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Abstract: Glycerol acetalization with citral was studied using a heteropolyacid (tungstophosphoric acid)
supported on KIT-6, as a catalyst, at 100 ◦C. Different catalysts were synthesized. Catalysts were
characterized by scanning electron microscopy (SEM), inductively coupled plasma (ICP), X-ray
diffraction (XRD), attenuated total refletion-Fourier transform infrared spectroscopy (ATR-FTIR), and
potentiometric titrations. At a fixed time, the glycerol conversion increased with the H3PW12O40

(PW) on KIT-6. PW4-KIT-6 material had a higher conversion than other catalysts. The optimization of
glycerol’s acetalization with citral was studied under the PW4-KIT-6 catalyst. After 5 h, it was found
that, at T = 100 ◦C, with m = 0.3 g of solid, molar glycerol:citral = 1:2.25, the conversion of glycerol
was 89%. Moreover, the PW4-KTI-6 catalyst showed good catalytic stability.

Keywords: glycerol; citral; heteropolyacids; KIT-6

1. Introduction

Due to increased energy consumption and the importance of reducing greenhouse
gases, biodiesel production has increased. Biodiesel is a biodegradable, non-toxic, and
sulfur-free biofuel. Biodiesel can be produced from vegetable oils, used oils, and ani-
mal greases. The reactions involved in the production of biodiesel are transesterification
and esterification. These reactions can be performed using NaOH, H2SO4, and solid
catalysts [1–6]. However, in recent years, the amount of glycerol has increased. It is essen-
tial to transform the glycerol into compounds of high commercial value. Different reactions,
such as oxidation, esterification, and etherification have been studied [7–11]. Glycerol
acetalization with aldehydes and ketones yield acetal compounds, which can be employed
in different industries. Acetal compounds obtained from glycerol acetalization are useful
fuel additives, fragrances, cosmetics, and pharmaceuticals products [12–23].

Citral is a molecule derived from biomass that is present in bio-oils and available from
terpenes and terpenoids. This terpene is an aldehyde, which can be raw material to the fine
chemistry industry [24–26]. Glycerol acetalization with citral is a process of valorization
of the glycerol and citral, in a circular economy perspective. However, the compounds
obtained from the acetalization of glycerol (acetals) can also be used in the fine chemical
industry. Therefore, glycerol and citral are molecules with low commercial value that can
be transformed into acetals with high commercial value.

Traditionally, the reaction of glycerol with ketones and/or aldehydes was carried out
with homogeneous catalysts. However, homogeneous catalysts have some disadvantages,
such as difficulty removing from the reaction mixture and reusing. To make this process
friendlier to the environment, sulfuric acid was substituted by solid catalysts, such as
zeolites, mesostructured silica, and activated carbons [27–29]. Glycerol acetalization with
citral was carried out over a mesoporous zirconia catalyst. This material was also utilized
in the glycerol acetalization with furfural and cinnamaldehyde [30].

Heteropolyacids (HPAs) are very strong acids and less corrosive than HCl or H2SO4.
These materials have been used in different reactions as catalysts [31–33].
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In this work, the reaction of glycerol with citral over H3PW12O40 (PW) immobilized
on mesostructured silica (KIT-6) is presented. Tungstophosphoric acid is immobilized on
KIT-6 during silica synthesis.

2. Results and Discussion
2.1. Catalyst Characterization

Nitrogen isotherms of the materials are shown in Figure 1. It can be observed that all
the materials show isotherms characteristic of KIT-6. The textural characterization of KIT-6
material and HPW immobilized on KIT-6 are shown in Table 1. It can be observed that
surface area (ABET) and porous volume (VP) decreased when the amount of heteropolyacid
immobilized on KIT-6 increased. This behavior could be due to the heteropolyacid immobi-
lized in the framework of KIT-6, which can reduce the surface area to the adsorption sites
of the N2 molecules. Guo et al. [34] and Gagea [35] observed that when the heteropolyacids
were immobilized on SBA-15, the ABET and Vp decreased.
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Table 1. Characterization of KIT-6 and KIT-6 (K-6) with heteropolyacid. 

Materials HPW Amount (wt%) ABET (m2/g) VT a (cm3/g) 
KIT-6 - 780 0.98 

PW1-K-6 1.5 765 0.92 
PW2-K-6 5.5 743 0.89 
PW3-K-6 8.1 724 0.86 
PW4-K-6 10.5 702 0.83 
PW5-K-6 15.6 692 0.81 

(a) (p/p°) = 0.98. 

