–48.5%, and the SCO2 increases from 19.0% to 40.5% and then maintains at 47–46%. As
a result, CH4 yields about 45.4% (theoretical yield is 48.2% at 400 ◦C) and is obtained at
400 ◦C over Ni/MgAl2O4-E catalyst. All these above results suggest that Ni/MgAl2O4-
E catalyst shows better catalytic performance for dry methanation reaction than that of
Ni/MgAl2O4-W catalyst.

The effect of gas hourly space velocity (GHSV) on the Ni/MgAl2O4-E catalyst perfor-
mance for dry methanation reaction at 450 ◦C was studied, as shown in Figure 4. With
increasing the GHSV, the XCO starts decreasing from the CO equilibrium conversion
(calculated with assuming no carbon formation occurs) when the GHSV is larger than
20,000 mL h−1 gcat.

−1, indicating that mitigation of mass transport limitation begins. Mean-
while, the SCH4 increases and SCO2 decreases, consistent with the increase in the difference
between XH2 and XCO, which reflects that methanation of syngas with H2/CO molar ratio
above 1, which is pronounced at high GHSV. This requires low GHSV to obtain high XCO
with dry methanation selectivity.
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Figure 5 shows the catalytic stability results of the Ni/MgAl2O4-W and Ni/MgAl2O4-
E catalysts in dry methanation reaction at 450 ◦C with the GHSV of 10,000 mL h−1 gcat.

−1.
It is obvious that the Ni/MgAl2O4-E catalyst displays a relatively stable XCO of 88–90%
during the total test time of 24 h, while the XCO over Ni/MgAl2O4-W decreases from
~90% to 78.2% in the last 16 h of reaction. Both the SCH4 and SCO2 approach 50% and
remain almost unchanged during the total test time because of the high XCO, which is
also confirmed by the above results (Figures 3 and 4). The above results indicate that
Ni/MgAl2O4-E shows better catalytic stability than Ni/MgAl2O4-W catalyst.

The catalytic stability of the Ni/MgAl2O4-E catalyst in dry methanation reaction was
further investigated by the long-term test at 450 ◦C and GHSV of 10,000 mL h−1 gcat.

−1. As
shown in Figure 6, the XCO continuously decreases from 91.1% to 18.4% during 300 h time
on stream (TOS). It decreases by 6.5%, 10.8%, 12.1% and 17.5% in the first four consecutive
50 h periods, respectively, displaying increasing deactivation rates. The SCH4 increases
from 50.6% to 60.5% and SCO2 decreases from 47.9% to 26.1% along with the decrease of
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XCO in similar ways to that presented in Figure 4. After reaction, significant coke in the
catalyst bed is visible. After burning coke with air and reducing the spent catalyst with
H2 at 650 ◦C, the regenerated catalyst exhibits initial XCO of 86.0% and SCH4 and SCO2 of
50.6% and 47.2%, respectively. However, the XCO decreases dramatically to 43.8% within
24 h TOS and the SCH4 and SCO2 turn to 60.4% and 41.2%, indicating that irreversible
deterioration of the catalyst occurs probably due to coke combustion.
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A series of characterization techniques were used to probe the structure evolution
of the Ni/MgAl2O4-E catalyst in the long-term stability test. Figure 7 shows the STEM
images for the Ni/MgAl2O4-E catalyst after different reaction times at reaction conditions
of 450 ◦C and 10,000 mL h−1 gcat.

