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Abstract: New theoretical relationships for a complex catalytic reaction accompanied by deactivation
are obtained, using as an example the two-step catalytic mechanism (Temkin–Boudart mechanism)
with irreversible reactions and irreversible deactivation. In the domain of small concentrations,
Alim = NS

k1CA
kd

, where Alim is the limit of the integral consumption of the gas substance, NS is the
number of active sites per unit of catalyst surface; k1 and kd, are kinetic coefficients which relate to
two reactions which compete for the free active site Z. CA is the gas concentration. One reaction
belongs to the catalytic cycle. The other reaction with kinetic coefficient kd is irreversible deactivation.
The catalyst lifetime, τcat =

1
C′Z

1
kd

, where C′Z is the dimensionless steady-state concentration of free
active sites. The main conclusion was formulated as follows: the catalyst lifetime can be enhanced by
decreasing the steady-state (quasi-steady-state) concentration of free active sites. In some domains of
parameters, it can also be achieved by increasing the steady-state (quasi-steady-state) reaction rate
of the fresh catalyst. We can express this conclusion as follows: under some conditions, an elevated
fresh catalyst activity protects the catalyst from deactivation. These theoretical results are illustrated
with the use of computer simulations.

Keywords: catalyst deactivation; catalytic cycle; integral consumption; catalyst lifetime

1. Introduction

Catalyst deactivation is a complex, non-steady-state process governed by a variety of
phenomena that are influenced by many physicochemical factors.

In the literature, different types of kinetic models of catalytic reactions with deacti-
vation were proposed, i.e., phenomenological models, detailed kinetic models, and semi-
phenomenological models.

1.1. Phenomenological Models

In phenomenological models of ‘gas-solid’ catalytic reactions, the main characteristic
of the catalytic process, the reaction rate (r), is presented as a function of the concentrations
of the reactants (C = C1, C2, . . .), the temperature (T), and catalyst activity (a),

r = f (C, T, a). (1)

The catalyst activity a is considered a function of the reaction conditions, here C and T,
and its change can be called ‘catalyst deactivation’.

The first kinetic phenomenological model was formulated by Szépe and Levenspiel [1].

r(t) = R0a(t) (2)
da
dt

= f (C, T)ad (3)
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where R0 is the reaction rate over the non-deactivated (‘fresh’) catalyst and d is an empiri-
cal parameter.

These models are called separable because the reaction kinetics and deactivation kinetics
are assumed to be separate, see papers by Corella et al. [2,3] as well.

Froment and Bischoff [4,5] introduced the activity parameter

Φ =
k
k0

(4)

(that is the ratio of the reaction rate constants of the deactivated k and of the ‘fresh’ catalyst
k0) and considered it as a function of coke concentration. They proposed three functions:

linear: Φ1 = 1− γCc, (5)

exponential: Φ2 = exp(−γCc), (6)

hyperbolic: Φ3 =
1

1 + γCc
. (7)

Later, these relationships were used in many studies to describe the coking and deacti-
vation of the catalysts in the processes of dehydrogenation, cracking, etc. In these processes,
the activity changes rapidly, Therefore, in this case the quasi-steady-state assumption does
not make the task easier.

Beeckman, Marin, and Froment [6,7] developed the probabilistic model of catalyst
coking that implies coke deposition on the active and coked surface.

In this model, the catalyst activity is the product of two probabilities:

a = PS, (8)

where S is the probability that an active site is not covered with coke; P is the probability
that an active site is not locked as a result of pore blockage.

In reactors with the moving and fluidized bed, the coke concentration measurement be-
comes as accessible as the reactant concentration measurement (i.e., conversion and activity
calculation). Therefore, it becomes important to express activity via coke concentration.

Such dependencies were derived by Ostrovskii based on the multilayer mechanism of
coke formations.
Two equations were obtained, corresponding to infinite coke formation and a finite number
of layers:

Cc

Cm
=(1− ϕ)(1− a)− ϕ ln a, (9)

Cc

Cm
=N − a− (N − 1)aϕ. (10)

where Cm is the monolayer coke concentration; ϕ is the ratio of rate constants of poly- and
monolayer coking; N is the number of coke layers.

1.2. Detailed Kinetic Models

In detailed models (micro-kinetic or mechanistic models), the model is based on the
mechanism, i.e., the set of steps that include reactants and products of the overall reactions
as well as catalytic intermediates.

