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Abstract: Syngas is a valuable entity for downstream liquid fuel production and chemical industries.
The efficient production of syngas via catalytic partial oxidation of methane (CPOM) is an important
process. In this study, partial oxidation of methane (POM) was carried out using CaO decorated TiO2

catalysts. The catalysts were synthesized employing the sol-gel method, while the decoration of TiO2

with CaO was achieved in an aqueous solution by wetness impregnation method. The prepared
catalysts were characterized by employing XRD, Raman, TG-DTG, and SEM-EDX for structural and
morphological analysis. On testing for POM, at 750 ◦C the catalysts demonstrate excellent CH4

conversion of 83.6 and 79.5% for 2% and 3% CaO loaded TiO2, respectively. While the average
H2/CO ratio for both 2% and 3% CaO loaded TiO2, 2.25 and 2.28, respectively, remained slightly
above the theoretical value (H2/CO = 2.0) of POM. The improved POM performance is attributed to
the optimally loaded CaO on the TiO2 surface that promotes the reaction where TiO2 support ensure
less agglomerated particles, resulting into a fine distribution of the active catalytic sites.

Keywords: partial oxidation of methane; CaO loaded TiO2; eggshells; syngas

1. Introduction

Natural gas utilization is an increasing trend due its consumption in the energy sector
and its conversion into high value chemicals such as syngas, used in various industrial pro-
cesses [1–3]. Primarily, syngas was used as an important precursor for downstream liquid
fuel production via different methods, including Fischer-Tropsch (FT) method, methanol
synthesis, etc. [4,5]. Different routes for CH4 utilization have been studied influentially
in chemical society [6] and a major challenge in the use of methane for obtaining useful
products is due to its stable four sigma bonds (∆Hd = 440 kJ/mol) [7]. The use of po-
tential catalysts is an attractive approach to convert methane into syngas and different
reforming techniques have been employed such as; steam methane reforming (SMR) [8,9];
dry methane reforming (DRM) [10–12]; and partial oxidation of methane (POM) [13–15].
Although SMR is a commercialized method for H2 rich syngas production, its endothermic
and energy utilization makes it more challenging [16]. In comparison, DRM, an endother-
mic and less energy intensive than SMR, is considered an important method for converting
CH4 and CO2 (greenhouse gases) into a valuable chemical. However, this method encoun-
ters low H2/CO ratio, catalyst deactivation readily due to extreme coke deposition and
sintering [17].
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In recent years, POM has been extensively studied and investigated for CH4 conversion
as it is a fast and cost-effective method with high CH4 conversion efficiency, selectivity, and
short residence time. It produces a H2/CO ratio of 2.0 (theoretically) that is more suitable
for use in FT synthesis [16,18]. POM proceeds either by a direct or indirect mechanism. In
the indirect pathway, CH4 is converted into CO2 and steam, followed by its reforming to
syngas, while in the direct method, syngas can be produced by CH4 in a single-step, as
suggested by Hickman and Schmidt [19]. An assortment of catalysts have been studied
for POM including transition metals, noble metals, and perovskites [20], however, the key
challenges of metal sintering, hotspot formation and coke deposition that deactivates the
catalyst still remained unresolved [21]. While the noble metals are costly in commercial
prospect. Therefore, mixed metal oxides with different support materials have been tested
to improve conversion and deter catalyst deactivation [22].

The investigation of metal oxides, zeolites, hydrotalcite and alkaline earth metal oxides
have shown high product yield with small catalyst loadings [23,24]. For instance, loading of
Ni on La2O3 exhibited excellent stability, and enhanced activity owing to the favored metal
support interaction. Ni nanoparticles were found highly decorated over La2O3 that reduced
coke formation [25]. While the loading of Co on Yb2O3 also proved an efficient catalysts for
POM reaction and showed increased conversion rate and stability [26]. Likewise, perovskite
based catalysts have been widely used as metal-supported catalysts and received much
attention over the past decades as a result of their high activity and thermal stability in
POM reactions [27]. Moreover, carbon nanotubes [28], nanoparticles [29], nanocrystals [30],
nanocomposites [31], ceria-zirconia containing catalysts [32], nanoclusters [33], ceramic
materials [34], hydrotalcite (HT) catalysts [35] and various other structural materials have
been used as strong and powerful precursors for the POM. Conventional catalysts broadly
utilized in CH4 partial oxidation are relatively more expensive as compared to waste
derived catalysts. Recently, Co loaded waste derived biomass fly ash (BFA) [36] and
Co/CeO2-BFA [37] were employed for methane decomposition and due to the presence of
various oxides (SiO2, Al2O3, Fe2O3, etc.), is one of the most competitive products to use
as a direct support material to improve physicochemical properties and catalytic activity.
CaO is another competitive candidate among waste derived catalyst that can be easily
obtained from eggshells. CaO has been broadly studied previously due to its low cost
and high catalytic activity [38] and due to its strong basic nature. It has been agreed that
the active sites of alkaline earth metal oxides are the surface basic sites, produced by the
surface metal ion presence that acts like a Lewis acid (electrophile) and an oxygen ion
that behaves like a Bronsted basic site. However, these catalysts ca be deactivated by the
poisoning of basic sites due to H2O adsorption at surface sites [39]. Furthermore, alkaline
earth metal oxides have a low surface area [40] that promotes onto the surface metal a
support interaction, which is favorable for POM [41]. These issues restricted the utilization
of simple and environmentally benign catalysts [42]. To cater for these challenges, CaO
was impregnated on different supports to increase active sites, surface area and reduce
the poisoning of CaO in the reaction medium. Among various supports, such as alumina,
zirconia, zeolites, zinc oxide [41], etc., TiO2 has been extensively studied as TiO2 is a
reducible metal oxide with several crystal structures, and as such, it also possesses multiple
oxidation states with moderate chemical and thermal stability [43]. It is encouraging to use
TiO2 as support due to its competitive cost, occurrence, and nontoxic nature in catalytic
reactions [44]. Previously, Ni/TiO2 has been studied for hydrogen production, however,
it suffered from coke deposition [45]. Ru/TiO2 has also shown a promising conversion
of methane to syngas [46,47]. Metal support interaction is more crucial in heterogeneous
catalysis and a well-known interaction can be more influential for catalyst stability and
activity [48] as TiO2 with VIII B metals suppresses coke deposition due to well-decorated
surfaces for metal deposition and the presence of TiO2 prevents metal agglomeration
by increasing metal active sites [49]. Previous reports on Pt/TiO2 strongly support this
hypothesis [49,50]. Furthermore, different preparatory methods have been developed for
TiO2 synthesis, including continuous reaction [51], precipitation [52], sol-gel [53,54] etc.
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Among these, sol-gel has gained more attention as the highly crystalline powder can be
synthesized with enhanced purity even at low temperatures. It is also possible to control
the stoichiometry and structure of the catalyst at the same time, using a prepared via sol-gel
method [55].

