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Abstract: One of the effective ways of utilizing marine environments is to generate energy, power,
and hydrogen via the effect of photocatalysts in the seawater. Since the ocean is vast, we are able
to use its large area, but the power generation system must be of low cost and have high durability
against both force and corrosion. In order to meet those requirements, this study focuses on the
fabrication of a novel marine wet solar cell composed of a titanium dioxide photoanode and a
copper oxide photocathode. These electrodes were deposited on type 329J4L stainless steel, which
possesses relative durability in marine environments. This study focuses on the characterization of
the photocatalytic properties of electrodes in seawater. Low-cost manufacturing processes of screen-
printing and vacuum vapor deposition were applied to produce the titanium dioxide and copper
oxides electrodes, respectively. We investigated the photopotential of the electrodes, along with
the electrochemical properties and cell voltage properties of the cell. X-ray diffraction spectroscopy
(XRD) of the copper oxides electrode was analyzed in association with the loss of photocatalytic
effect in the copper oxides electrode. Although the conversion efficiency of the wet cell was less
than 1%, it showed promising potential for use in marine environments with low-cost production.
Electrochemical impedance spectroscopy (EIS) of the cell was also conducted, from which impedance
values regarding the electrical properties of electrodes and their interfaces of charge-transfer processes
were obtained. This study focuses on the early phase of the marine wet solar cell, which should be
further studied for long-term stability and in actual marine environmental applications.

Keywords: titanium dioxide; copper oxides; marine wet solar cell; photocatalysts; seawater electrolyte

1. Introduction
1.1. Background

Since prehistoric times, we have utilized the marine environment and drawn benefits
from it—especially in the areas of transportation and nutrition. Today, it has gained
much attention not only for those areas, but also for its natural resources, such as oil
and gas reserves. We have been able to produce electrical energy from the sustainable
and renewable energy resources of the marine environment, such as tidal waters, waves,
and wind power, as well as solar energy from floating solar farms. To counter the effects
of global warming and climate change caused by the release of greenhouse gases and
the exhaustion of fossil-related energy resources, it is vitally important to increase the
use of alternative, renewable, and relatively clean energy resources (e.g., solar, wind,
hydro, and geothermal) in order to meet the high demand for energy and to secure the
development goals of humanity. Among those energy sources, solar energy is regarded
as the most abundantly available and virtually infinite energy source [1,2]. Very large
solar farms require a substantial utilization of land resources, with an adverse impact on
the environment, causing deforestation, changes in soil quality, loss of agricultural lands
and wastelands, and microclimate change [3]. To remedy those problems, the study and

Catalysts 2022, 12, 99. https://doi.org/10.3390/catal12010099 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12010099
https://doi.org/10.3390/catal12010099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-9641-1335
https://orcid.org/0000-0002-0008-0317
https://doi.org/10.3390/catal12010099
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12010099?type=check_update&version=1


Catalysts 2022, 12, 99 2 of 13

construction of floating solar farms has become an interesting topic in the photovoltaic
industry. Hybrid floating solar farms in conjunction with wind turbines are installed near
coastal areas. However, most of the studies on floating solar farms are focused on the
installation design of the already commercially available solar panels above the water
surface. As a way to consider an alternative method, and to effectively utilize the marine
environment, we included the use of seawater as the electrolyte in this study of the marine
wet solar cell. In this research, we consider the early phase of characterization of a novel
marine wet solar cell using two photocatalyst electrodes and a seawater electrolyte.

1.2. Titanium Dioxide Photocatalyst

Titanium dioxide has been widely studied for its n-type semiconductor photocatalytic
activity, having a wide band gap and higher resistance to photocorrosion [4]; it has been
used as a catalyst for water splitting, and in dye-sensitized solar cells [5,6]. Titanium
dioxide is naturally observed in three main polymorphs: two tetragonal structures of
rutile, anatase, and orthorhombic brookite [7–11]. There are reportedly other phases of
titanium dioxide at high pressures [12,13]. Rutile is a thermodynamically stable phase, but
anatase and brookite phases are metastable. Moreover, the brookite phase is suboptimal
for film formation [7,11,14]. Many studies and industrial uses of titanium dioxide have
been reported, such as hydrogen production by electrolysis of water, dye-sensitized solar
cells, wastewater treatment, cosmetics, and biomedicinal self-sterilizing coatings [5,15–22].
Research concerning the film-forming process of titanium dioxide has been conducted,
including rapid thermal oxidation, chemical conversion methods, dip-coating, and the
sol–gel method [19,23–25].