A detailed kinetic model was presented in [8] with a description of two different
periods of irreversible deactivation. However, even presently, 50 years later, the number of
papers with detailed kinetic models of catalyst deactivation is limited, since the information
on the evolution of the surface composition is in short supply.
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1.3. Semi-Phenomenological Models

In the catalytic literature, many models have been presented combining phenomenol-
ogy with some mechanistic considerations of deactivation, e.g., power-law kinetic depen-
dencies and Langmuir–Hinshelwood–Hougen–Watson relationships based on the concept
of adsorption equilibrium, see Butt [9] and Bartholomew [10]. In our paper [11], such
models are called semi-phenomenological.

In 1989, Ostrovskii and Yablonskii [12] proposed the semi-phenomenological model of
single-route catalytic reactions assuming two types of catalyst deactivation, i.e., reversible
and irreversible (‘aging’). In deriving this model, the known principle of quasi-steady-state
(QSS) concentrations was used to obtain the concentration of the catalytic intermediate,
which deactivates during the process. This concentration was presented as a function of the
QSS reaction rate and other kinetic parameters. Later, Ostrovskii developed this approach
further in the monograph [13] and paper [14].

In our paper [11], the same approach was presented for the rigorous derivation of the
kinetic equation of the n-step single-route catalytic reaction accompanied by two processes
of catalytic deactivation, one reversible and the other irreversible. Here the term “reversible
deactivation” refers to the fact that the deactivation step includes two reactions, a forward,
and a reverse one.

This catalytic process was described by the three-building-block scheme (Figure 1).
There we considered a linear mechanism for the catalytic cycle, i.e., only one ‘molecule’ of
the catalytic intermediate, including the active center, participates in each reaction.

Figure 1. The three-building-block scheme approach to phenomenological modeling for a linear
catalytic reaction accompanied by linear catalyst deactivation. Block one is a n-step linear catalytic
reaction. Block two is a linear reversible catalyst deactivation. Block three is aging, i.e., linear
irreversible catalyst deactivation.

Applying the new, more convenient form of the rate equation for the single-route cat-
alytic reaction with the linear mechanism [15], resulted in the three-factor kinetic equation
of deactivation [11] for this complex process.

R(t) =N0
S Rfreshψr,dψi,d, (11)

ψr,d =
1 + αKdRfresh exp(−(1 + αKdRfresh)kr,dt)

1 + αKdRfresh︸ ︷︷ ︸
reversible deactivation factor

, (12)

ψi,d = exp
(
− αKdRfresh

1 + αKdRfresh
kit
)

︸ ︷︷ ︸
irreversible deactivation factor

, (13)

where N0
S is the initial number of active sites per unit of catalyst surface; Rfresh is the ‘fresh’

rate of the main catalyst cycle; αRfresh = C′Z,fresh is the ‘fresh’ concentration of free catalyst
active site Z and where α is a special parameter described in [11]; Kd is the equilibrium
constant of the reversible deactivation reaction; and ki is the rate constant of the irreversible
deactivation reaction.
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This deactivation equation with some simplifications will be used in this paper for
different purposes. As mentioned, the quasi-steady-state hypothesis (QSSH) was applied
as a tool for the derivation of this deactivation equation. The status of the QSSH in our
problems should be discussed in more detail.

This model is an advantageous simplification of the mechanistic model. It is based on
the idea of a cyclic catalytic mechanism, and its constituents are the concept of active sites
and assumptions on fast and slow parameters considering the quasi-steady-state principle.
In comparison with the recent all-component-model, e.g., Cordero-Lanzac et al. [16], and de-
tailed multi-step and multi-route models [17,18] see also Cordero-Lanzac’s dissertation,
the semi-phenomenological model used in this paper has obvious advantages:

1. the number of parameters is much smaller;
2. this model allows the derivation of interesting analytical results, as will be demon-

strated in this paper;
3. potentially, this simpler model can be useful for the design of catalytic reactors with

deactivation and optimization of industrial regimes.

One of the main ideas of chemical kinetics is a hierarchy, i.e., the time scale separation,
based on the large difference in magnitude of the parameters of the kinetic model. This
hierarchy determines a variety of different cases and regimes, e.g., quasi-equilibrium
(QE), quasi-steady-state (QSS), limiting step (LS), assumptions on most abundant reactive
intermediates (mari) or surface intermediates (masi), and, finally, lumping.

The quasi-steady-state (QSS) approximation is the central one among all these simpli-
fications. The QSS-principle regarding kinetic intermediates of a complex chemical reaction
is typically attributed to Bodenstein [19] and sometimes to Chapman [20,21] as well, see
the historical information [22,23].