This work reports the study of waste-derived CaO loaded TiO2 catalysts for H2 rich
syngas production via POM reaction. The sol-gel method was followed to obtain well
defined TiO2 nanostructures, and eggshells-derived CaO loading over TiO2 nanostruc-
tures was carried out via wetness impregnation route. The synthesized catalysts were
characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared
spectroscopy (FTIR), thermogravimetric-differential thermal gravimetric (TGA-DTG), scan-
ning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) for
structural, stability, morphological and elemental analysis. The influence of different CaO
loadings on TiO2 was progressively studied to obtain an optimum loading. CaO, being
basic in nature, can provide more oxygen vacancies to improve the conversion efficiency of
TiO2 and can prevent cooking to avoid the catalyst deactivation. As we know that more
oxygen vacancies are responsible for weakening and destabilizing the metal oxygen bonds
in TiO2, which can help to reduce the TiO2 into metallic phase, so, this study is conducted to
find an optimum loading of CaO over TiO2 showing the most conversion efficiency, as well
as stability of the catalyst. Finally, the spent of the catalyst was collected and characterized
by Raman and SEM/EDS to study carbon deposition on the catalyst surface.

2. Results and Discussion
2.1. Physicochemical Properties of the Catalyst

XRD patterns of different catalysts are given in Figure 1. The diffraction peaks of
1–3% CaO-TiO2 and pure TiO2 powder demonstrated the tetragonal arrangement of TiO2
anatase phase with (I41/amd(141)) space group and are in good agreement with JCPDS
21-1272 data card peaks [56]. Its major peaks are detected at 2θ = 25.3◦, 38.6◦, 48◦, 53.9◦,
55◦, and 62.7◦ with indices (hkl) values of (101), (112), (200), (105), (211), and (204) having a
dominant peak at (101) (one of the more stable facets having high coordinate Ti) indicating
the growth of TiO2 along c-axis. No additional characteristic peak is observed, showing
that prepared samples are free from impurities and pure anatase phase of TiO2 is obtained
without rutile or brookite phase [57]. Moreover, the peak sharpening is observed due to
impregnation of CaO. Change in intensity is also noted in CaO impregnated TiO2, likely due
to the metal oxide and support interaction. Moreover, a small peak at 20.39◦ is observed,
indicating the formation of calcium titanium oxide (CaTi4O9). No distinct peak for CaO is
observed due to the low concentration of CaO in doped TiO2 [58]. Moreover, no shift in
diffraction lines of TiO2 with the increase in CaO content can be possibly due to metal oxide
metal interaction instead of substitution of Ti sites with Ca. Crystallite size of TiO2, 1%
CaO-TiO2, 2% CaO-TiO2, and 3% CaO-TiO2 is 12 nm, 21 nm, 19 nm, and 17 nm, calculated
using the Scherrer equation [59]. The change in crystallite size is attributed to CaO loading,
which may help to improve the crystallinity of titania.

The Raman spectrum is further used for the phase and structural identification of pure
and impregnated TiO2 catalysts. As is shown in Figure 2, three characteristic vibrational
modes of TiO2 are observed at 395, 512, and 640 cm−1 with symmetries of B1g, A1g/B1g,
and Eg, respectively, clearly indicating the existence of anatase phase and no additional
peak for rutile or brookite phase is detected [60,61]. Thus, the results are in good agreement
with XRD results. Moreover, CaO impregnated TiO2 (1–3%) does not present any peak
shifts while intensity and broadness were affected by the concentration and impregnation
of metal. The peak shifting strongly depends on the number of impurity defects while
in (1–3%) CaO impregnated TiO2 concentration of impurities is low, thus no shifting was
observed [62]. Only minor changes were observed in the symmetry of TiO2 due to lattice
distortion generated due to defects with CaO substitution [63], where change in intensities
supports CaO loading. All the peaks of CaO loaded TiO2 samples show a significant
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increase in intensities with an increase in the concentration of CaO loading that support the
results obtained in XRD patterns.
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Figure 2. Raman spectroscopy of pure TiO2 and 1–3% CaO loaded TiO2.