−1. The average Ni nanoparticle sizes of the Ni/MgAl2O4-
E after reaction for 5 and 150 h are 6.9 and 6.4 nm, respectively (Figure 7a,b), which show
similar sizes as that of the fresh one (Figure 2b). The average Ni nanoparticle size for the
regenerative catalyst of Ni/MgAl2O4-E increases to 11.5 nm, and the Ni nanoparticles
with large sizes of 25–35 nm are clearly observed because of presumed deterioration of
the catalyst (the insert image of Figure 7c). These results are in good accord with the
sizes calculated by Scheer equation using the XRD data (Table S2 and Figure S1). The



Catalysts 2021, 11, 1117 7 of 12

obvious increase for the Ni nanoparticle size of the regenerative catalyst may explain the
phenomenon of its fast deactivation in dry methanation reaction.
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TEM images reveal the massive deposits of carbon for the spent catalyst, which has a
filamentous structure with a Ni nanoparticle attached to the end (Figure 8b–d). HRTEM
images display that the graphitic carbon encapsulated the Ni nanoparticles as shown
in a representative sample of S150 (Figure 8c). The measured d-spacing values of the
graphitic carbon is 0.34 nm, which is the well-crystallized graphitic carbon (JCPDS 75-
1621) and is also verified by XRD crystallography (Figure S1). SEM images of the spent
catalysts also show the formation of filamentous carbon deposits with Ni nanoparticles at
their tips (Figure S2a–c). The deposits of carbon over Ni/MgAl2O4-S150 were completely
removed by regeneration operation (Figure S2d). The amount of carbon deposits over
spent catalysts was measured by thermogravimetric (TG) analysis during temperature-
programmed oxidation. The weight losses of the spent catalysts below 350 ◦C are attributed
to the desorption of the physiosorbed water, as we previously reported, for the similar
types of catalysts. The weight losses of Ni/MgAl2O4-S5, Ni/MgAl2O4-S10, Ni/MgAl2O4-
S50, Ni/MgAl2O4-S150 and Ni/MgAl2O4-S335* are 4.5%, 5.0%, 13.6%, 28.3% and 11.4%,
respectively, in the temperature range of 350 and 650 ◦C, which is associated with the
oxidation of carbon deposits during temperature programmed processes (Table S2 and
Figure S3) [9]. The amount of carbon deposits with reaction time over spent catalysts
obtained from TG data are presented in Figure 9a. It is obvious that the longer reaction
times give rise to more deposits of carbon. Notably, the amount of carbon deposits over
Ni/MgAl2O4-S335 were obtained by recording the weight of reactor before and after
reaction. Figure 9b shows the relationship between the average accumulation rate of
carbon deposits over Ni/MgAl2O4-E and the reaction time. It demonstrates clearly that
the accumulation rate of carbon deposits decreases with the increase of reaction time.

In order to check whether the amount of Ni over Ni/MgAl2O4-E is loss under reaction
condition, the Ni content of the Ni/MgAl2O4-E catalyst after different reaction time was
determined by ICP and EDS analysis. The Ni content of Ni/MgAl2O4-S5, Ni/MgAl2O4-
S10, Ni/MgAl2O4-S50, Ni/MgAl2O4-S150 and Ni/MgAl2O4-S335* determined by ICP
is 4.9, 5.0, 5.0, 5.2, and 5.1 wt.%, respectively (Table S2). The EDS for elemental analysis
further reveals that the Ni content of Ni/MgAl2O4-S335* is 4.9 wt.% (Figure S4), which
is well consistent with the results obtained from ICP test. These results suggest that the
Ni content of Ni/MgAl2O4-E catalyst hardly changes during the long-term stability test
under reaction condition.
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3. Discussion

Ni/MgAl2O4-E catalyst shows higher activity and better stability than that of Ni/MgAl2O4
-W catalyst in dry methanation reaction at 450 ◦C and GHSV of 10,000 mL h−1 gcat.

−1

(Figures 3 and 5). According to the ICP results, these two catalysts have similar Ni content
of ~5 wt.% (Table 1). XRD crystallography and STEM images reveal that the Ni/MgAl2O4-E
catalyst shows higher dispersion of Ni with the average particle size of ~6 nm, while the
Ni/MgAl2O4-W catalyst exhibits lower dispersion of Ni with the average particle size of
~10 nm (Table 1, Figures 1 and 2). According to the literature, the amount of deposited coke
increases with the size of Ni nanoparticles increasing from ~6 to ~10 nm [39]. These are
the possible reasons for the large difference in catalytic performance for dry methanation
reaction over Ni/MgAl2O4-W and Ni/MgAl2O4-E catalysts.

