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Abstract: Gasification converts biomass into syngas; however, severe cleaning processes are necessary
due to the presence of tars, particulates and contaminants. The aim of this work is to propose a
cleaning method system based on tar physical adsorption coupled with the production of pure H2

via a chemical looping process. Three fixed-bed reactors with a double-layer bed (NiO/Al2O3 and
Fe-based particles) working in three different steps were used. First, NiO/Al2O3 is used to adsorb
tar from syngas (300 ◦C); then, the adsorbed tar undergoes partial oxidization by NiO/Al2O3 to
produce CO and H2 used for iron oxide reduction. In the third step, the reduced iron is oxidized
with steam to produce pure H2 and to restore iron oxides. A double-layer fixed-bed reactor was
fed alternatively by guaiacol and as tar model compounds, air and water were used. High-thermal-
stability particles 60 wt% Fe2O3/40 wt% MgO synthetized by the coprecipitation method were used
as Fe-based particles in six cycle tests. The adsorption efficiency of the NiO/Al2O3 bed is 98% and
the gas phase formed is able to partially reduce iron, favoring the reduction kinetics. The efficiency of
the process related to the H2 production after the first cycle is 35% and the amount of CO is less than
10 ppm.

Keywords: hydrogen; gasification; syngas; chemical looping

1. Introduction

Syngas is a gaseous mixture, mainly composed of hydrogen and carbon monoxide
and by small amounts of carbon dioxide and water. The H2/CO mixture can be produced
by gasification of coal/heavy hydrocarbons/biomass and by steam reforming of light
hydrocarbons. Syngas is one of the most important intermediates in the chemical industry,
mainly used for ammonia, methanol and hydrogen production but also for heat and
electricity generation [1–3]. Due to the concerns about global warming and the need to
switch to renewable fuels and chemicals, the use of biomass for syngas production is deeply
studied. During gasification, biomass is converted into syngas in the presence of an oxidizer
(air or oxygen) and a gasifying agent, usually water vapor. The process is composed of
four steps: drying, pyrolysis, oxidation and reduction [2]. During the pyrolysis step,
occurring at temperatures between 300 and 700 ◦C, the biomass is decomposed, producing
char, gas and vapors, which compose the tar. Part of the produced tar exits from the
gasification reactor along with the syngas and can condense in the downstream equipment
of the plant, causing clogging of pipes and filters. When the amount of tar exiting from
the gasifier is not negligible, for example, when up-draft gasifiers are used, the recovery
of the energy of tar by means of its transformation into syngas is fundamental. Tar is
a complex mixture of condensable organics, which are generally assumed to be largely
aromatic organic species [3,4]. Typically, one- or two-ring aromatic hydrocarbons, including
benzene, guaiacol, toluene and naphthalene, are chosen as tar model compounds to deeply
investigate the performance of the several tar removal methods [5,6]. The traditional
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chemical methods for tar removal are thermal cracking and catalytic reforming; thermal
cracking converts tar into syngas and coke at high temperature (T > 800 ◦C) in the absence
of a catalyst; catalytic reforming takes place in the presence of a catalyst, usually Ni, and tar
is converted mainly into syngas. These two methods suffer from low conversion efficiency
and rapid catalyst deactivation [7].