1.3. Copper Oxides Photocatalysts

Copper oxides, among metal oxides, have been attracting a lot of research interest
due to their p-type semiconductor photocatalytic characteristics [26–28]. Copper has two
main types of oxide: copper(I) oxide, or cuprous oxide (Cu2O); and copper(II) oxide, or
cupric oxide (CuO). Both oxides show p-type semiconductor characteristics, but their
crystal structures and band gaps are different. Cu2O shows a cubic crystal structure, and
thin film Cu2O is used as an absorber layer in solar cells [26–28]. Mainly monoclinic
CuO exhibits higher physical and chemical properties, electrochemical activity, thermal
conductivity, and stability in solutions, as well as lower production cost [29,30]. Research
studies concerning CuO include CuO as a photocatalyst for the removal of pollutants,
and for water splitting [31,32]. Copper oxides have been synthesized electrochemically,
physically, and chemically, such by spray pyrolysis, the sol–gel method, chemical vapor
deposition, pulsed laser deposition, sputtering, and electrochemical deposition [33–38].

1.4. Study of the Marine Wet Solar Cell

This study aimed to fabricate and characterize a novel type of marine wet solar cell
that consists of a titanium dioxide photoanode and a copper oxides photocathode. A wet
solar cell is a type of light-harvesting solar cell that uses aqueous solutions as electrolytes.
A marine wet solar cell calls for the use of seawater as an electrolyte. The purpose of this
type of solar cell is to be used effectively in marine environments, and it has the potential
to be used to supply power to offshore structures, or even (in future) to autonomous ships.
The benefit of this type of solar cell is that because seawater is used as an electrolyte, the
cell does not particularly need the cell walls to contain the electrolyte.

In this study, the film-forming of titanium dioxide was processed by the screen-
printing method, using titanium dioxide paste. The screen-printing method is convenient,
and can control the thickness and porosity of the titanium dioxide film [39]. This study
utilized a titanium dioxide paste consisting of rutile and anatase phases. The photocatalytic
activity of titanium dioxide is enhanced by the formation of a heterojunction of rutile and
anatase layers in the titanium dioxide film [40]. On the other hand, many studies have been
conducted concerning the use of platinum as a cathodic counter-electrode. There have been
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numerous studies on cathodes that can be used for this type of cell. Many such studies have
concerned the use of platinum electrodes. If a platinum electrode is used as the cathode,
the cost-to-cell-efficiency ratio makes it relatively unrealistic for deployment in vast oceanic
areas. Passivated stainless steel can be considered to be a cost-effective alternative, but its
photocatalytic activity is low and its tendency for corrosion becomes higher in seawater.
Therefore, this study introduced the use of stainless steel on which a p-type semiconductor
film was deposited. Although there are many p-type semiconductor metal oxides, this
study utilized p-type semiconductor copper oxides, since high-temperature oxidation of
the vacuum-deposited copper film on the stainless steel substrate shows photocatalytic
activity at a relatively low cost compared to a platinum counter-electrode [41]. In this study,
a thin film of copper oxides was formed as a part of a low-cost fabrication process by the
vacuum vapor deposition in conjunction with a heat treatment process [42].

TiO2–Cu2O heterojunction solar cells were studied by Michele Pavan et al., in a study
where both metal oxide layers were produced by the spray pyrolysis method, and silver
was used as a back contact [33]. However, there are no reported studies of a marine wet
solar cell with TiO2 and copper oxides electrodes and seawater as the electrolyte. This
study emphasizes the fabrication of a novel type of marine wet solar cell—with a titanium
dioxide photoanode, a copper oxides photocathode, and seawater as the electrolyte—and its
photoelectrical characterization and analysis. The schematic presentation of the proposed
solar cell is shown in Figure 1.
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Figure 1. Schematic representation of the proposed marine wet solar cell.

2. Results
2.1. Photocatalytic Properties of Each Electrode

Photopotential measurement of each electrode was carried out in order to confirm
their semiconductor properties and to figure out the reaction potential of each electrode.
Figure 2 presents the two graphs of the photopotential of each electrode and the voltage of
the cells over time. When light was irradiated, the photocatalytic effect of each electrode
caused the reactions at the surface of each electrode. For the TiO2 electrode, the surface
oxidation reaction can be represented as follows:

2H2O + 2e→H2 + 2OH− (1)

which gives the standard electrode potential of −820 mV versus the standard hydrogen
electrode (SHE) [40].