However, Ni/MgAl2O4-E catalyst deactivation is still inevitable during the 335 h
long-term stability test in dry methanation at 450 ◦C and GHSV of 10,000 mL h−1 gcat.

−1

(Figure 6). No meaningful change for the morphology and particle size of Ni after the
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stability test for different time was observed according to the XRD and STEM results
(Figures 1 and 7). From the TEM images and SEM images, obvious filamentous carbon
with a nickel crystallite attached to the end formed over Ni/MgAl2O4-E catalyst after
the stability test for different times (Figure 8 and Figure S2). HRTEM images reveal that
the Ni nanoparticles were encapsulated by the graphitic carbon. Moreover, considerably
more carbon deposits formed with longer stability test time, as evidenced by TG results
(Table S2 and Figures 9a and S3). In addition, the Ni content of the Ni/MgAl2O4-E after the
stability test for different time does not (or hardly) change, including under the reaction
atmosphere of high CO concentration, as determined by ICP and EDS analysis (Table S2
and Figure S4). The catalytic activity of the deactivated Ni/MgAl2O4-E cannot be fully
recovered by regeneration, which is probably due to the increased Ni particle size during
regeneration process (Table S2 and Figures 7c and 8d). All these above results indicate that
carbon deposition is the main reason for the deactivation of the Ni/MgAl2O4-E catalyst in
dry methanation reaction.

4. Materials and Methods
4.1. Catalyst Preparation

MgAl2O4 support was synthesized by a solvothermal method, as we previously
reported [9,40] and then was calcined at 600 ◦C for 5 h. Ni/MgAl2O4-E was prepared
by soaking MgAl2O4 support powder in absolute ethanol solution of Ni(NO3)2·6H2O
(≥98.0%, Damao, Tianjin, China) with continuous stirring for 24 h at room tempera-
ture. The obtained mixture was filtered and dried at 110 ◦C for 11 h, and then calcined
at 350 ◦C for 5 h with a heating rate of 5 ◦C/min. The calcined sample was further
reduced at 700 ◦C for 2 h under pure hydrogen followed with passivation in 1 vol.%
O2/N2 at room temperature for 2 h with a flow rate of 20 mL/min before exposure to
air. Ni/MgAl2O4-W was prepared by conventional incipient wetness impregnation of
MgAl2O4 support with aqueous solution of Ni(NO3)2·6H2O. The impregnated sample
was then dried, calcined, reduced and passivated under the same condition as that of
Ni/MgAl2O4-E. The spent Ni/MgAl2O4-E catalysts after 5, 10, 50, 150, and 335 h reaction
were denoted as Ni/MgAl2O4-S5, Ni/MgAl2O4-S10, Ni/MgAl2O4-S50, Ni/MgAl2O4-S150
and Ni/MgAl2O4-S335, respectively. The spent Ni/MgAl2O4-E catalyst after 335 h reaction
and regeneration and then after 24 h reaction was denoted as Ni/MgAl2O4-S335*. The
spent catalysts were regenerated by burning coke at 650 ◦C for 0.5 h in an air flow of
20 mL/min and then reduction at 650 ◦C for 2 h in a H2 flow of 40 mL/min.