In this context, chemical looping technologies can represent a viable alternative to
remove tar from the syngas and enrich it with H2. Among them, chemical looping gasifica-
tion (CLG) and chemical looping reforming (CLR) have attracted a lot of attention from
researchers to improve the efficiency and solve the issues related to tar production [8–10].
The process consists of exploiting the redox properties of transition metal oxides in redox
cycles. In the first step of the redox cycle, the lattice oxygen of the metal is able to partially
oxidizes biomass or tar to syngas, converting the metal oxide into its metallic state. The
second step is dedicated to the restoration of the metal oxide using air oxidation to begin
the cycle again [11,12]. Huang et al. utilized NiFe2O4 as oxygen carrier to remove toluene
as tar model compound from syngas. The tests showed a high toluene conversion (95%) at
850 ◦C and also a high stability of the material, which guaranteed a stable conversion after
82 cycles. They also reported the production of a syngas with high H2 yields [13]. Zeng et al.
studied the conversion of naphthalene as tar model compounds over different metal oxides,
showing that at 900 ◦C, more than 90% of naphthalene is converted into CO, CO2, H2 and
char when CuO, NiO and Fe2O3 are used as oxygen carriers [14]. The concept of chemical
looping hydrogen (CLH) is slightly different, the first step in tar oxidation/reduction of the
metal oxides is comparable to that of chemical looping gasification, but the second step,
in which the metal oxide is restored, utilizes water vapor instead of air as the oxidation
agent with the goal of pure H2 production. CLH is widely studied for the production
of pure H2 from renewable sources; however, its application in gasification technology
is limited [15]. The most investigated reduction species, needed for the first step of the
process, are methane, syngas and ethanol [16,17]. When hydrogen with high purity is
required, the use of heavy organic reductants in the CLH process is not common since
heavy molecules tend to undergo cracking reactions, forming carbon, which is deposited
on the oxygen carrier; the carbon, in the subsequent steps of oxidation, can react with the
steam to form CO, undermining the purity of the H2 stream. To overcome the issues related
to carbon formation when heavy-molecular-weight reductants are used, some authors
proposed the insertion of a third step of air combustion with the aim of burning the carbon
deposited and completely restoring the oxides. Wei et al. investigated the production of H2
using vegetable oils as reductants and Fe2O3 as oxygen carrier. The H2 stream obtained
was composed of H2 at 90% using a three-step CLH [18]. Xiao et al. also studied a CLH
process using bio-oil as reductant and an iron-based oxygen carrier; they worked at 950 ◦C
and obtained an H2 stream but not pure due to the carbon deposition in the reduction
step [19].

The aim of this work is to demonstrate the feasibility of coupling biomass gasification
to CLH technology in order to remove tar from the syngas and to produce, at the same time,
a pure H2 stream. The goal is to enhance the whole process efficiency by converting the tar
into pure hydrogen, which can be used to enrich the syngas or, as it is, in other applications.
With this process, it will be possible to easily produce H2 from biomass without the need
of separation processes of H2 from syngas. One of the most interesting destinations of
pure H2 is in fuel cell applications, where the CO concentration should be lower than
10 ppm [20].

The experimental study reported in this work is focused only on the tar removal
system that consists of one reactor with a double-layer fixed bed, working in three different
process steps (tar adsorption, tar partial oxidation and pure hydrogen production). The
double layer in each reactor is composed of NiO/Al2O3 needed to adsorb the tar and to
catalyze tar partial oxidation and by Fe-based particles (60 wt% Fe2O3/40 wt% MgO),
which constitute the CLH redox system [21]. The catalytic activity of Ni in its oxidized
form is proven by numerous studies [22,23]. The process consists of three steps: First,
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guaiacol, used as a tar model compound, is adsorbed mainly on the NiO/Al2O3 layer
at low temperature (300 ◦C). In the second step, the adsorbed tar is partially oxidized at
700 ◦C by air, producing heat and syngas. This step is fundamental to convert the adsorbed
guaiacol into CO and H2 needed to reduce iron oxides to iron and to provide the heat
needed for iron oxide reduction reactions, favored at high temperature (700–900 ◦C). In the
third step, steam is fed to the reactor in order to produce pure H2 by iron oxidation and to
restore iron oxide. The experimental tests were conducted, studying separately the three
steps, looking at the guaiacol abatement efficiency, purity and amount of the produced
hydrogen and stability of the oxygen carrier (60 wt% Fe2O3-40 wt% MgO).