The reduction reaction at the surface of the copper oxides electrode can be expressed
as follows:

4OH−→O2 + 2H2O + 4e− (2)

with the standard electrode potential of 400 mV versus SHE [43].
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period of combined TiO2–Cu oxides cell and TiO2–stainless steel cell.

As shown in Figure 2a, just after irradiation of the TiO2 electrode, the photopotential
decreased swiftly to below −600 mV (vs SCE), but the values were rebounded back to
−500 mV, and became stable throughout the 2 h measurement. This confirms the n-type
semiconductor characteristics of titanium dioxide. The reason for the rebounded shift
towards the increase in the photopotential of the TiO2 electrode is still under research.

The irradiation of the copper oxides electrode caused the electrode to activate its
p-type photocatalytic semiconductor characteristics. The potential was increased to 300 mV,
but dropped by ~50 mV and became stable in the region of 250 mV for the entire 2 h
measurement period. This drop was the result of copper(I) oxide (Cu2O) still remaining
during the heat treatment process, which underwent oxidation in the seawater during the
irradiation testing (Figure 3). This can be seen more clearly in the XRD analysis of the
copper oxides electrode shown in Section 3. By coupling these two electrodes, a cell voltage
of 800 mV could be obtained.
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The cell voltage over a 24 h period of the TiO2–copper oxides cell and a TiO2–
passivated stainless steel cell can be seen in Figure 2b. In the TiO2–copper oxides cell,
the voltage went up to 850 mV just after irradiation, but then dropped until it reached
just below 750 mV at 5 h, after which the photopotential increased once more. After the
first 12 h, the cell voltage became stable at 800 mV. In the TiO2–stainless steel cell, the cell
voltage went up to 400 mV after irradiation, and then slowly increased until it reached
600 mV, becoming stable at this voltage value until the end of the measurement. During a
24 h measurement, there was no drop in the cell voltage in the TiO2–S.S. cell, but a decrease
in voltage was observed in the TiO2–copper oxides cell. By comparing the results of these
two cells, it can be concluded that the drop in cell voltage was mainly caused by the defects
in the copper oxides electrode. The cause of photocatalytic reduction at the copper oxides
electrode will be discussed in Section 3.

2.2. X-ray Diffraction Analysis of Copper oxides Electrode

In order to better understand the decrease in cell voltage in the measurement of the
TiO2–copper oxides cell, XRD analysis was performed on the copper oxides electrode before
and after photopotential measurement. Figure 3 shows the XRD profiles of the base stainless
steel substrate, pure copper-deposited substrate, and copper oxides electrodes before and
after photopotential measurement. In the analysis of the copper-deposited substrate, the
peaks of deposited pure copper were superpositioned with that of the substrate at 2θ = 43◦

and 51◦ [44].
Two peaks of copper(II) oxide (CuO) were detected between 2θ = 35◦ and 40◦ in

the copper oxides electrode. The electrode before photopotential measurement showed
the peak of copper(I) oxide (Cu2O), but this peak disappeared after the photopotential
measurement.

2.3. Power Density–Cell Voltage Characteristics of Each Cell

The power density versus cell voltage measurement of four types of electrodes under
irradiation is shown in Figure 4. The comparative short-circuit current density (Jsc), open-
circuit voltage (Voc), maximum power density (Pmax), and fill factor (FF) values of the cells
can be seen in Table 1.
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Table 1. P, I, and V values of the cells under irradiation.

Cells Jsc (µA/cm2) Voc (mV) Pmax (µW/cm2) FF (%)

Separated TiO2–Cu oxides 17.96 727.4 4.20 32.15
Combined TiO2–Cu oxides 23.44 730.3 5.96 34.82

TiO2–stainless steel 11.20 561.6 0.64 10.20
TiO2–platinum 31.68 764.1 9.11 37.63

In the case of the cell with TiO2–S.S., the maximum power was the lowest, at 0.6 µW/cm2,
which is 10% of that of the TiO2–copper oxides combined cell. Moreover, the fill factor (FF)
is very much lower (at 10.2%) when compared with other cells. This is considered to be
due to the lower photocatalytic effect of stainless steel, which contributes to the lower band
gap for light harvesting.

In the cells of combined TiO2–Cu oxides and separated TiO2–Cu oxides, the maximum
power density was higher in the combined cell, at 6 µW/cm2. Although Voc in both cells
was around 730 mV, the current density of the combined cell was higher than that of
separated cell. When the electrodes were placed a few centimeters apart in the seawater,
the maximum power was reduced to 4 µW/cm2.