Figure 2 shows ATR-FTIR spectra of mesostructured silica (KIT-6), tungstophos-
phoric acid (HPW), and PW4-K-6. The heteropolyacid (HPW) displays principal IR bands, 
which are situated at 1080, 985, 890, and 839 cm−1 [36]. The main heteropolyacid bands in 
the ATR-FTIR spectra of PW4-K-6 are indicated in Figure 2. However, some bands char-
acteristic of Keggin units are overlapped with the bands of the KIT-6. In a previous work 
[37], when HPW was supported on SBA-15, some major bands were also not observed. 
Moreover, Pizzio et al. [38] observed similar behavior. 
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Table 1. Characterization of KIT-6 and KIT-6 (K-6) with heteropolyacid.

Materials HPW Amount (wt%) ABET (m2/g) VT
a (cm3/g)

KIT-6 - 780 0.98
PW1-K-6 1.5 765 0.92
PW2-K-6 5.5 743 0.89
PW3-K-6 8.1 724 0.86
PW4-K-6 10.5 702 0.83
PW5-K-6 15.6 692 0.81

a (p/p0) = 0.98.

Figure 2 shows ATR-FTIR spectra of mesostructured silica (KIT-6), tungstophosphoric
acid (HPW), and PW4-K-6. The heteropolyacid (HPW) displays principal IR bands, which
are situated at 1080, 985, 890, and 839 cm−1 [36]. The main heteropolyacid bands in the
ATR-FTIR spectra of PW4-K-6 are indicated in Figure 2. However, some bands characteristic
of Keggin units are overlapped with the bands of the KIT-6. In a previous work [37], when
HPW was supported on SBA-15, some major bands were also not observed. Moreover,
Pizzio et al. [38] observed similar behavior.

Figure 3I displays the XRD of the materials. KIT-6 shows one peak (110) at the 2θ
region of 1◦ to 1.2◦. All materials with HPW immobilized on KIT-6 show a peak at the 2θ
region. This result may indicate that the mesoporous structure of KIT-6 is well maintained
after the incorporation of HPW into silica. According to Ding et al. [39], the incorporation
of molybdophosphoric acid in KIT-6 does not seem to impact the silica structure.
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Figure 3. X-ray diffractograms of the catalysts. (I) 2θ region of 0.7◦ to 10.0◦; (II) 2θ region of 5.0◦ to
55.0◦; (line A) KIT-6; (line B) PW1-K-6; (line C) PW2-K-6; (line D) PW3-K-6; (line E) PW4-K-6; (line F)
PW5-K-6; (line G) PW.

Figure 3II shows the XRD of the materials at the 2θ region of 5◦ to 55◦. It can be
observed that peaks characteristic of heteropolyacid (Figure 3II-line G) do not appear
on the XRD of KIT-6 materials. This could be an indication that the particles of PW are
extremely well dispersed [36].

Figure 4 displays the TEM images of KIT-6 material (Figure 4I) and PW4-K-6 mate-
rial (Figure 4II). From the TEM images, the KIT-6 with heteropolyacid (PW4-K-6) appar-
ently shows some variability on the porous system, which is indicated by a white circle.
A possible explanation is the interaction between HPW and KIT-6 during their formation
process. In previous work, similar results were observed when tungstophosphoric acid
was immobilized on SBA-15 [40].

The acidity measurements of KIT-6 and the materials (PW-K-6) were established by
potentiometric titrations with n-butylamine (Figure 5). It determined the Ei (initial electrode
potential). The Ei of PW-KIT-6 materials increases with the PW amount supported on
mesostructured silica (Table 1), according to the following: EKIT-6 = 50 mV < EPW1-K-6 =
234 mV < EPW2-K-6 = 418 mV < EPW3-K-6 = 516 mV < EPW4-K-6 = 577 mV < EPW5-K-6 = 657 mV.
This behavior may be due to the increase in the amount of H+ with the amount of PW on
KIT-6. According to Pizzio et al. [38], when the Ei is greater than 100 mV, very strong sites
are present on the surface.
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2.2. Catalytic Experiments

Glycerol acetalization with citral was performed using heteropolyacids (PW) immo-
bilized on KIT-6. Figure 6 exhibits the scheme of glycerol acetalization with citral. The
products are (2-(2,6-dimethyl-1,5-heptenyl)-1,3-dioxolan-4-yl)methanol (5R acetal) and
2-(2,6-dimethyl-1,5-heptenyl)-1,3-dioxan-5-ol (6R acetal).