2. Experimental Section
2.1. Materials

Nitrate salts supplied by Sigma Aldrich (Rome, IT) are used as received for Fe-based
particle synthesis (Iron nitrate nonahydrate (Fe(NO3)3·9H2O), Magnesium nitrate hexahy-
drate (Mg(NO3)2·6H2O) and Nickel nitrate nonahydrate (Ni(NO3)2·9H2O)). A solution
of 37 wt% of NaOH is used as precipitation agent. Aluminum oxide powder (Al2O3) is
supplied by Sigma Aldrich (assay > 99.99%;150 < dp < 300 µm; SSA: 212 m2·g−1). Guaiacol
(C7H8O2) was used as tar model compound and used as received by Sigma Aldrich.

2.2. NiO/Al2O3 and Fe-Based Particle Syntheses

NiO/Al2O3 catalyst with NiO loading of 10 wt% is synthetized by wet impregnation
method. The Nickel nitrate solution is prepared by dissolving the calculated amount of
nickel salt into distilled water and then the Al2O3 particles are added to the solution, then
the mixture is heated to allow water evaporation to occur. The obtained particles are
calcined in an air static furnace at 800 ◦C for 4 h.

The Fe-based particles are prepared by coprecipitation method. The calculated
amounts of precursor nitrate salts are dissolved into deionized water, then the solution is
mixed and heated at 80 ◦C on a hot plate; when a setting temperature of 80 ◦C is reached,
37% of NaOH is gradually added to the solution to increase the pH until 11. The solution
is aged for 12 h at ambient temperature. The precipitate is filtered and dried at 100 ◦C
overnight. The solid obtained is calcinated in an air-muffle furnace at 350 ◦C for 2 h and
900 ◦C for 2 h. Finally, the solid is crushed and sieved to obtain particles in a range of
150 < dp < 300 µm.

2.3. Material Characterization

X-ray powder diffraction (XRD) is implemented to study the crystal-phase compo-
sitions before and after the tests for the Fe-based particle. XRD patterns are acquired
using a Philips Analytical PW1830 X-ray diffractometer (Malvern, UK), equipped with a
Ni β-filtered Cu Kα (1.5418 Å) radiation, in the 2θ range from 5 to 90◦ with a step size of
0.02◦ and a time for step of 3.5 s. The data were collected with an acceleration voltage and
applied current of 40 kV and 30 mA, respectively. The crystalline phases in the resulting
diffractograms were identified through the COD database [24]. The average crystallite size
was calculated with the Scherrer’s equation on the most intense hkl plane of each detected
phase [25].

BET surface area was determined by N2 adsorption–desorption isotherms acquired
at −196 ◦C using a Micromeritics Triflex analyzer (Micromeritics Instrument Corp., Nor-
cross, GA, USA). The adsorption–desorption isotherms are acquired in a p/p0 range from
0.01 to 0.99. Isotherm analysis is performed using the 3Flex Version 4.05 software. Sam-
ples were previously outgassed at 300 ◦C for 4 h. The BET equation is used to determine
the specific surface area. A morphologic investigation of samples was performed using
a High-Resolution-Field Emission Scanning Electron Microscope (HR-FESEM, AURIGA
Zeiss, Milan, IT).
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2.4. Experimental Set-Up and Procedure

The experiments are conducted in a stainless-steel tubular reactor (di = 1 cm and
L = 30 cm) loaded with two fixed-bed layers, having the same dimensions (1 cm height);
the first is composed of NiO/Al2O3 and the second layer of Fe-based particles. Figure 1
reports a simplified scheme of the plant used for the experiments.
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Figure 1. Experimental set-up.