The maximum power density of the combined TiO2–Cu oxides cell was two-thirds
of that of the TiO2–platinum cell. The maximum power density of the TiO2–platinum cell
was the highest among the cells, at 9 µW/cm2. Even with the highest maximum power
output of the TiO2–platinum cell, the conversion efficiency from light to electrical energy
was less than 1%, and the fill factor was ~35%. Using the results obtained from the Tafel
regions of the P–V graph, the EIS analysis was performed for the charge-transfer resistance
of the electrodes.

2.4. Electrochemical Properties of Electrodes by EIS Analysis

EIS analysis was conducted in order to identify the charge-transfer process in the
electrolyte–electrode interface, and to determine the electrical properties of the
electrodes [45–47]. Knowing the electrical properties helped us to reduce the resistance
parameters of the cell. Figure 5 shows the impedance spectra of two types of cell: TiO2–
Cu oxides, and TiO2–platinum. The equivalent circuits were constructed using a simple
curve-fitting method for TiO2–Cu oxides and TiO2–platinum cells, in order to identify the
impedance values of those cells [45,46]. The impedance values of TiO2–Cu oxides cells
fluctuated in the low-frequency region of the plot. An equivalent circuit containing one
series resistance and three resistance–capacitance (R–C) parallel circuits was constructed
for the TiO2–copper oxides cell, and one series resistance and two R–C circuits for the
TiO2–platinum cell (Figure 6). The impedance values obtained for these two cells are shown
in Table 2.

The impedance values of the interfaces of the electrodes were determined from Nyquist
plots (Table 2). The series resistance values were not much different in both cells; this is
considered to be the resistance value of the electrolyte solution. RC circuit 1 appears in
the equivalent circuit of the TiO2–copper oxides cell, but not in the TiO2–platinum cell.
This is due to the effect of the base stainless steel substrate in the copper oxides electrode,
since there is no stainless steel substrate in the cathodic counter-electrode (only platinum).
Therefore, these impedance values represent the copper oxides–stainless steel interface
and the internal circuit resistance. The resistance values of RC circuit 2 are similar; this
is due to the effect of the common electrode in both cells—the TiO2 electrode. Therefore,
these impedance values represent the electrolyte–TiO2 cathode interface. In RC circuit 3,
the impedance values of the TiO2–Cu oxides cell are more than 10 times higher than those
of the TiO2–platinum cell. The resistivity of platinum is much lower than that of copper
oxides [48]. Since platinum is a noble metal with high electrical conductivity, the increase
in the impedance values of TiO2–Cu oxides should be the combined represented values for
the Cu oxides electrode–electrolyte (seawater) interface.
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Table 2. Impedance values of two cells under irradiation.

Cells Impedance Values

Series Resistance RC Circuit 1 RC Circuit 2 RC Circuit 3

Rs R1 (Ω) C1 (mF) R2 (Ω) C2 (mF) R3 (Ω) C3 (mF)

TiO2–Cu oxides 15.26 156.81 0.01 1290 0.36 2180 5.36

TiO2–platinum 14.03 1330 1.99 81.91 0.81

3. Discussions

From these results, the photopotential values of the titanium dioxide electrode and
the copper oxides electrode were found to be stable during the 2 h measurement, and
their cell voltage also remained stable during the 24 h measurement (Figure 2). The
measured cell voltage was around 800 mV, which is close to the summation of their standard
electrode potential. The potential reduction occurred in the early phase of photopotential
measurement of both electrodes. In the 24 h cell voltage measurement, the decrease in
voltage was observed in the first half of the measurement in the TiO2–Cu oxides cell.
However, there was no decrease in voltage in the measurement of the TiO2–stainless steel
cell (Figure 2). This result was related to the copper oxides electrode.

In the XRD patterns shown in Figure 3, the peak of Cu2O appeared in the electrode
before the photopotential measurement, but it was absent after photopotential measure-
ment. During the heat treatment of deposited copper at 350 ◦C, the thermal oxidation
mechanism of copper takes place in the sequence of Cu→ (Cu + Cu2O)→Cu2O→ (Cu2O +
CuO)→CuO. [38] However, there was still Cu2O left during the heat treatment of copper
for 30 min, depending on the variation in the thickness of the deposited copper film during
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vacuum vapor deposition process. The copper(I) oxide phase underwent oxidation under
irradiation in the presence of seawater. This oxidation reaction caused the decrease in the p-
type semiconductor photocatalytic effect of the copper oxides electrode and, hence, caused
the scattered decrease in cell voltage in the measurement of the TiO2–copper oxides cell.