Figure 7 compares the initial activity of KIT-6, PW1-K-6, PW2-K-6, PW3-K-6, PW4-K-6,
and PW5-K-6. When the amount of HPW supported on mesostructured silica (KIT-6)
increased, the catalytic activity also increased. These results may be due to the increase in
the active sites number on KIT-6 (Table 1). When the amount of heteropolyacid increased
from 10.5% (material PW4-K-6) to 15.6% (material PW-5-K-6), the catalytic activity of the
PW-5-K6 material did not increase. This result may be due to the existence of internal
diffusion limitations. In fact, the SBET and total porous volume decreased with the amount
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of heteropolyacid supported on KIT-6 (Table 1). It is likely that some active sites present on
PW5-K-6 catalysts are not accessible to the reactants. Patel et al. [41] observed the same
trend in the glycerol’s acetalization with benzaldehyde and furfural over tungstosilicic acid
anchored on MCM-48.
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Figure 8 exhibits the conversion versus time (h). The glycerol conversion (%) was
18% (KIT-6), 46% (PW1-K-6), 60% (PW2-K-2), 80% (PW3-K-6), 89% (PW4-K-6), and 86%
(PW5-K-6), after 5 h of reaction.

Selectivity to five- and six-member ring acetal is shown in Table 2. After 5 h of reaction,
the PW4-K-6 catalyst exhibited 75% selectivity to the 5R acetal and 25% to the 6R-acetal at
89% glycerol conversion. All materials have great selectivity to 5R acetal, which may be
due to the kinetic effects [16,17,42].

Glycerol acetalization with citral was optimized over PW4-K-6 material. The effects
of catalyst loading (PW4-K-6), glycerol:citral molar ratio, and temperature of reaction on
conversion and selectivity to acetals were studied.
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surface area (ABET) and porous volume (VP) decreased when the amount of heteropolyacid 
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immobilized in the framework of KIT-6, which can reduce the surface area to the 

adsorption sites of the N2 molecules. Guo et al. [34] and Gagea [35] observed that when 
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Figure 1. N2 isotherms of materials. ( ) KIT-6; (∗) PW1-K-6;     P W2-K-6; (×) PW3-K-6; ( ) PW4-
K-6; (+) PW5-K-6. 

Table 1. Characterization of KIT-6 and KIT-6 (K-6) with heteropolyacid. 

Materials HPW Amount (wt%) ABET (m2/g) VT a (cm3/g) 

KIT-6 - 780 0.98 

PW1-K-6 1.5 765 0.92 

PW2-K-6 5.5 743 0.89 

PW3-K-6 8.1 724 0.86 

PW4-K-6 10.5 702 0.83 

PW5-K-6 15.6 692 0.81 

(a) (p/p°) = 0.98.

Figure 2 shows ATR-FTIR spectra of mesostructured silica (KIT-6), 

tungstophosphoric acid (HPW), and PW4-K-6. The heteropolyacid (HPW) displays 

principal IR bands, which are situated at 1080, 985, 890, and 839 cm−1 [36]. The main 

heteropolyacid bands in the ATR-FTIR spectra of PW4-K-6 are indicated in Figure 2. 

However, some bands characteristic of Keggin units are overlapped with the bands of the 

KIT-6. In a previous work [37], when HPW was supported on SBA-15, some major bands 

were also not observed. Moreover, Pizzio et al. [38] observed similar behavior. 
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Table 2. Glycerol conversion and selectivity to five-member ring acetal and six-member ring acetal.