Two syringe pumps are used to feed guaiacol and water, which pass through a
vaporizer before entering the reactor. The experimental tests are conducted in the presence
of nitrogen as carrier gas (100 mL·min−1) and at atmospheric pressure. The reactor is heated
by an external tubular resistance controlled by a K-type thermocouple. The air and nitrogen
flow rates are controlled by flow meters. The guaiacol, water and air flow rates are constant
and equal to 0.01 mL·min−1, 0.067 mL·h−1 and 40 mL·min−1, respectively. The guaiacol
flow rate is chosen in order to have an amount of guaiacol in the N2 that is similar to the
amount of tar exiting along with the syngas from an up-draft gasifier (100 mg/Nm−3) [26].
Further, in the adsorption step, which is the first phase of the process, temperature was set
to the typical exit temperature of a syngas from an up-draft gasifier (300 ◦C). In the second
and third steps the temperatures are higher and equal to 700 ◦C. During the adsorption test,
the guaiacol stream is forced to pass through 2 g of NiO/Al2O3 catalyst. The adsorption
tests are performed feeding different amounts of guaiacol, which, at constant guaiacol flow
rate, corresponds to different feeding times (15 min, 30 min and 40 min) in order to find
the maximum amount of guaiacol that can be adsorbed on the NiO/Al2O3. The abatement
efficiency was calculated weighing the amount of guaiacol condensed in the flask and the
NiO/Al2O3 before and after the tests. The guaiacol partial combustion tests are conducted
loading the reactor only with NiO/Al2O3 bed in order to evaluate the catalyst activity in
guaiacol partial oxidation. The amount of air must be carefully controlled since if residual
oxygen is present at the exit of the NiO/Al2O3 layer it can oxidize the Fe oxides, which are
being reduced by the products of partial oxidation of adsorbed guaiacol. At the end of the
guaiacol partial-combustion step, the Fe-based particles are reduced and steam is fed to the
reactor to start the third step of the process. The gaseous products are analyzed online by
mass spectrometer (QGA, Quantitative Gas analyzer) while the liquid product collected
in the condenser is analyzed by GC-MS (Agilent 5973, Agilent Technologies, Milan, IT).
CO concentration is measured by a non-dispersive infrared sensor (Ambra Sistemi, Comet,
Grugliasco, Italy).
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3. Discussion
3.1. Characterization of the NiO/Al2O3 and Fe-Based Particles

The synthesized materials were characterized to determine their crystallinity and
surface area using XRD and BET, respectively.

As shown in Figure 2, the main crystal structures detected in the NiO/Al2O3 catalyst
are bunsenite (NiO) and corundum (γ-Al2O3). No signals associated with the nickel
aluminate (NiAl2O4) spinel phase were detected, which suggests no solid solution among
γ-Al2O3 and NiO.
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Figure 2. Diffractograms of NiO/Al2O3 and 60 wt% Fe2O3/40 wt% MgO particles.

The strong interaction between Fe2O3 and MgO is instead detected in the case of
the 60 wt% Fe2O3/40 wt% MgO sample; after calcination in air at 900 ◦C, magnesium
oxide and iron oxide form a spinel structure magnesium ferrite (MgFe2O4). The specific
surface areas (BET) together with pore width and pore volume are presented in Table 1.
The NiO/Al2O3 catalyst showed a relatively high surface area (196.63 m2·g−1), but a slight
reduction compared with that of the γ-Al2O3 support (212 m2·g−1) occurred, probably due
to the presence of NiO particles that partially block the porous network of the support. On
the contrary, the Fe-based sample presented lower surface area (9.67 m2·g−1) and a very
low porosity (0.04 cm3·g−1) compared to the NiO/Al2O3 catalyst (0.40 cm3·g−1).

Table 1. Textural properties.

NiO/Al2O3 60 wt% Fe2O3/40 wt% MgO

Specific Surface area (m2·g−1) 195.63 ± 0.04 9.67 ± 0.05
Mean pore width (nm) 9.10 14.08

Total pore volume (cm3·g−1) 0.40 0.04
Crystal size (nm) a NiO: 49.6; Al2O3: 43.9 MgFe2O4: 97.8; MgO: 87.8

a By XRD using Scherrer equation.