FTIR spectra of undoped and CaO doped titania is presented in Figure 3a–d. The
spectrum is in the range of 600 and 4000 cm−1. In Figure 3a, the peaks at 3200–3600 cm−1

are due to OH bonds. In Figure 3c, the intensity of peak around 1200 cm−1 and around
2200 cm−1 is increased due to the addition of CaO content into the titania lattice. From
Figure 3b–d, the intensity of these situated peaks reduces by increasing the amount of the
CaO. In Figure 3c, bending vibration is up to a maximum, which is then again reduced when
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doped with 3% CaO loaded TiO2, as shown in Figure 3d. This supports the assumption
that 2% loading is an optimized loading. There are some broad peaks at ~ 3600 cm−1 then
3100 cm−1 indicating the presence of a hydroxyl group, while peaks around 1630 cm−1

are found to be corresponding to the bending vibration of H-O-H [64]. The peak near
1140 cm−1 corresponds to the possible interaction of the Ti-O-Ca bond. In addition, varying
intensity of vibration of the hydroxyl group with increasing doping of up to 2% CaO
loading, and then suppression with 3% CaO loading, indicate the presence of various
polarities on the effective doping of CaO into the titania lattice, resulting in an increased
number of oxygen vacancies with increasing loading up to 2% CaO loading and decreased
for 3% CaO loaded TiO2 [65]. Overall, all the grown catalysts follow the same pattern and
indicate 2% CaO loading is an optimized loading and confirm the successful synthesis of
desired catalysts as observed in XRD analysis.
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Figure 3. FTIR spectra of (a) pristine TiO2 (b–d) 1–3% CaO loaded TiO2.

The thermal stability of synthesized materials was confirmed by TG analysis. It is
shown in Figure 4 that pristine and CaO impregnated TiO2 illustrated major weight loss in
the same zone. However, the amount of weight loss was insignificant for both catalysts.
The weight loss is further divided into three different zones for more clarity. First, weight
loss in the range of 0–125 ◦C was related to the removal of moisture [66]. Second, weight
loss (125–400 ◦C) was attributed to the loss of hydroxyl groups and the decomposition of
different layers of amorphous carbon [67], while the third zone in the range of 400–790 ◦C
was related to the decomposition of any organic impurity and condensation of TiO2 anatase
phases [68]. A total of 4.5% weight loss is observed for pristine titania powder, while 2.5% is
observed in the case of doped titania. The thermal stability of CaO loaded catalysts is likely
due to the better metal support interaction as proposed in R7 in the reaction mechanism
section. Further high coordinate TiO2 facet 101 on interaction with support CaO can provide
more oxygen vacancies that possibly limit the thermal degradation [69]. From the curves
of the DTA, a high magnitude of the sharp exothermic response on both Figure 4a,b can
be observed. The exothermic temperature was 399 ◦C in case of undoped Titania, which
was reduced to 310 ◦C for doped Titania. While an earlier phase transformation, from the
amorphous to crystalline, in the case of CaO doped titania as compared to pure titania is
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observed [70]. These results correspond highly with XRD results as samples are highly
crystalline which are thermally stable at high temperatures. The substitution of CaO into
the Titania lattice lowers its temperature of crystallization [70,71], and this likely attributes
to the thermal stability of doped TiO2 due to metal impregnation.
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Figure 4. TGA-DTG analysis of (a) TiO2 (b) 2% CaO-TiO2.

The surface morphology of pure and CaO impregnated TiO2 was characterized by
SEM analysis. Figure 5a depicts a very closely packed spherical and well-dispersed bubble-
shaped nanostructure of pure TiO2 [72]. Less agglomeration and well dispersion were
due to the aggregation of TiO2 nanoparticles at high calcination temperature that was
more influential for crystalline growth [73]. Surface structure was changed after CaO
impregnation, and more uniform and homogenous distribution with irregular spherical
morphological agglomeration was attained, as shown in Figure 5b. Thus, SEM analysis
demonstrated the difference in morphology between TiO2 and CaO-TiO2 [74].
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Figure 5. SEM micrographs of (a) TiO2 (b) 2% CaO-TiO2.

In addition to morphological study, the elemental mapping of TiO2 and CaO-TiO2 was
performed by EDX analysis, and its results are represented in Figure 6. The two intense
peaks in Figure 6a represent O (65.90%) and Ti (31.10%) elements, and, 0.39% by weight
Ca loading was also detected during analysis represented in Figure 6b that confirmed the
presence of CaO in synthesized material, for which no extra characteristic peak and peak
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shifting was observed in XRD and Raman spectroscopy due to low metal loading that
could only be attributed to a change in intensities.
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2.2. Catalyst Performance Analysis