It was based on the idea of fast intermediates, i.e., the kinetic parameters related to
some intermediates are much larger than the kinetic parameters related to stable molecules.

In the pioneering paper by Michaelis–Menten [24], two hierarchies were considered:

1. a large difference in kinetic parameters
2. a large difference between the total amounts of main reactants and the total amount

of intermediates. For the ‘gas-solid’ catalytic reaction, the latter corresponds to the
case when the total number of active catalytic centers is much smaller than the total
number of reactant and product molecules, see [22] (Chapter 3).

Gorban and Shahzad [25] theoretically revisited and generalized the Michaelis–Menten
approach. It was shown that, rigorously speaking, the Michaelis–Menten kinetics, as we
refer to it presently, should be attributed to Briggs and Haldane [26].

In accordance with the QSS method, the derivatives of the chemical intermediates
are replaced by ‘zeros’, and the corresponding differential equations transform to alge-
braic ones.

This ‘trick’ became an extremely popular tool in the theoretical study of complex
chemical reactions, both homogeneous and heterogeneous.

However, for a period of 50-plus years after the time of Bodenstein and Michaelis–
Menten, the mathematical status of the QSS method was very unclear, there was no
understanding of why the derivatives of ‘fast’ intermediates are replaced by zero. Only
starting from the 1950s, a rigorous mathematical concept for QSS was created based on the
theory of singularly perturbed ordinary differential equations (ODEs). This theory was
developed by Tikhonov and his colleagues [27–30], and the central point of this theory was
the concept of a so-called ‘small parameter’.

In 1955 Sayasov and Vasil’eva published the first pioneering paper [28] on the mathe-
matical status of the QSS using a radical gas chain reaction with fast intermediates as an
example. The small parameter was chosen as the ratio of kinetic parameters. A similar
point of view was expressed in 1963 by Bowen, Acrivos, and Oppenheim [31].

In 1963, Heineken, Tsuchiya, and Aris (HTA) published a paper [32] on the mathemat-
ical status of the QSS for the Michaelis–Menten two-step mechanism. The small parameter
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used by HTA was the ratio of two numbers, the number of enzyme active sites and the
number of substrate molecules. A similar small parameter, i.e., the ratio of the total amount
of surface intermediates, mole, to the total amount of reacting components, mole, was used
in monographs [22,23] for obtaining general results in catalytic kinetics (see also the early
monograph [33]).

The general methodology in studying hierarchical kinetics, see “Asymptotology” by
Gorban et al., [34–36] as well.

2. Goal of the Paper: General Problems and Specific Problems of This Paper

The goal of this paper is to present the integral characteristic A (mol cm−2
cat ) of complex

‘gas-solid’ catalytic reactions accompanied by deactivation, i.e.,

A =
∫ τ

0
R(t) dt, (14)

where R(t) is the consumption rate of the gas reactant, or the rate of release of the gas
product. It will be presented for some regimes as an analytical expression and will be
illustrated using computational results.
Our goal will also be to estimate the catalyst lifetime by relating the value of A to the value
of the quasi-steady-state (QSS) rate of the ‘fresh’ (non-deactivated) catalyst.

Our model of a complex catalytic reaction accompanied by deactivation includes two
small parameters

1. the small parameter which is caused by the difference between the number of catalyst
active sites and the number of gaseous molecules (“the first small parameter”)

2. the small parameter caused by the difference between the deactivation parameters
and kinetic coefficients of the main catalytic cycle (“the second small parameter”)

In this paper, we are going to start the systematic application of our three-factor
kinetic equation proposed in [11] to different problems of catalytic kinetics. The program
of our studies will include different cases and scenarios. It is reasonable to expect that the
results of our studies will depend on the type of the kinetic device and its kinetic model,
on the analyzed chemical mechanisms and corresponding models, and the conditions of
the process reversibility, i.e., whether deactivation is reversible or irreversible, whether the
chemical catalytic cycle is reversible or irreversible etc.

Generally, we are planning to analyze the following cases:

1. Kinetic models of the batch reactor (BR) and continuously stirred tank reactor (CSTR).
2. Kinetic models of typical heterogeneous catalytic mechanisms:

(a) The n-step single-route complex catalytic reaction with a linear mechanism.
(b) The two-step catalytic mechanism (Temkin–Boudart mechanism) as a basic

mechanism of theoretical chemical kinetics of heterogeneous catalysis [37–39].