Sample Conversion 1 (%)
Selectivity (%)

5R Acetal 6R Acetal

KIT-6 18 85 15
PW1-K-6 46 83 17
PW2-K-6 60 82 16
PW3-K-6 80 79 21
PW4-K-6 89 75 25
PW5-K-6 86 75 25

1 After 5 h of reaction.

2.3. Catalyst Amount

The temperature (T = 100 ◦C) and the glycerol:citral molar ratio (1:2.25) remained
constant. The catalyst loading was modified from 0.1 g to 0.4 g. Figure 9 displays the effects
of PW4-K-6 loading on the conversion of glycerol and selectivity to acetal compounds. The
conversion of glycerol improved with PW4-K-6 loading. This behavior may be justified
by the rise in the number of sites in the reactor. The selectivity to 5R acetal and 6R acetal
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were also analyzed. The selectivity to 5R acetal was 87% (at 67% conversion), 80% (at 77%
conversion), 75% (at 89% conversion), and 72% (at 96% conversion) using 0.10 g, 0.20 g,
0.30 g, and 0.40 g of PW4-K-6, respectively, after 5 h. It appears that the selectivity to the
5R acetal did not change much with the material loading [43,44], but a slight decrease in
selectivity (5R acetal) was observed.
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Figure 9. Acetalization of glycerol with citral over PW4-K-6. Effect of catalyst amount after 5 h
of reaction.

2.4. Temperature

The amount of PW4-K-6 material (0.3 g) and the molar ratio of glycerol:citral (1:2.25)
remained constant. The temperature ranged between 80 ◦C to 120 ◦C. Glycerol conversion
increased with temperature (Figure 10). After 5 h, the selectivity to the 5R acetal was
86% (at 63% conversion), 81% (at 75% conversion), 75% (at 89% conversion), and 72%
(at 94% conversion) at T = 80 ◦C, T = 90 ◦C, T = 100 ◦C, and T = 120 ◦C, respectively. As the
synthesis of the 5R acetal is easier than 6R acetal [43,44], selectivity to the 5R acetal did not
change substantially when the temperature increased (decreased about 10%). This decrease
could be due to the isomerization reaction [45].
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2.5. Glycerol: Citral Molar Ratio

The study of the glycerol:citral molar ratio in the glycerol conversion was performed
using PW4-K-6 material. The molar ratios of 1:1, 1:2.25, and 1:5.1 were studied, while the
temperature (T = 100 ◦C) and catalyst loading (m = 0.30 g) were maintained. The conversion
of glycerol increased with the increase in the molar ratio (from 1:1 to 1:2.25). However, the
glycerol conversion did not improve when increasing the molar ratio from 1:2.25 to 1:5.1
(Figure 11). This behavior may be due to the occupation of citral molecules over the active
positions of material. A large amount of aldehyde impedes the reaction [43].
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The selectivity obtained, after 5 h, to the 5R acetal was 87% (at 58% glycerol conversion),
75% (at 89% glycerol conversion), and 75% (at 90% glycerol conversion) at ratios of 1:1,
1:2.25, and 1:5.1, respectively.

PW4-K-6 was reused. Different experiments were performed using PW4-K-6 material.
Figure 12 indicates the activity of PW4-K-6 achieved. The activity of PW4-K-6 material is
great after the fifth utilization. The HPW amount present on the KIT-6 solid was obtained
by ICP. The catalyst lost 3% of HPW present on KIT-6.
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Figure 12. Stability of PW4-K-6 material.

Great selectivity to 5R acetal was obtained after the fifth utilization of PW4-K-6 (Table 3).
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Table 3. Conversion of glycerol and selectivity to 5R acetal and 6R acetal.

Sample Conversion 1 (%)
Selectivity (%)

5R Acetal 6R Acetal

1st utilization 89 75 25
2nd utilization 87 76 24
3rd utilization 88 76 24
4th utilization 87 76 24
5th utilization 88 76 24

1 After 5 h of reaction.

The glycerol acetalization with citral may be triggered by interactions between the
oxygen atom of the carbonyl group of citral (aldehyde) and Brönsted acid sites, according
to the mechanistic proposal given in Figure 13 [18,41]. Specifically, the formation of a
hemiacetal in the reaction of the citral with glycerol may be followed by the elimination
of an H2O molecule and formation of a carbocation [41], which, in turn, suffers an attack
involving the inner or terminal hydroxyl group of the glycerol molecule, finally giving the
cyclic acetals 1,3-dioxolane and 1,3-dioxane, respectively.
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The PW4-K-6 activity for the glycerol acetalization with citral was evaluated with the
activity of other materials described in the literature. Table 4 indicates the activity of the
materials. The activity (expressed as h−1) of the PW4-K-6, ZrO2-350, and PW4-SBA-15 ma-
terials was found to increase as follows: 5.2 h−1 (obtained with ZrO2-350, [30]) < 489 h−1

(obtained over PW4-SBA-15 [present work]) <596 h−1 (obtained over PW4-K-6 [present work]).
The PW4-K-6 catalyst showed high catalytic activity.