The synthesized catalysts were tested for POM and depicted in Figure 7a–d. The
catalysts were allowed to be activated for two hours before sampling. The average of each
three readings is taken and used for plots to minimize the error. TiO2 and CaO loaded
TiO2 showed a smooth and stable trend of conversion on time of the stream. Apart from
the trend, an increase in conversion was observed with the CaO loading. However, 2 and
3% CaO loaded TiO2 have shown almost the same conversion, and a very small change
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in conversion is observed after 2% loading for the same amount of loading, assuming
2% is an optimized loading. CaO loading on the surface of TiO2 support resulted in an
active phase exposed for the catalytic reaction [75] due to the combination of earth metal
oxide (CaO) and a metal oxide with higher basicity (TiO2) [76]. An active exposed phase
increase with an increase in loading prevents the catalyst from coking and activating the
oxidation [77,78], consequently enhancing the conversion efficiency. Furthermore, the
activity of CaO on TiO2 support is related to the increased porosity and oxygen vacancies,
resulting in more active sites due to the reduction in metal oxide into a metallic state
with an optimal loading [79] at higher temperatures in a hydrogen environment. All
the trends for CH4 conversion (XCH4), selectivity of H2 (SH2), selectivity of CO (Sco), and
H2/CO ratio under experimental conditions reaction temperature =750 ◦C and flow rate
CH4 = 20 mL min−1 O2 = 10 mL min−1 and N2 = 10 mL min−1 are shown in Figure 7.
Where CH4 conversion (XCH4) for 5 h is shown in Figure 7a and an average for 2 and 3%
CaO loaded TiO2was approximately 83.56 and 79.54%, respectively. Figure 7b–d illustrate
the selectivity of H2 production, selectivity of CO, and H2/CO ratio. Selectivity of CO for
pristine and 1–3% CaO loaded TiO2 is almost the same as shown in Figure 7c, however,
among all the catalysts, 1% CaO loaded TiO2 have shown the lowest CO selectivity, likely
due to the low concentration of CaO as observed in FTIR analysis. After activation, all the
catalysts have shown a stable trend, and not much variation has been observed.
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The H2/CO ratio is also an important parameter in POM, and the H2/CO ratio for
all the catalysts has shown slightly higher values than the stochiometric value, which is
2.0 [80], except TiO2, which has shown a slightly lower value than the stoichiometric value.
The variation in H2/CO ratio could be evidence of incomplete conversion of CO2 or a side
reaction using CO [81] that may oxidize into CO2. However, CO2 can be dissociated into CO
due to the presence of anatase phase of TiO2, as observed in XRD that have a lower energy
barrier than rutile phase [82]. However, during CO2 formation, adsorbed oxygen atoms
are consumed resulting in more active sites due to oxygen vacancies. More exposed active
sites attributed to CH4 adsorption, consequently increasing H* ions that are responsible for
an enhanced H2 production [82,83], which is likely the reason for the higher H2/CO ratio.
The average value of H2/CO for 2 and 3% CaO loaded TiO2 was 2.25 and 2.28, respectively,
which is slightly above the theoretical value for POM. CaO, which is used as promoter, is
highly basic in nature when loaded over TiO2 101 high coordinate facet, providing more
oxygen vacancies that results in an enhanced catalytic activity and hinders coke formation.
In addition, the basic character of CaO is further increased the adsorption and prevent the
coking consequently activating the oxidizing agent for gasification of carbon. More oxygen
vacancies in a result of CaO loading on TiO2 high coordinate 101 facet are responsible to
weaken and destabilize the metal oxygen bond in TiO2 resulting in the formation of metallic
phase during POM reaction at high temperatures such as 750 ◦C [69]. Highly reduced Ti
during POM in a hydrogen environment at high temperature possibly created a synergetic
effect resulting in a more stable catalyst and enhanced conversion efficiency.

2.3. Characterization of Spent Catalyst

Spent confirmation is carried out by using Raman spectroscopy as presented in
Figure 8, which demonstrates two additional peaks around 1330 (cm−1) and 1580 (cm−1)
along with the peaks of pristine CaO loaded TiO2 confirming the presence of carbon.
Moreover, the peak broadening and shifting also support the argument that carbon has
been deposited during time on stream. The peak being around 1330 (cm−1) (D Band) vali-
dated the existence of disordered graphitic carbon [84,85], though the peak being around
1580 (cm−1) (G Band) is an illustration associated to the ordered graphitic carbon.
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Furthermore, SEM/EDX was used for the characterization of the spent catalyst to
assess the morphological changes and elemental composition. An SEM micrograph of
CaO-TiO2 spent catalyst is presented in Figure 9a and morphological changes can be seen
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in comparison to the fresh catalyst, likely due to the carbon deposition on the surface
of catalysts and exposure to high temperature. In addition, morphological changes can
also be associated to metal oxide, and uncover atoms which may be present in a different
form of adsorbed oxygen along with Ca2+ and Ti2+ ions, where uncovered oxygen atoms
are responsible for H+ abstraction and Ca2+ and Ti2+ ions for C− from the molecule of
high acidity (CH4) [86]. Further EDX spectrum presented in Figure 9b also confirmed the
presence of carbon, an intense carbon peak with 3.25% by weight was observed in the EDX
spectrum along with Ti and O2 peaks.
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2.4. Reaction Mechanism

Catalytic partial oxidation is a complex reaction and its mechanism for H2 and CO
formation has not been clearly elucidated yet, but there is a possibility of two different
mechanisms known as direct partial oxidation (DPO) and indirect combustion and reform-
ing reaction [87]. Catalyst component, reaction conditions, metal-support interaction and
various other factors affect the reaction mechanisms [88].

In direct partial oxidation, CH4 dissociation followed by the formation of methyl
radicals, H* and C* species (CH3*, CH2*, CH*, H*, C*) and oxidation of adsorbed molecular
oxygen is subsequently converted into syngas. Thus, syngas is the primary product in
direct partial oxidation Equation (1) [89]. While in indirect combustion and reforming
reaction mechanism, CO2 and H2O formed as primary products, which may undergo steam
or dry reforming and finally be converted into syngas Equation (2) [90].