3. Models with reversible and irreversible steps in the catalytic cycle.
4. Models with reversible and irreversible deactivation process.

In this paper, we will study the kinetic behavior of a batch reactor in which catalytic
reactions are accompanied by deactivation. As an example the simplest two-step catalytic
mechanism (Temkin–Boudart mechanism) is chosen with irreversible deactivation. It is the
simplest mechanism of the ones mentioned above.

Different scenarios of the transient interplay between the main cycle relaxation and
deactivation dynamics will be described, and different temporal and parametric domains
will be distinguished:

1. The initial non-steady-state kinetic regime caused by the intrinsic catalytic cycle.
2. The quasi-steady-state regime regarding the catalytic intermediates with insignificant

deactivation (’no deactivation’ regime). This regime is caused by the difference
between the number of catalyst active sites and the number of gaseous molecules
(“the first small parameter”).
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3. The quasi-steady-state regime regarding the intermediates in which the deactivation
process is significant. Within this domain, the total number of active sites is decreased,
and the quasi-steady-state regime becomes more pronounced.

Under concrete values of parameters, some domains can be negligible. Different
questions will be answered:

1. In which domain will the catalyst composition be nearly constant, i.e., despite the
change in the number of active sites the relative concentrations of catalytic intermedi-
ates are remaining approximately the same?

2. How to analyze the long-term behavior of the catalytic system with deactivation
based on its integral characteristic?

3. What is the best strategy for the increase of catalytic efficiency based on the kinetic
description?

3. Theoretical Analysis

Our strategy is to first analyze the full model, i.e., the two-step irreversible catalytic
cycle with irreversible deactivation, and then to analyze the three reduced models, two of
which have “no” deactivation and are known in the literature, i.e.,

• Only the main catalytic cycle model; the non-steady-state case.
• Only the main catalytic cycle model; the quasi-steady-state case.

In our opinion, it is necessary to study these models to build a strong foundation and
systematic framework on which to continue the analysis of more complex cases related
to deactivation. We expect these simple models can be used as asymptotics for the more
complex ones. This content will also help us to understand the final results for both the
mathematical and chemical engineering communities.

3.1. The Full Model of the Two-Step Irreversible Catalytic Cycle with Irreversible Deactivation

We use the two-step catalytic mechanism of an isomerization reaction with irre-
versible steps,

A + Z
k1 AZ

and AZ
k2 B + Z

accompanied by a (possible) deactivation step,

Z
kd X.

The rate equations corresponding to these reactions are,

r1 =k1CACZ, (15)

r2 =k2CAZ, (16)

and rd =kdCZ, (17)

where r1, r2 and rd are rate equations in mol cm−2
cat s−1; k1 is a reaction rate constant in

cm3
gas mol−1 s−1; k2 and kd are reaction rate constants in s−1; CA is the concentration of gas

reactant A in mol cm−3
gas; and CZ and CAZ are concentrations of active catalyst sites, also

referred to as catalyst intermediates, in mol cm−2
cat .

The kinetic equations for the gas reactant and product are,

dCA
dt

=− Scat

Vgas
r1,

=− Scat

Vgas
k1CA(NS − CAZ), (18)

CB =NV − CA −
Scat

Vgas
CAZ, (19)
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where CB is the concentration of the gas product and Scat
Vgas

is a factor consisting of ratio of

the catalyst surface area Scat (cm2
cat) to the gas volume (cm3

gas). Equation (19) is derived
from the law of mass conservation for element A where NV is the total concentration of gas
(mol cm−3

gas).
The kinetic equations for the catalytic intermediates are,

dCAZ
dt

=r1 − r2,

=k1CA(NS − CAZ)− k2CAZ, (20)
dNS
dt

=− rd,

=kd(NS − CAZ), (21)

CZ =NS − CAZ, (22)

where NS is the total concentration of active catalyst sites in mol cm−2
cat . Equation (22) is

derived from the law of mass conservation for the catalyst sites.
Equations (18)–(22) represent the dimensional system of equations for the full model.

There are three differential equations, two non-linear (18), (20) and one linear (21), and two
linear algebraic Equations (19) and (22).

In our analysis, we wish to differentiate between slow and fast behavior. To do this,
we must first identify a small parameter. In some cases, one small parameter is enough.
However, we will highlight two different small parameters for this specific work.

The first small parameter, ε1, is defined as the ratio of the number of catalyst sites
to the number of gas molecules. At time zero, the number of catalyst sites is equal to the
number of active catalyst sites. If there is deactivation, this equality will not hold anymore.
This is why we use the initial (‘fresh’) number of active sites in our definition.