In the power density vs. cell voltage measurement (Figure 4), the maximum cell power
density of the combined TiO2–Cu oxides cell was ~6 µW/cm2, and this cell efficiency
was less than 1% when the incident light intensity was 10.5 mW/cm2 (excluding the
light-reduction effect of quartz glass). When the two electrodes were separated by 10 cm
(separated TiO2–Cu oxides cell) in ASW, the power density was further reduced by more
than 20%, to 4.2 µW/cm2; this was due to the loss of ion exchange between the electrodes
in seawater. Therefore, the use of seawater as the electrolyte is an important factor in
the power output of the cell. In the EIS analysis, the impedance values of the electrodes
in both the TiO2–Cu oxides and TiO2–platinum cells were higher compared to those of
dye-sensitized solar cells (DSSCs) [49]. This confirms the loss of charge transfer between
electrodes in seawater as an electrolyte.

The maximum power density of the TiO2–platinum cell was the highest among the
cells, at 9 µW/cm2. On the other hand, the maximum power density of the combined
TiO2–Cu oxides cell was two-thirds of that of the TiO2–platinum cell. Considering the
cost-to-cell-efficiency ratio, the cost effectiveness of the combined TiO2–Cu oxides cell was
much higher than that of the TiO2–platinum cell, since the materials and the preparation
of the copper oxides electrode required simple processes, and were not costly. This is the
reason for using copper oxides electrodes to replace platinum counter-electrodes in the
fabrication of marine wet solar cells.

4. Experimental
4.1. Fabrication of the Marine Wet Solar Cell

For both electrodes, the same type 329J4L stainless steel with a thickness of 1 mm
was used as the base substrate. This stainless steel showed a dual-phase structure of
ferrite and austenite. Dual-phase stainless steel is used in marine environments due to
its relatively high corrosion resistance compared to other single-phase stainless steels [50].
The composition of type 329J4L stainless steel is shown in Table 3.

Table 3. Chemical composition of type 329J4L stainless steel (mass%).

C Si Mn P Ni Cr Mo W N Fe

0.025 0.44 0.77 0.027 6.34 24.96 3.22 0.14 0.27 Bal.

4.1.1. Preparation of Titanium Dioxide Electrode

The surface of the substrate was ground with 60-grade sandpaper in the horizontal
and transverse directions. After that, the substrate was put in a beaker of acetone and
cleaned in an ultrasonic cleaner for 10 min. The substrate was then passivated, and the
passivation treatment was performed by placing the substrate in a solution of 10 volume
% nitric acid (HNO3). The passivation was carried out on the surface of the substrate to
remove active ions from the surface, and to form a thin passive layer, which enhanced
the pitting and crevice corrosion resistance of the substrate [51]. The temperature was
maintained at 60 ◦C for 30 min for passivation treatment. After passivation, the surface
of the passivated substrate was printed with TiO2 paste. TiO2 paste was obtained from
Showa Denko (product name-SP-100, reference name-CE-JP930). The composition of the
TiO2 paste is shown in Table 4. Two layers of TiO2 were printed with the screen printer.
Printing of the first layer was followed by heat treatment at a temperature of 150 ◦C for 1 h,
after which the electrode was cooled down slowly in the oven. After printing the second
layer, the electrode was sintered at a temperature of 550 ◦C for 30 min, and then cooled
down in ambient conditions. Hence, a thin double-layered TiO2 film of ~120 µm thickness
was formed on the substrate, forming the TiO2 electrode [40].
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Table 4. Composition of TiO2 paste (weight %).

TiO2 Paste
TiO2 C2H5OH CH3OH C3H7OH Confidential Water

16 5–15 0–1 0–2 1–10 Bal.

4.1.2. Preparation of Copper Oxides Electrode

The substrate was cleaned and passivated in the same way as the preparation of the
TiO2 electrode. The passivated substrate was deposited with pure copper in the vacuum
vapor deposition chamber. The conditions for vacuum deposition were 0.4 mPa and a
current of 40 A with 1.3 volts [43]. The thickness of the copper deposited was less than
0.3 µm. After deposition with pure copper, the substrate was sintered at 350 ◦C for 30 min,
and it was cooled down in ambient conditions to form a copper oxides (mainly CuO and
Cu2O) film with a thickness of ~0.3 µm on the substrate.