CH4 + 1/2O2 → CO + 2H2 (1)

CH4 + 1/2O2 → CO2 + H2O −−−−−−−→
CH4(unreacted)

CO + H2 (2)

In POM heterogeneous catalysis, a solid base catalyst is generally characterized by the
exposure of basic groups on the surface of the catalyst. Generally, basicity is illustrated by
different metal oxides, such as CaO, TiO2, MgO, ZrO2, etc. [86]. Therefore, both oxides act as
bases in CaO-TiO2. Catalysts were activated for two hours before sampling in the presence
of H2 where CaO and TiO2 donate their electron pairs through an interplay in a reduced
atmosphere. Both metal oxides uncover O atoms, which may exist in different forms mainly
O2− surface adsorbed (SA) and O2− surface lattice adsorbed (SLA) oxygen atoms [91]
along with the formation of Ca2+ and Ti2+ ions Equations (3) and (4)). These positive ions
or active sites are responsible for CH4 adsorption and H2 formation via different routes
expressed in Figure 10. Uncovered O atoms are responsible for H+ abstraction from the
molecule of high acidity (CH4) [86] and as a result, OH− ions are formed which are further
converted into water and lattice oxygen (O2−) via OH− coupling Equation (5). It is also
noticeably significant that the conversion of CaO into its ions Equation (1), in which Ca2+

acts as Lewis acid (electrophile) and O2− acts as Bronsted base. According to the definition
of Lewis acid, it can accept the pair of non-bonding electrons, thus CaO reacts with a
lone pair of H2O (formed as a result of OH− coupling) Equation (5) and converts into H2
and Ca(OH)2 Equation (6) that is quickly changed back into oxide again as a result of its
thermal instability at high temperatures [39]. Lizuka et al. [92] explained the electrophilicity
of Ca2+ cation, which is a weak acid due to its electronegativity and based on that, its
conjugated base (O2−) shows strong basicity. Thus, it can be concluded on the basis of the
above discussion that more active sites along with added lattice oxygen will be available
on support material that increases the basic nature of heterogeneous catalyst for enhancing
catalytic performance. Furthermore, Equation (7) represents the interaction of Ti and Ca,
resulting in the formation of H2 molecules. Syngas can also be synthesized directly by the
combination of adsorbed C and H2O Equation (8). As a result of the increased oxygen
consumption, more active sites are exposed to CH4 adsorption and increased H2 generation
via different routes. [82,83] (Figure 10).

CaO → Ca2+ + O2− −→
H2

Ca(metallic) (3)

TiO2 → Ti2+ + O2− −→
H2

Ti(metallic) (4)

OH− + OH− → H2O + O2− (5)

Ca2+ + 2H2O → Ca(OH)2 + H2 (6)

TiO2 + 2CaH2 → Ti2+ + 2CaO + 2H2 (7)

C + H2O→ CO + H2 (8)
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Figure 10. Partial oxidation of CH4 to syngas over CaO-TiO2 catalyst via different routes.

In combination with the literature and the above-mentioned analysis, it was observed
that more active sites and uncover O atoms were generated with the involvement of both
CaO and TiO2 and these results propose direct POM over CaO-TiO2 [82]. CO may oxidize
further into CO2 according to the following paths: Equations (9) and (10) [93]. However, it
can be easily dissociated again into CO Equation (11) due to the involvement of anatase
phase of TiO2 as analyzed in XRD. It has also been explained in the literature that a low
energy barrier is required for CO2 dissociation into CO on anatase phase rather than that
on a rutile phase of TiO2 [82].

CO + OH → CO2 + H+ (9)

CO + O2− → CO2 (10)

C + CO2 → 2CO (11)

3. Materials and Methods
3.1. Synthesis of CaO Doped TiO2

A schematic illustration of waste derived CaO loaded TiO2 nanostructures is depicted
in (Figure 11). Titanium (IV) Tetra isopropoxide (TTIP) was used as a precursor to prepare
TiO2 sol by the sol-gel method. Analytical grade hydrochloric acid (HCl) was used for
peptization and deionized (DI) water was utilized as dispersing media in TiO2 synthesis [94].
All the chemicals were bought from Sigma Aldrich, St. Louis, Missouri, USA. Initially, the
water-acid mixture was prepared and stabilized at 60 ◦C based on optimized methodology
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as reported in the literature [95]. This temperature was kept constant throughout the
experiment with continuous stirring and 5 mL TTIP was added into the reaction mixture
dropwise for one minute and the resulting solution was continuously stirred at 1500 rpm
for 1 h. As a result, a white thick precipitate was prepared that was gradually peptized
after 2 h and a clear sol was obtained [96].
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At neutral pH, TiO2 sol is chemically unstable and can undergo agglomeration when
it converts into gel form. Therefore, a solution of 30–50% concentrated HCl or NH4OH
was added dropwise into the reaction mixture to keep the pH acidic (3–7) and control the
instability of the catalyst. Sol was converted into gel after vigorous stirring and a white
suspension was prepared with high viscosity. The resulting mixture was allowed to dry
at 110 ◦C in the oven for 24 h and a pale-yellow powder was obtained that was further
washed with an organic solvent (ethanol) and water subsequently to remove impurities,
and was again dried at the same temperature to get the final product [97].