Small Parameter 1. The ratio of the total number of ‘fresh’ active sites to the total number of gas
molecules,

ε1 =
ScatN0

S
VgasNV

.

The parameters Scat, Vgas, N0
S and NV are the catalyst surface (cm2

cat), gas volume (cm3
gas), the ‘fresh’

concentration of active sites, i.e., the concentration of active sites (mol cm−2
cat ) at time zero, N0

S =
NS(0) and the total concentration of gas (mol cm−3

gas), respectively.

The second small parameter, ε2, is defined as the ratio of the deactivation parameter
to a kinetic rate coefficient of the main catalytic cycle. The deactivation rate constant kd
is assumed to be much smaller than the rate constants of the catalytic cycle k1NV and k2,
i.e., kd � k1NV , k2. Our second small parameter can be interpreted as a dimensionless
deactivation rate constant. We achieve this by either scaling with respect to k1NV or k2. We
chose k1NV here because the term reappears in several of the system equations.

Small Parameter 2. The dimensionless deactivation rate constant,

ε2 =
kd

k1NV
.

The parameters kd, k1 and NV are the deactivation rate constant (s−1), the reaction rate constant of
reaction 1 (cm3

gas mol−1 s−1) and the total concentration of gas (mol cm−3
gas), respectively.
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Implementing the small parameter into the kinetic equations for the reactant, product,
and catalytic intermediates, we rewrite the equations for the full system (18)–(22). It now
includes the two small parameters, ε1 and ε2,

dCA
dt

=− ε1
k1NV

N0
S

CA(NS − CAZ), (23)

CB =NV − CA − ε1
NV

N0
S

CAZ, (24)

dCAZ
dt

=k1CA(NS − CAZ)− k2CAZ, (25)

dNS
dt

=ε2k1NV(NS − CAZ), (26)

CZ =NS − CAZ. (27)

Mathematically, there is a benefit to working with dimensionless variables and pa-
rameters, as this can simplify the equations significantly. We therefore introduce the

dimensionless concentrations C′i = Ci
NV

with i = A, B, C′j =
Cj

N0
S

with j = Z, AZ and

N′S = NS
N0

S
.

Physically, there is a benefit to working with real dimensional variables and parame-
ters, as this helps in physical interpretation. In this case, we use dimensional time.

The set of equations for the system of dimensionless concentrations is given by,

dC′A
dt

=− ε1k1NVC′A(N′S − C′AZ), (28)

C′B =1− C′A − ε1C′AZ, (29)

dC′AZ
dt

=k1NVC′A(N′S − C′AZ)− k2C′AZ, (30)

dN′S
dt

=− ε2k1NV(N′S − C′AZ) (31)

C′Z =N′S − C′AZ. (32)

We will continue to study this set of Equations (28)–(32). This mathematical model
of the whole process is a non-linear system containing three differential equations for the
dimensionless concentrations, of the gas reactant A (28), of the intermediate AZ of the
catalytic cycle (30) and the active catalytic sites (31). The model further contains two linear
algebraic equations for the dimensionless concentrations of the gas product B (29) and of
the other intermediate of the catalytic cycle Z (32).

3.2. The Initial Non-Steady-State Domain; Gas Concentration Is Abundant, and Deactivation
Is Negligible

Above we have introduced the full system of equations that will be studied further.
We will first start with the implication of the two small parameters. If the small parameters
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are close to zero, i.e., ε1, ε2 ≈ 0 (or in the case of no deactivation ε1 ≈ 0 and ε2 = 0), then
for small t we find that Equations (28) and (31) are approximately zero.

dC′AZ
dt

=k1NVC′A(N′S − C′AZ)− k2C′AZ, (33)

dN′S
dt

=0, (34)

C′Z =N′S − C′AZ, (35)

dC′A
dt

=0, (36)

C′B =1− C′A. (37)

If the change in active sites is approximately zero, this means there is almost no
deactivation. On a certain domain where t is small we may claim there to be no deactivation.
For the change in gas reactant A to be small, it has to be small compared to its absolute
value. The change in A is insignificant because it is in abundance.