Table 4. Comparison of the results for acetalization of glycerol with literature data for other solid
acid catalysts.

Catalyst 5R Acetal 6R Acetal Conversion (%) Activity (h−1) Reference

ZrO2-350 a 29 46 64 5.2 [30]
PW4-K-6 b 75 25 89 596 Present work

PW4-SBA-15 b,c 76 24 86 489 Present work
a Reaction conditions: 3.75 × 10−3 mol citral, 48 × 10−3 mol glycerol, 0.4 g catalyst, 100 ◦C, 4 h. b Reaction
conditions: 90 × 10−3 mol citral, 48 × 10−3 mol glycerol, 0.3 g catalyst, 100 ◦C, 5 h. c PW4-SBA-15 prepared
according to previous work [6].

3. Materials and Methods
3.1. Materials

Template (Pluronic P-123), 1-butanol (99.8%), citral (96%), dioxane (99%), tetraethy-
lorthosilicate (TEOS), HCl (37%), tungstophosphoric acid, and glycerol (99%) were acquired
to Sigma–Aldrich.

3.2. Preparation of Catalysts

The KIT-6 material was synthesized according to Pirez et al. [46]. Briefly, 4 g of Pluronic
P123 were dispersed in 144 mL of distilled H2O, and 7.9 g of 35% HCl was added to the
mixture, under stirring at 35 ◦C. After complete dissolution, 4 g of 1-butanol was added.
The mixture was stirred for 1 h. After this period, 8.6 g of tetraethylorthosilicate (TEOS)
was added. The solution then remained under stirring at 35 ◦C for 24 h. At the end of this
period, the solution was placed in a closed autoclave and heated at 100 ◦C for 24 h. The
precipitate was filtered and dried in an oven at 100 ◦C for 24 h. Finally, the fine powder
obtained was washed (ethanol and HCl mixture) and calcined in air at 550 ◦C.

Heteropolyacid (H3PW12O40) immobilization was prepared by direct synthesis. The
first steps of the synthesis were like the steps described by Pirez et al. [45]. The difference
in the synthesis material was in the step where TEOS was added. Thus, 8.6 g of TEOS and
the required amounts of H3PW12O40 in CH3CH2OH solution were added to the mixture.
This mixture was stirred for 24 h. After this period, the mixture was put in an autoclave.
This reactor was heated at 100 ◦C for 24 h. After this period, the solid obtained was treated
according to previous work [6].

3.3. Materials Characterization

ABET and total volume porous (Vp) of materials were calculated from N2 isotherms at
77 K using a Micromeritics ASAP 2010.

The amount of HPW supported in KIT-6 was analyzed by ICP.
The ATR-FTIR spectra were obtained using a Perkin Elmer Spectrum 100 FTIR

spectrophotometer.
XRD patterns of HPW, KIT-6, and PW-K-6 materials were acquired using a Rigaku

Miniflex powder diffractometer.
TEM photos were executed on a Hitachi S-2400 instrument.
The potentiometric titration was determined according to Pizzio et al. [38].

3.4. Catalytic Experiments

The reactions were performed using a stirred batch reactor at 100 ◦C. In a typical
reaction, 0.09 mol of citral, 0.04 mol of glycerol, and 0.3 g catalyst were added to the reactor.
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The catalyst PW4-KIT-6 was reused.
The internal standard used was Dioxane.
Some samples were removed from the batch reactor and analyzed with a GC (a Hewlett

Packard instrument), using the analysis conditions reported in previous work [19].

4. Conclusions

KIT-6 occluded H3PW12O40 was prepared and applied, as a catalyst, on glycerol
acetalization with citral. Materials with different HPW amounts (1.5 to 15.3 wt.%) in KIT-6
were synthesized. The PW4-K-6 catalyst (with 10.5 wt.%) showed higher activity than other
KIT-6 materials.

All the materials exhibited great selectivity to the 5R acetal.
The catalytic stability of PW4-K-6 material was studied. After the fifth use, the material

showed great conversion.
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