CaO was obtained from eggshells by simply grinding followed by sieving with 1 µm
sieve. Finally, waste derived 1%, 2% and 3% by weight CaO loading on TiO2 was carried
out by employing a wetness impregnation method. Briefly, 1 g TiO2 was added in water
and kept on stirring for 30 min, a specified percentage of CaO was then added under
continuous stirring at 1500 rpm and again continuously stirred for 5 h. A final homogenous
solution was placed overnight in the oven and a final product was calcined at 850 ◦C for
5 h to remove the traces of impurities.

3.2. Material Characterisation

D8 Advance (Bruker Advanced, Germany) equipped with CuKα radiations of wave-
length 1.5406 Å at 40 kV was used for the structural analysis of synthesized catalysts [98].
Ni filter was used for filtering background radiations. XRD scans were obtained in the
range of 2θ = 10–90◦ with a scan rate of 2◦/min. Furthermore, the crystallographic proper-
ties were ascertained by utilizing MDI JADE 6.5 software. Further crystallite size of samples
was obtained with the help of the Scherrer equation (Equation (12)).

Dp =
0.94λ

βCosθ
(12)

where Dp is the crystallite size, β is line broadening in radian, θ is Bragg angle and λ is
X-ray wavelength.

Raman spectroscopy was performed by using BWS415-532S, USA for structural iden-
tification and carbon deposited on the surface of the catalyst during the time on stream.
FTIR was carried out using a model Cary 630 (Agilent Technologies, Santa Clara, CA, USA)
to investigate the chemical analysis and functional groups. Spectra were recorded in the
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range of 4000 to 650 cm−1. TGA-DTG was used for the evaluation of thermal stability and
weight loss in both fresh catalysts and spent. Experiments were carried out in TGA 500 (TA
Instruments, New Castle, DE, USA) where the catalyst was purged by the N2 flow rate of
35 mL/min for 30 min. The morphological properties and elemental analysis of fresh and
spent catalyst were observed by SEM-EDX using the JEOL JSM- 6490A (JEOL Ltd., Tokyo,
Japan) having 200 nm resolution.

3.3. Partial Oxidation of Methane Setup

A fixed bed thermal reactor (Parr instruments 5401, St, Moline, IL, USA) was used
for methane cracking as shown in Figure 12. The experimental setup consists of three
main parts including a gas feed system (GFS), vertical stainless steel fixed bed reactor (SS
316) having a length of 300 mm with an inner diameter of 12 nm, and an analysis system
for product gases. Initially, the catalyst was placed in the middle of the thermal reactor
and reactant gases (CH4 (99.99%) and O2) were allowed to pass through and mass flow
controllers (Brooke instruments, Hatfield, PA, USA) were used to control the flow of the
reactant gasses. Process controller (4871, Parr instruments) integrated with thermocouples
and pressure gauge (2.5 bar) was used to control the temperature and pressure of the
reactor, respectively. An online SCADA system was employed to monitor the flow rate and
temperature as POM reaction was carried out at 750 ◦C with a total flow rate of 30 mL/min.
Finally, CH4 and the product gases were analyzed by gas chromatography (GC-TCD)
(GC-2010 Plus, Shimadzu, Kyoto, Japan) equipped with a thermal conductivity detector
(TCD) (RT-MS5A, 30 m × 0.32 mm, ID 30 µm) for the detection of different gases [37].
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3.4. Calculations

The performance of catalyst for POM was analyzed based on CH4 conversion
(Equation (13)), H2 selectivity (Equation (14)) and CO selectivity (Equation (15)) and
H2/CO ratio (Equation (16)).

CH4 conversion
(
XCH4

)
% =

[
(n CH 4)converted
(n CH 4 )feed

× 100
]

(13)

H2 selectivity
(
SH2

)
% =

[
(nH 2 ) produced

(2× nCH4) converted
× 100

]
(14)

CO selectivity (SCO)% =

[
(nCO) produced

(nCH 4) converted
× 100

]
(15)

H2/CO ratio =

[
selectivity(SH2)

selectivity(S CO)

]
(16)

4. Conclusions

TiO2 anatase phase free from impurities and other phases such as rutile were success-
fully synthesized by employing the sol-gel method. Pristine TiO2 and CaO decorated on the
surface of TiO2 by wetness impregnation method were confirmed by utilizing structural, el-
emental, and morphological techniques. The findings revealed that the TiO2 nanostructures
influenced the surface metal oxide deposition resulting in the fully exposed active phases.
Among the catalyst, both 2% and 3% CaO loaded TiO2 have shown higher conversion
efficiency in comparison to pure and 1% CaO loaded TiO2. No distinct change in conversion
efficiencies for 2% and 3% were observed confirming that an optimal loading is achieved.
Finally, 2% and 3% CaO loaded TiO2 have shown the average conversion efficiency of
83.56 and 79.54 and H2/CO ratio 2.25 and 2.28, respectively. These catalysts prepared
during this study have the advantage of a low cost and simple preparation method of TiO2,
even at low temperatures along with high catalytic activity for syngas production via the
POM route.
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35. Świrk, K.; Grams, J.; Motak, M.; Da Costa, P.; Grzybek, T. Understanding of tri-reforming of methane over Ni/Mg/Al hydrotalcite-
derived catalyst for CO2 utilization from flue gases from natural gas-fired power plants. J. CO2 Util. 2020, 42, 101317. [CrossRef]