In this domain, for the full model, the changes in both substances (reactant A and
active sites N) happen so slowly they cannot be observed, and thus are deemed insignificant.
The fast behavior is dominating the slow one. Resulting in the following exact solution for
the approximate model in the fast domain,

N′S(t) =N′S(0) = 1, (38)

C′A(t) =C′A(0) = 1, (39)

C′B(t) =C′B(0) = 0, (40)

C′AZ(t) =
k1NV

k1NV + k2
(1− exp(−(k1NV + k2)t), (41)

C′Z(t) =
k2

k1NV + k2
+

k1NV
k1NV + k2

exp(−(k1NV + k2)t). (42)

C′AZ
C′Z

=
k1NV − k1NV exp(−(k1NV + k2)t)

k2 + k1NV exp(−(k1NV + k2)t)
(43)

The fast domain, also referred to as the non-steady-state (NSS) domain, is the time
frame in which the above solutions are good estimates for the exact solutions. It is governed
by the main catalytic cycle with “no” deactivation and under the assumption that the gas
concentration is abundant.

3.3. The Quasi-Steady-State Domain; Deactivation Is Absent

When we go outside the fast or non-steady-state (NSS) domain, the same assumptions
don’t hold as in the previous section. Here we need to differentiate whether deactivation is
truly absent or not. We first look at the case where deactivation is absent, i.e., ε2 = 0.

In this slow domain, we introduce the new time τ = ε1t. The main result of introducing
the time τ with small parameter ε1 is the following equations for the catalytic intermediates,

ε1
dC′AZ

dτ
=k1NV

(
C′A(N′S − C′AZ)−

k2

k1NV
C′AZ

)
, (44)

C′Z =N′S − C′AZ. (45)

Since ε1 ≈ 0, we can replace Equation (44) with the algebraic equation,

k1NV

(
C′A(N′S − C′AZ)−

k2

k1NV
C′AZ

)
= 0. (46)
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This is our quasi-steady-state (QSS) assumption, and we identify this domain as the
QSS domain. The QSS intermediate concentrations are calculated as,

C′AZ =
k1NVC′A

k1NVC′A + k2
N′S, (47)

C′Z =
k2

k1NVC′A + k2
N′S. (48)

If we substitute the values of C′A and N′S with their respective ‘fresh’ values C′A, f resh =

C′A(0) and N′S, f resh = N′S(0) these solutions are equivalent to the steady-state (SS) values of
Equation (41) and Equation (42) respectively.

At the beginning of the QSS domain, the concentration CA is changing insignificantly
and the relative ratio composition of the active catalyst sites,

C′AZ
C′Z

=
k1NVC′A

k2
, (49)

appears constant. However, as time increases the change in CA will increase, and thus the
ratio will not remain constant. As we will see in later sections this is not the case when
deactivation is present.

3.3.1. Introduction to the Lambert W function

To recap, in the absence of deactivation, we have the following set of equations for the
dimensionless concentrations,

ε1
dC′AZ

dτ
=k1NVC′A(N′S − C′AZ)− k2C′AZ, (50)

C′Z =N′S − C′AZ, (51)

dC′A
dτ

=− k1NVC′A(N′S − C′AZ), (52)

C′B =1− C′A − ε1C′AZ. (53)

There are two nonlinear differential equations, (50) and (52), and two linear algebraic
equations, (51) and (53). Making use of the small parameter and the quasi-steady-state
(QSS) assumption, see Equations (46)–(48), this set of equations reduce to one nonlinear
differential equation, (56), and three algebraic equations, (54), (55) and (57).

C′AZ =
k1NVC′A

k1NVC′A + k2
N′S, (54)

C′Z =
k2

k1NVC′A + k2
N′S, (55)

dC′A
dτ

=−
k1k2NVC′A

k1NVC′A + k2
N′S, (56)

C′B =1− C′A − ε1
k1NVC′A

k1NVC′A + k2
N′S. (57)

This specific set of equations is well-known in the literature. However, to our knowledge,
an exact analytical expression for the concentration of A has yet to be presented.

To this end, we would like to introduce the Lambert W function [40], which calculates
the converse (inverse) relation of the function

f (w) = wew,
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with w ∈ C.
We now have a way to express the solution of ordinary differential Equation (56),

C′A(τ) = exp
(
−LambertW

(
1
η

exp
(
− 1

η
(k2N′St− 1)

))
− 1

η
(k2N′St− 1)

)
, (58)

η =
k2

k1NV
. (59)

Remember because there is no deactivation NS will be constant and N′S = 1 for all
time. By extension of the above equation we now also have analytical expressions for the
remaining concentrations,

C′AZ(τ) =
k1NVC′A(τ)

k1NVC′A(τ) + k2
(60)

C′Z(τ) =
k2

k1NVC′A(τ) + k2
(61)

C′B(τ) =1− CA(τ)

(
1− ε1

k1NV
k1NVC′A(τ) + k2

)
(62)

R(τ) = k2CAZ = k2C′AZ NS = NS
k1k2NVC′A(τ)

k1NVC′A(τ) + k2
(63)

Using Equation (58), one can obtain the expression for half decay time, τ1/2, which
is traditional in chemical kinetics. It is the time during which half of the reactant is
transformed into the product.