3.2. Low-Temperature Guaiacol Adsorption on NiO/Al2O3 Particles

In order to evaluate the feasibility to use NiO/Al2O3 for the guaiacol adsorption at
the operative conditions adopted, tests feeding different amounts of guaiacol (1.365 mmol,
2.731 mmol, 4.095 mmol) are conducted. The flow rate of guaiacol was kept constant at
0.01 mL·min−1 and, thus, to feed the different amounts, only the feeding time was changed
from 15 to 45 min. The experiments are performed with only the NiO/Al2O3 layer in order
to better understand the behavior of this material in the process.
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At these operative conditions, guaiacol does not undergo any type of decomposition
reaction [27]. Therefore, the adsorption efficiency is calculated according to Equation (1):

AE(%) =
Guaiacol injected− Guaiacol liquid product

Guaiacol injected
× 100 (1)

where guaiacol liquid product corresponds to the amount of guaiacol collected by condensa-
tion at the reactor exit. Table 2 reports the abatement efficiency calculated for each amount
of guaiacol fed.

Table 2. Guaiacol abatement efficiency as a function of amount of guaiacol fed with NiO/Al2O3 at
300 ◦C.

Guaiacol Fed (mmol) Guaiacol in the Condensable
Product (mmol) Abatement Efficiency (%)

1.365 0.020 ± 0.002 98.53
2.731 0.045 ± 0.006 98.35
4.095 2.53 ± 0.023 38.22

As reported in Table 2, guaiacol can be successfully absorbed on NiO/Al2O3 at a
temperature of 300 ◦C; however, the time of the adsorption should be carefully tuned and it
is a function of the amount of tar into the syngas. The amount of guaiacol in the condensed
product at the end of the reactor starts to appear, feeding an amount of guaiacol higher than
2.731 mmol, which corresponds to a feeding time equal to 30 min. For higher feeding time,
the abatement efficiency significantly decreases, meaning that the guaiacol is not adsorbed
anymore and it is entirely collected as a condensable product. Therefore, the maximum
amount of guaiacol that can be adsorbed by the NiO/Al2O3 layer is 2.731 mmol.

In order to evaluate if the Fe-based particle layer is involved in the guaiacol adsorption,
adsorption experiments are also conducted in the two-layer fixed-bed configuration at the
same operative conditions. Table 3 summarizes the results obtained.

Table 3. Guaiacol abatement efficiency as a function of amount of guaiacol fed with double layer
(NiO/Al2O3+Fe-based particles) at 300 ◦C.

Guaiacol Fed (mmol) Guaiacol in the Condensable
Product (mmol) Abatement Efficiency (%)

1.365 0.010 ± 0.003 99.26
2.731 0.025 ± 0.006 99.08
4.095 2.12 ± 0.017 48.82

From the comparison of the results obtained with and without the Fe-based particle
layer, it seems that only a slight improvement in the guaiacol abatement efficiency is
obtained in the layer of Fe-based particles. These results suggest that the Fe-based particles
have a little capacity for adsorption; in fact, only a small amount of the guaiacol fed can
be adsorbed on the Fe-based particle layer. From the results, the abatement efficiency of
the Fe-based particles is almost negligible due to the very low surface area of this material
(9.67 m2·g−1) compared to that of NiO/Al2O3 (195.63 m2·g−1).

The adsorption of guaiacol into the Fe-based particles is a key aspect that needs to be
carefully addressed; in fact, when the temperatures increase during the reduction step, the
amount of guaiacol adsorbed onto the Fe-based particles could undergo cracking reactions
and form solid carbon on the Fe-based particles, causing deactivation of the active sites.
Furthermore, the carbon can react with water vapor in the oxidation steps, producing CO
via the gasification reaction. From these considerations, it is clear that the adsorption of
guaiacol into the Fe-based particles must be avoided and for the reduction/oxidation tests,
the amount of guaiacol that does not imply its adsorption also in the Fe layer is taken as the
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optimum amount. The tests of reduction/oxidation were, thus, performed feeding guaiacol
for 30 min.