36. Munawar, M.A.; Khoja, A.H.; Hassan, M.; Liaquat, R.; Naqvi, S.R.; Mehran, M.T.; Abdullah, A.; Saleem, F. Biomass ash
characterization, fusion analysis and its application in catalytic decomposition of methane. Fuel 2021, 285, 119107. [CrossRef]

37. Raza, J.; Khoja, A.H.; Naqvi, S.R.; Mehran, M.T.; Shakir, S.; Liaquat, R.; Tahir, M.; Ali, G. Methane decomposition for hydrogen
production over biomass fly ash-based CeO2 nanowires promoted cobalt catalyst. J. Environ. Chem. Eng. 2021, 9, 105816.
[CrossRef]

38. Calero, J.; Luna, D.; Sancho, E.D.; Luna, C.; Bautista, F.M.; Romero, A.A.; Posadillo, A.; Verdugo, C. Development of a new
biodiesel that integrates glycerol, by using CaO as heterogeneous catalyst, in the partial methanolysis of sunflower oil. Fuel 2014,
122, 94–102. [CrossRef]

39. Tavizón-Pozos, J.A.; Chavez-Esquivel, G.; Suárez-Toriello, V.A.; Santolalla-Vargas, C.E.; Luévano-Rivas, O.A.; Valdés-Martínez,
O.U.; Talavera-López, A.; Rodriguez, J.A. State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of
Oils for Biodiesel Production. Energies 2021, 14, 1031. [CrossRef]

40. Corma, A.; Iborra, S. Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions. In
Advances in Catalysis; Gates, B.C., Knözinger, H., Eds.; Academic Press: Cambridge, MA, USA, 2006; Volume 49, pp. 239–302.

41. Javed, A.H.; Shahzad, N.; Butt, F.A.; Khan, M.A.; Naeem, N.; Liaquat, R.; Khoja, A.H. Synthesis of bimetallic Co-Ni/ZnO
nanoprisms (ZnO-NPr) for hydrogen-rich syngas production via partial oxidation of methane. J. Environ. Chem. Eng. 2021,
9, 106887. [CrossRef]

42. Qiu, Y.; Chen, J.; Zhang, J. Effects of CeO2 and CaO composite promoters on the properties of eggshell Ni/MgO-Al2O3 catalysts
for partial oxidation of methane to syngas. React. Kinet. Catal. Lett. 2008, 94, 351–357. [CrossRef]

43. Mateos-Pedrero, C.; González-Carrazán, S.R.; Soria, M.A.; Ruíz, P. Effect of the nature of TiO2 support over the performances of
Rh/TiO2 catalysts in the partial oxidation of methane. Catal. Today 2013, 203, 158–162. [CrossRef]

44. Baamran, K.S.; Tahir, M.; Mohamed, M.; Hussain Khoja, A. Effect of support size for stimulating hydrogen production in phenol
steam reforming using Ni-embedded TiO2 nanocatalyst. J. Environ. Chem. Eng. 2020, 8, 103604. [CrossRef]

45. Yan, Q.; Weng, W.Z.; Wan, H.L.; Toghiani, H.; Toghiani, R.K.; Pittman, C. Activation of methane to syngas over a Ni/TiO2 catalyst.
Appl. Catal. A Gen. 2003, 239, 43–58. [CrossRef]

46. Perkas, N.; Zhong, Z.; Chen, L.; Besson, M.; Gedanken, A. Sonochemically prepared high dispersed Ru/TiO2 mesoporous catalyst
for partial oxidation of methane to syngas. Catal. Lett. 2005, 103, 9–14. [CrossRef]

47. Elmasides, C.; Kondarides, D.I.; Neophytides, S.G.; Verykios, X.E. Partial Oxidation of Methane to Synthesis Gas over Ru/TiO2
Catalysts: Effects of Modification of the Support on Oxidation State and Catalytic Performance. J. Catal. 2001, 198, 195–207.
[CrossRef]

48. Efstathiou, A.M.; Kladi, A.; Tsipouriari, V.A.; Verykios, X.E. Reforming of Methane with Carbon Dioxide to Synthesis Gas over
Supported Rhodium Catalysts: II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction
Pathways to Form CO. J. Catal. 1996, 158, 64–75. [CrossRef]

49. Wu, T.; Yan, Q.; Wan, H. Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO2 catalyst. J. Mol. Catal. A
Chem. 2005, 226, 41–48. [CrossRef]

50. Bradford, M.C.; Vannice, M. Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts. Catal.
Lett. 1997, 48, 31–38. [CrossRef]

51. Znaidi, L.; Seraphimova, R.; Bocquet, J.; Colbeau-Justin, C.; Pommier, C. A semi-continuous process for the synthesis of nanosize
TiO2 powders and their use as photocatalysts. Mater. Res. Bull. 2001, 36, 811–825. [CrossRef]

52. Wu, Z.; Tang, N.; Xiao, L.; Liu, Y.; Wang, H. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as
a superior catalyst for NO oxidation. J. Colloid Interface Sci. 2010, 352, 143–148. [CrossRef] [PubMed]

53. Bazli, L.; Siavashi, M.; Shiravi, A. A review of carbon nanotube/TiO2 composite prepared via sol-gel method. J. Compos. Compd.
2019, 1, 1–9. [CrossRef]

54. Vijayalakshmi, R.; Rajendran, V. Synthesis and characterization of nano-TiO2 via different methods. Arch. Appl. Sci. Res. 2012, 4,
1183–1190.