As known, for the first order reaction A k B,

τ1/2 =
ln(2)

k

where k is the kinetic rate coefficient of the reaction. For our two-step mechanism (Temkin–
Boudart mechanism), based on Equation (58),

τ1/2 =
ln(2)
k1NV

+
1

2k2
(64)

Clearly, the half decay time is decreased with the rise of both kinetic coefficients k1NV and
k2. If k2 is much bigger then k1NV ,

τ1/2 =
ln(2)
k1NV

, (65)

it is identical to the expression for the first-order reaction. In contrast, if k1NV is much
bigger than k2 then,

τ1/2 =
1

2k2
. (66)

If k1NV = k2 = k,

τ1/2 =
1/2 + ln(2)

k
≈ 1.19

k
. (67)

This expression can be used as a rough estimate of the parameter.
Based on Equation (64) it is possible to recognize the deviation of the Temkin–Boudart

non-steady-state kinetic dependence from the first-order (linear) one.
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3.4. The Quasi-Steady-State Domain of the Cyclic Reaction Accompanied by Deactivation

In this domain, applying the quasi-steady-state assumption, the kinetic model is
given by:

C′AZ =
k1NVC′A

k1NVC′A + k2
N′S, (68)

C′Z =
k2

k1NVC′A + k2
N′S, (69)

dN′S
dτ

=− ε2

ε1

k1k2NV
k1NVC′A + k2

N′S, (70)

dC′A
dτ

=−
k1k2NVC′A

k1NVC′A + k2
N′S, (71)

C′B =1− C′A − ε1
k1NVC′A

k1NVC′A + k2
N′S. (72)

This system of equations consists out of two nonlinear differential equations, (70) and (71),
and three algebraic equations, (68), (69) and (72).

We can rewrite the two differential equations above into one nonlinear differential
equation,

dN′S
dC′A

=
ε2

ε1C′A
. (73)

The analytical solution to Equation (73) is found to be

N′S(C
′
A) =

ε2

ε1
ln(C′A). (74)

This equation, while correct, does not give much information about the progression of the
dimensionless concentration of active sites N′S. The three-factor kinetic equation, (11) as it
is presented in [11], can be adapted for models without reversible deactivation by setting
ϕr,d = 1 and Kd = 1 (Appendix A describes the conditions under which we may use the
three-factor rate equation). This results in the following rate equation for this domain,

R(τ) =k2CAZ = k2C′AZ N0
S ,

≈N0
S Rfresh ϕi,d,

=
k1k2NVC′A, f resh

k1NVC′A, f resh + k2
N0

S exp

(
− ε2

ε1

k1k2NV
k1NVC′A, f resh + k2

τ

)
. (75)

First, we simplify the terms inside the exponential as follows,

C′Z,fresh =
k2

k1NVCA, f resh + k2
, (76)

ε2 =
kd

k1NV
, (77)

R(τ) =
k1k2NVC′A, f resh

k1NVC′A, f resh + k2
N0

S exp
(
− kd

ε1
C′Z,freshτ

)
. (78)
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Now we shift our time out of the “slow” time τ domain to the “fast” time t one, which
results in the final expression for the rate equation,

τ =ε1t, (79)

R(t) =
k1k2NVC′A, f resh

k1NVC′A, f resh + k2
N0

S exp
(
−kdC′Z,fresht

)
. (80)

Obviously, kdC′Z,fresh is the rate of deactivation for the fresh catalyst. Therefore, the phe-
nomenological equation can be written as,

R(t) = Rfreshe−Rdt, (81)

where Rd = kdC′Z,fresh is the rate of deactivation of the fresh catalyst.

3.5. Integral Consumption

The integral consumption of the reactant which we are going to obtain and analyze is
expressed as,

A(t) =
∫ t

0
R(x) dx,

A(t) =N0
S

k1NVC′A(t)
kd

(
1− exp

(
−kdC′Z,fresht

))
. (82)

Experimentally, in the quasi-steady-state domain the dependence of A(t) can be
measured by the change of concentrations in time of reactant A (∆CA) or product B (∆CB)
multiplied by the factor ( Vgas

Scat
). In our case, where the change in the reactant concentration

is insignificant, the product concentrations are more convenient for calculating the values
of A(t).