3.3. Guaiacol Partial Oxidation

After the determination of the maximum amount of guaiacol adsorbed by NiO/Al2O3
layer, guaiacol partial oxidation experiments are conducted in order to verify the feasibility
to partially oxidize guaiacol to form mainly H2, CO and CO2. The resulting syngas
mixture is used to reduce iron oxides to iron. The experiments are conducted using the
configuration in which only the NiO/Al2O3 layer is present in order to separately study the
partial oxidation of guaiacol and the iron oxide reduction, to measure the amount of heat
supplied to the fixed bed by the exothermic partial oxidation reactions [28]. The amount
of air fed should be carefully calculated in order to avoid the complete combustion of the
adsorbed guaiacol, resulting in the production of CO2 and H2O, which could not contribute
to iron oxide reduction. Furthermore, oxygen needed for the combustion must be totally
consumed by the guaiacol oxidation rection, as its presence at the end of the Al2O3 layer
hinders the iron oxide reduction. Before starting the partial oxidation step, the reactor is
preheated to 700 ◦C.

The required air flow rate is calculated starting from the maximum amount of guaiacol
that can be adsorbed on the NiO/Al2O3 layers determined in the previous process step.
According to the stoichiometry of guaiacol combustion reaction (reaction (2)), the amount
of air required to obtain a complete guaiacol oxidation in 30 min is equal to 80 mL·min−1.

C7H8O2 + 8O2 → 7CO2 + 4H2O (2)

Considering that the aim is to partially oxidize guaiacol into CO and H2, the air flow
rate is halved and fixed to 40 mL·min−1.

Figure 3 reports the variation in the main compounds detected in the gas phase (H2,
CO, CO2 and O2) and the temperature profile of the fixed bed during the test.
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As reported in Figure 3, by feeding 40 mL·min−1 of air, it is possible to obtain a high
reducing power gaseous stream, mainly constituted of CO and H2, and low amounts of
CO2. The oxygen is totally consumed and is not present in the exiting gases for the first
15 min; after this time, it begins to be revealed, meaning that almost all the guaiacol was
consumed. A significant increase in the reactor temperature from 700 to 800 ◦C is reached
thanks the high exothermic nature of the combustion reactions. This additional heat led
to an increase in the reaction temperature, promoting kinetics of the iron oxide reduction,
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especially with solid carbon, if present. During this step, in fact, solid carbon can be
deposited on the Fe-based particle layer since, when the NiO/Al2O3 bed with guaiacol
adsorbed is heated, part of the guaiacol can be desorbed and flow with the gas phase can
undergo cracking reactions, causing the deposition of carbon on the Fe-based particles;
the presence of this carbon in order to produce pure H2 in oxidation should be completely
consumed by reduction reactions in order to avoid its presence in the oxidation step, in
which it can reacts to give CO, undermining H2 purity. The main reactions taking place in
the reduction step are reported below (reactions (3)–(14)) [29].

3Fe2O3 + H2 � 2Fe3O4 + H2O (3)

Fe3O4 + H2 � 3FeO + H2O (4)

FeO + H2 � Fe + H2O (5)

3Fe2O3 + CO � 2Fe3O4 + CO2 (6)

Fe3O4 + CO � 3FeO + CO2 (7)

FeO + CO � Fe + CO2 (8)

3Fe2O3 + C � 2Fe3O4 + CO (9)

Fe3O4 + C � 3FeO + CO (10)

FeO + C � Fe + CO (11)

6Fe2O3 + C � 4Fe3O4 + CO2 (12)

2Fe3O4 + C � 6FeO + CO2 (13)

2FeO + C � 2Fe + CO2 (14)

3.4. Steam Oxidation for Pure H2 Production

The last step of the process consists of the steam oxidation of the reduced iron oxides
at 700 ◦C. The goal of this step is to oxidize the reduced Fe in order to produce pure H2 by
water splitting according to the reactions (15)–(17) [30].