55. You, Y.F.; Xu, C.H.; Xu, S.S.; Cao, S.; Wang, J.P.; Huang, Y.B.; Shi, S.Q. Structural characterization and optical property of TiO2
powders prepared by the sol–gel method. Ceram. Int. 2014, 40, 8659–8666. [CrossRef]

56. Lai, C.W. Modification of one-dimensional TiO2 nanotubes with CaO dopants for high CO2 adsorption. Int. J. Photoenergy 2014,
2014, 471713. [CrossRef]

57. Gu, L.; Wang, J.; Cheng, H.; Du, Y.; Han, X. Synthesis of nano-sized anatase TiO2 with reactive {001} facets using lamellar
protonated titanate as precursor. Chem. Commun. 2012, 48, 6978–6980. [CrossRef]

http://doi.org/10.1021/acs.jpca.9b11835
http://doi.org/10.1002/er.5869
http://doi.org/10.1016/j.jcou.2020.101317
http://doi.org/10.1016/j.fuel.2020.119107
http://doi.org/10.1016/j.jece.2021.105816
http://doi.org/10.1016/j.fuel.2014.01.033
http://doi.org/10.3390/en14041031
http://doi.org/10.1016/j.jece.2021.106887
http://doi.org/10.1007/s11144-008-5332-4
http://doi.org/10.1016/j.cattod.2012.02.039
http://doi.org/10.1016/j.jece.2019.103604
http://doi.org/10.1016/S0926-860X(02)00351-4
http://doi.org/10.1007/s10562-005-6496-4
http://doi.org/10.1006/jcat.2000.3120
http://doi.org/10.1006/jcat.1996.0006
http://doi.org/10.1016/j.molcata.2004.09.016
http://doi.org/10.1023/A:1019022903491
http://doi.org/10.1016/S0025-5408(00)00482-7
http://doi.org/10.1016/j.jcis.2010.08.031
http://www.ncbi.nlm.nih.gov/pubmed/20832076
http://doi.org/10.29252/jcc.1.1.1
http://doi.org/10.1016/j.ceramint.2014.01.083
http://doi.org/10.1155/2014/471713
http://doi.org/10.1039/c2cc33163b


Catalysts 2022, 12, 1089 18 of 19

58. Da Cunha, T.; Maulu, A.; Guillot, J.; Fleming, Y.; Duez, B.; Lenoble, D.; Arl, D. Design of Silica Nanoparticles-Supported
Metal Catalyst by Wet Impregnation with Catalytic Performance for Tuning Carbon Nanotubes Growth. Catalysts 2021, 11, 986.
[CrossRef]

59. Shakir, S.; Khan, Z.S.; Ali, A.; Akbar, N.; Musthaq, W. Development of copper doped titania based photoanode and its performance
for dye sensitized solar cell applications. J. Alloys Compd. 2015, 652, 331–340. [CrossRef]

60. Challagulla, S.; Tarafder, K.; Ganesan, R.; Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep.
2017, 7, 1–11. [CrossRef]

61. Ponomarev, V.A.; Orlov, E.A.; Malikov, N.A.; Tarasov, Y.V.; Sheveyko, A.N.; Permyakova, E.S.; Kuptsov, K.A.; Dyatlov, I.A.;
Ignatov, S.G.; Ilnitskaya, A.S.; et al. Ag(Pt) nanoparticles-decorated bioactive yet antibacterial Ca- and P-doped TiO2 coatings
produced by plasma electrolytic oxidation and ion implantation. Appl. Surf. Sci. 2020, 516, 146068. [CrossRef]

62. Rattana, T. The Structural, morphological and optical properties of Ca doped TiO2 thin films prepared by sol-gel method. SNRU
J. Sci. Technol. 2018, 10, 1–5.

63. Castro, Y.; Durán, A. Ca doping of mesoporous TiO2 films for enhanced photocatalytic efficiency under solar irradiation. J. Sol-Gel
Sci. Technol. 2016, 78, 482–491. [CrossRef]

64. Liu, Z.; Jian, Z.; Fang, J.; Xu, X.; Zhu, X.; Wu, S. Low-Temperature Reverse Microemulsion Synthesis, Characterization, and
Photocatalytic Performance of Nanocrystalline Titanium Dioxide. Int. J. Photoenergy 2012, 2012, 702503. [CrossRef]

65. Ramasamy, V.; Mohana, V.; Rajendran, V. Characterization of Ca doped CeO2 quantum dots and their applications in photocat-
alytic degradation. OpenNano 2018, 3, 38–47. [CrossRef]

66. Kalaivani, T.; Anilkumar, P. Role of temperature on the phase modification of TiO2 nanoparticles synthesized by the precipitation
method. Silicon 2018, 10, 1679–1686. [CrossRef]

67. Rosa, S.; Nossol, A.; Nossol, E.; Zarbin, A.; Peralta-Zamora, P. Non-Synergistic UV-A Photocatalytic Degradation of Estrogens by
Nano-TiO 2 Supported on Activated Carbon. J. Braz. Chem. Soc. 2017, 28, 582. [CrossRef]

68. Ramimoghadam, D.; Bagheri, S.; Abd Hamid, S.B. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via
Lignocellulosic Waste Material. BioMed Res. Int. 2014, 2014, 205636. [CrossRef] [PubMed]

69. Siang, T.J.; Jalil, A.A.; Liew, S.Y.; Owgi, A.H.K.; Rahman, A.F.A. A review on state-of-the-art catalysts for methane partial oxidation
to syngas production. Catal. Rev. 2022, 1–57. [CrossRef]
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