4.2. Catalyst Characterization

The specific surface areas, pore size and pore volume of the samples were measured
at −196 ◦C on a Micromeritics ASAP 2460 instrument (Norcross, GA, USA). All samples
were degassed at 350 ◦C for 5 h under vacuum prior to the adsorption measurements.
The Ni loading of the samples was determined by inductively coupled plasma optical
emission spectroscopy (ICP-OES, Waltham, MA, USA). X-ray diffraction (XRD) patterns of
the samples were recorded on an X-ray diffractometer (PANalytical PW 3040/60 X’Pert
PRO, Almelo, The Netherlands) with a Cu Kα (λ = 0.154 nm) radiation source at 40 kV and
40 mA. The micro-morphologies of the samples were characterized on a scanning electron
microscopy (JEOL JSM-7800F, Tokyo, Japan). All the samples were grinded into powder
and coated onto a conductive tape before characterization. TEM and STEM images were
obtained on a transmission electronic microscopy (JEM-2100F, Tokyo, Japan) with a high-
angle annular dark field scanning transmission electron microscopy (HAADF-STEM, Tokyo,
Japan) detector. Energy dispersive X-ray spectroscopy (EDS) analysis was performed on an
adjacent ISIS/INCA energy dispersive X-ray spectrometer (Oxford Instruments, Oxford,
UK) equipped with an ultrathin window (UTW) detector. The amount of carbon deposits
on the spent catalysts were measured using a thermogravimetric analyzer (TA instrument,
SDT Q600, New Castle, DE, USA) by temperature programmed oxidation method with a
heating rate of 10 ◦C/min in an air flow of 100 mL/min.
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4.3. Catalytic Performance Tests

Dry methanation reaction tests were performed in a fixed-bed quartz tubular reactor
(i.d. = 10 mm) at atmosphere pressure. For each test, all the catalysts powders were
diluted with 2 g of quartz sand and then loaded into a U-shaped reactor. The reactant gases
consisted of 48 vol.% CO, 48 vol.% H2 and 4 vol.% N2 (internal standard). The flow rates of
reactant gases were controlled by mass flow controllers and the reaction temperature was
controlled by a programmable temperature controller with a K-type thermocouple. The
products and unconverted reactants at the reactor outlet were analyzed using an online
gas chromatography (Agilent 7890B, Santa Clara, CA, USA) equipped with a thermal
conductivity detector (TCD, Santa Clara, CA, USA) and two packed columns (Parapak
N and 5A molecular sieve). The CO and H2 conversion were calculated as Xi = (ni,in
− ni,out)/ni,in, where i is CO and H2. The CH4 and CO2 selectivity were calculated as
Sj = nj,out/(nCO,in − nCO,out), where j is CH4 and CO2. The carbon balance was calculated as
the moles of carbon at the reactor outlet divided by the moles of carbon at the reactor inlet.

5. Conclusions

In this work, we report that the well-dispersed Ni/MgAl2O4-E catalyst with smaller
average size of Ni nanoparticles shows better catalytic performance than the Ni/MgAl2O4-
W catalyst in dry methanation reaction under the studied reaction conditions. High and
stable catalytic performance was obtained at 400–450 ◦C over Ni/MgAl2O4-E catalyst.
However, Ni/MgAl2O4-E catalyst deactivation is inevitable during the long-term stability
test at 450 ◦C due to the encapsulation of Ni nanoparticles by the graphitic carbon. The
regeneration of catalyst did not recover the performance of Ni/MgAl2O4-E catalyst, most
likely owing to the increase of Ni nanoparticles size in the process of burning coke. We will
focus on the research of exploring suitable regeneration operations condition and designing
anti-coking catalysts in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11091117/s1, Figure S1: XRD patterns for the spent Ni/MgAl2O4-E catalysts, Table S1:
CO conversions, product selectivities and carbon balances for dry methanation reaction over Ni/
MgAl2O4-E catalyst at different temperatures with GHSV of 10,000 mL h−1 gcat.

−1, Figure S2:
SEM images for the spent Ni/MgAl2O4-E catalysts: (a) Ni/MgAl2O4-S50, (b) Ni/MgAl2O4-S150,
(c) Ni/MgAl2O4-S335* and (d) after reaction for 150 h followed by regeneration. Table S2: Metallic Ni
content, metallic Ni and graphitic carbon crystallite size and weight loss during TG of Ni/MgAl2O4-E
catalyst after different reaction time. Figure S3: TG results for the spent Ni/MgAl2O4-E catalysts,
Figure S4: STEM-EDS images for the Ni/MgAl2O4-S335* catalyst.
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