3Fe + 4H2O � Fe3O4 + 4H2 ∆H < 0 (15)

3FeO + H2O � Fe3O4 + H2 ∆H < 0 (16)

Fe + H2O � FeO + H2 ∆H < 0 (17)

The oxidation with water vapor is not able to completely restore the Fe to Fe2O3;
therefore, during this step, Fe3O4 is produced [31].

This step is, therefore, conducted with a double-layer (NiO/Al2O3+Fe-based particles)
fixed bed. Figure 4 shows the flow rates of the main compounds (H2, CO, CO2) detected in
the gaseous phase in the three steps of the process.

The results reported in Figure 4 demonstrate the feasibility to reduce iron oxide using
the gas stream generated by the partial oxidation of the guaiacol adsorbed on NiO/Al2O3
particles. In the oxidation step, the hydrogen produced is pure, meaning that in the first
cycle, carbon-based compounds are not present or, if present, the carbon is in a form that
cannot be easily oxidized by water at the operating conditions adopted. To evaluate the
reduction degree of iron oxides during the partial oxidation step, the steam oxidation
efficiency (E%) is calculated according to Equation (18):

E (%) =
VH2(measured)
VH2(theoretical)

× 100 (18)
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where VH2 is the volume of H2 obtained during the steam oxidation step and VH2 theoretical
is the maximum amount of H2 producible, considering the total reduction of iron oxides
to metallic iron and the total oxidation of Fe to Fe3O4. The calculated steam oxidation
efficiency is equal to 35%. The results suggest that the complete reduction to metallic iron
is not reached and that the amount of reducing agents produced from partial guaiacol
oxidation are not sufficient to achieve the complete iron oxide reduction at the operating
condition adopted. However, the produced H2 has high purity (CO < 10 ppm) and, thus, it
can be utilized in a large variety of applications (Automotive, chemical industry).
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3.5. Stability Test

To evaluate the feasibility of the process and the resistance of the Fe-based particles,
a test with six cycles is conducted. Each cycle includes the guaiacol adsorption, guaiacol
partial oxidation and Fe reduction and oxidation by water vapor. The results of the stability
tests in terms of process efficiency and hydrogen purity are reported in Figure 5.
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As already said, the efficiency of the first cycle is 35% and an increase in the efficiency
to 38% is registered. This phenomenon was expected since, after the first cycle, the Fe-based
particles in oxidation form are composed of Fe3O4 and, thus, a lower amount of reducing
gases is needed to reach metallic Fe. However, the efficiency is still low, meaning that the
reducing form of the particle is not Fe. The efficiency is stable for the six cycles, meaning
that the synthetized 60 wt% Fe2O3/40 wt% MgO particles possess good thermal stability.
The addition of MgO to Fe2O3 increases the resistance of Fe2O3 to high temperature [32].
However, after three cycles, CO begins to be produced, undermining the H2 purity, and
after the third cycle, the CO concentration overtakes the limit of 10 ppm if the H2 must be
used for fuel cell application, for example. This result suggests that in the Fe particle bed,
carbon is present and its amount tends to increase cycle after cycle.

To solve this issue and to guarantee the H2 purity, the six-cycle test is repeated but
after the third cycle, a diluted air flow (oxygen concentration 10%) is fed to the reactor in
order to burn all the carbon deposited. The regeneration step lasts 7 min, until the CO2
concentration falls to 0. The results are reported in Figure 6 and, as expected, the hydrogen
purity in this way is guaranteed. In this way, the CO concentration never exceeds 10 ppm.
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As can be seen from Table 4, the feasibility to remove tar from syngas by chemical
looping technologies was already demonstrated. However, the data reported highlight that
the use of a chemical looping hydrogen process can maximize the tar removal efficiency,
obtaining a separated pure H2 stream.