4.1.3. Fabrication of the Cell

Four types of cells were prepared to distinguish the photocatalytic properties and
electrochemical characteristics of TiO2–copper oxides cells, along with each electrode’s
properties:

1. The first was a separated TiO2–copper oxides cell. In the separated cell, the two
electrodes were insulated with epoxy resin separately, and were measured 10 cm apart
in artificial seawater;

2. The second cell was a combined TiO2–copper oxides cell. In this combined cell, the
TiO2 electrode and copper oxides electrode were connected using a silicon binder,
which acted as an insulator between the electrodes. The cell was covered with epoxy
resin in preparation for the measurement;

3. In the third type of cell, the passivated stainless steel substrate was used as the
cathodic electrode coupled with the TiO2 electrode (TiO2–S.S. cell);

4. The last cell was the TiO2 electrode vs. platinum counter-electrode (TiO2–Pt cell). A
simple illustration regarding the preparation procedure of the electrodes is shown in
Figure 7, along with the image of the prepared combined cell.

4.2. Electrochemical Measurement

The electrochemical measurement consisted of photopotential measurement of each
electrode, cell voltage measurement of the cells, power density–cell voltage (P–V) mea-
surement of the cells, and electrochemical impedance spectroscopy (EIS) of the cells. Each
electrochemical measurement was performed using artificial seawater as the electrolyte. For
irradiation measurement, a xenon lamp with a calibrated wavelength range of 250–800 nm
and an irradiation intensity of 10.5 mW/cm2 was used as a light source. A saturated
calomel electrode (SCE) was used as a reference electrode. The potentiostat was used
for photopotential measurement, and the electrochemical impedance analyzer with a
frequency-response analyzer was used for the electrochemical impedance analysis (EIS).

The photopotential measurement for each electrode was performed for 2 h under
irradiation, with an initial 3 min of darkness. Based on the results of the photopotential
measurement, the cell voltage measurement was conducted for 24 h. The power density
versus cell voltage (P–V) measurement was carried out under irradiation, within a voltage
range from open-circuit voltage (Voc) to short-circuit voltage (Vsc). Based on the current
obtained from the Tafel region of the P–V curve, EIS measurement was performed in
a frequency range from 100 kHz to 1 mHz. Figure 8 shows the schematic diagram of
electrochemical measurement of each electrode and each cell.
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4.3. XRD Analysis of the Electrodes

X-ray diffraction (XRD) analysis was performed to obtain the phase information of
the electrodes. Data on the copper oxides electrode will be used for discussion. For the
copper oxides electrode, the analysis was performed for the substrate, the substrate with
pure copper deposited, and the copper oxides electrode before and after photopotential
measurement. Cu-Kα radiation with λ = 1.54 Å was used as the X-ray source, with an
X-ray-generating voltage of 40 kV and an emission current of 15 mA.

5. Conclusions and Perspectives

This study, to the best of our knowledge, is the first to focus on the fabrication of a
low-cost novel marine wet solar cell with a titanium dioxide photoanode and a copper
oxides photocathode instead of a platinum counter-electrode The purpose is to effectively
utilize the marine environment for the harvesting of light. The photocatalytic properties
of the titanium dioxide anode and copper oxides cathode were examined. The respective
cell voltage, cell power density, and cell characteristics were measured and analyzed, and
the effect of decreasing voltage was studied. The cells’ electrochemical properties were
examined and evaluated. This research focused on the early phase of study of the marine
wet solar cell with seawater as the electrolyte.

1. The measurement of each electrode showed that their photopotential values remained
stable, and close to the standard potential of each electrode;

2. The cell voltage of the TiO2–Cu oxides cell was stable over 24 h of measurement,
with a few drops in the early hours. The factors affecting that drop were revealed.
Some residual Cu2O that remained in the Cu oxides electrode after heat treatment
underwent oxidation in the seawater under irradiation. This oxidation led to lower
p-type semiconductor photocatalytic activity of the Cu oxides electrode;

3. We have achieved a power profile of the combined TiO2–Cu oxides cell in which the
maximum power density was two-thirds of that of the TiO2–platinum cell. This can
support the replacement of platinum counter-electrodes with copper oxides electrodes
in terms of cost-to-energy-conversion efficiency;

4. From the EIS measurements, the impedance values for the charge-transfer resistance
of the semiconductor electrode/electrolyte were evaluated by constructing a simple
equivalent circuit. From this, we can consider the preparation techniques and the
materials to reduce the resistance of the electrode.

The future perspective of this research is to study the cause of the reduction in photo-
catalytic effect in TiO2 electrodes, in order to improve the long-term stability and durability
of the cell, its practical application, and its impact on the environment.
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