Table 4. Comparison of literature results and our work.

Process MeOx Tar Removal H2/CO Syngas Purity H2 REF

CLG Fe2O3 90% * - - [14]
CLR NiO 96% 2.2 - [33]
CLR Mn3O4-MgZrO3 56% 1 - [34]
CLG NiFe2O4 89% 0.78 - [35]

CLG + water splitting NiFe2O4 80% 2.21 50% [36]
CLH Fe2O3-MgO 98% * - 100% This work

*: Tar Model Compound.

4. Characterization of the Fe-Based Particles after the Three-Step Redox Cycles

XRD analyses are conducted on the synthetized Fe-based articles before and after
the three-step tests in order to better understand the behavior of the redox material in
the process. As discussed in Section 3.1, a strong interaction between Fe2O3 and MgO is
detected after calcination in air at 900 ◦C; magnesium oxide and iron oxide form a spinel
structure. Magnesium ferrite (MgFe2O4), which is one of the most important ferrites that
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finds a wide number of applications in heterogeneous catalysis, is observed in the sensor
sector and in magnetic technologies [37]. These interactions modify the redox system of the
Fe2O3 and MgO; in fact, looking at Figure 7, after reduction, iron is reduced in two different
structures. Part of the iron is present as magnetite and the other amount forms a mixed
oxide, named magnesiowustite (Mg0.6 Fe0.4)O with oxidation state equal to +2. However,
no iron signal is detected, confirming the incomplete reduction achieved in the three-step
redox cycle test. At the end of the test, the sample is composed of MgFe2O4 and MgO and,
therefore, it can be used in a subsequent cycle. The mean crystallite size calculated from
the Scherrer equation is 177.1 nm for the spinel phase and 403.1 nm for MgO.
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Looking at the SEM pictures reported in Figure 8, the high thermal stability of this
material is confirmed. It can be noted that the dimension of particles suffered a slight
increase in size; the crystallites in the sample are clearly visible also after the stability test,
meaning that any synthetization phenomenon can occur. This result confirms the positive
effect of MgO addition on the activity and stability of iron oxides in the steam iron process.
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5. Conclusions

In this work, an innovative syngas cleaning process was studied, demonstrating the
feasibility of using tar as a reductant agent for chemical looping hydrogen processes. The
aim is to remove tar from syngas, converting it into pure hydrogen. The proposed process
consists of three steps (tar adsorption, guaiacol partial oxidation/iron oxide reduction and
hydrogen production/iron oxidation) and to demonstrate the efficiency of each step, they
were first studied independently. The adsorption efficiency of the NiO/Al2O3 bed was 98%
when an amount of guaiacol equal to 2.731 mmol was fed. The partial oxidation of guaiacol
to produce the iron oxide reducing agents was successfully tested; from the analysis, the
iron oxides appeared to be partially reduced and an increase in the bed temperature of
100 ◦C was detected, favoring the reduction kinetics.

The efficiency of the process related to the hydrogen production after the first cycle
was 35% and the amount of CO less than 10 ppm. Stability tests with six cycles were
conducted, demonstrating that the synthetized material possesses a great resistance to
thermal stability. However, after two cycles, the amount of CO in the produced H2 stream
begins to increase due to the accumulation of unreacted carbon in the Fe particle bed. The
introduction of a combustion step in the process, aimed at cleaning the iron-based particles
from carbon, was successfully tested, obtaining a continuous production of pure H2.

The results reported in this study demonstrate that the chemical looping hydrogen
process can be a very interesting alternative to recover the energy contained in tar by using
it to produce pure hydrogen. In this way, the efficiency and the flexibility of the whole
gasification process can be considerably improved; in fact, with this configuration, it is
possible to produce clean syngas enriched with hydrogen but also two high-value separated
streams: syngas and pure hydrogen, exploitable in a great number of applications.
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