There are two extreme cases for the integral consumption equation:

1. The limit of the integral consumption as time goes to infinity, t→ ∞,

Alim = N0
S

k1NVC′A
kd

. (83)

We find the limit of integral consumption is equal to the product of the number of
active sites for the fresh catalyst multiplied by the ratio of the kinetic coefficients of
the two reactions competing for the free active site Z. One reaction belongs to the
catalytic cycle,

A + Z
k1 AZ.

The other reaction belongs to the irreversible deactivation step,

Z
kd X.

2. The Taylor approximation for A(t) at small values of kdt. If the term kdt is very small,
i.e., kdt� 1, the Taylor approximation of A(t) will be

A(t) =N0
S

k1NVC′A
kd

(1− (1− kdC′Z,fresht)) +O(kdt),

≈Rfresht. (84)
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3.6. Combining the Integral Consumption and the Quasi-Steady-State Equation Rate

Comparing the equations for the limit of the integral consumption (83) and the equa-
tion for the quasi-steady-state rate, we obtain

Alim
Rfresh

=
1

C′Z,fresh

1
kd

. (85)

This ratio Alim
Rfresh

can be interpreted as the catalyst lifetime for the catalytic reaction with
deactivation,

τcat =
Alim

Rfresh
. (86)

If k1NVC′A � k2 then

τcat ≈
k1NVC′A

k2

1
kd

.

If k1NVC′A � k2 then

τcat ≈
1
kd

.

4. Computations

Figure 2 shows the evolution of the concentration of free active sites which first
dramatically decreases, then exhibits a plateau, and finally decreases gradually to zero.

Figure 2. Concentration of Z.

Interestingly, this whole model is characterized by a temporal turning point. Left of
this turning point, the whole model can easily be approximated by the NSS no-deactivation
model. Regarding this point, the QSS model with deactivation (not without) is an excellent
approximation of the whole model.

This turning point corresponds to the ‘fresh’ catalyst, which is characterized by the
QSS surface composition.

Under the values of our parameters, the concentration of reactants changes insignifi-
cantly in all temporal intervals (the case of small conversion). The concentration of product
B is presented in Figure 3.
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Figure 3. Concentration of B.

In our case, the non-steady-state (NSS) domain with deactivation is characterized by
the insignificant contribution of reactant A. Furthermore, the effect of deactivation on the
concentration of the intermediate is insignificant as well in this domain. The NSS with the
no-deactivation domain is indistinguishable from the domain with deactivation.

As for the QSS domain, the main catalytic cycle is accompanied by deactivation from
the very beginning of this domain.

Figures 4 and 5 illustrate the main theoretical result of our paper: that if we increase
the rate coefficient k1, this will result in a decrease of the QSS concentration of free active
sites CZ. Consequently, the integral consumption of reactant A and its limit Alim will
increase, where Alim’s increase will be proportional to the increase in the rate coefficient k1.
Hence, the lifetime of the catalyst τcat will increase as well.

Figure 4. Concentration CZ for different k1.
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Figure 5. Integral consumption for different k1.

5. Interpretation and Discussion

The concept of the integral reactant consumption for the catalytic cyclic reaction
accompanied by deactivation became the basis for deriving the corresponding analytical ex-
pressions.

These expressions, i.e., the integral reactant assumption and catalyst lifetime as a
function of reaction parameters, are important for formulating a new general strategy in
the optimization of these reactions or processes.

Equations (83) and (86) propose the following recipe for intensifying the catalytic
process and extending the catalyst life. The concentration of free active sites (so to say, the
deactivated catalytic intermediate) must be kept as low as possible.

It can be achieved by increasing the reactant concentration CA which reacts with the
intermediate Z (free active site). In our case, this is reactant A.

It has arisen a reasonable question: “What about the justification of this recommendation?”
In the monograph “Homogeneous Catalysis with Metal Complexes: Kinetic Aspects

and Mechanisms” by O.N. Temkin and P.P. Pozdeev [41], there is a special section devoted to
this problem “5.3.5. Protecting active centers by catalytic process from destruction” pp. 492–
493. The pioneering paper by Kagan et al. [42] was referred. The observed phenomenon
is described as follows: in the reaction of hydroformylation of olefines catalyzed by Rh
complexes, the high rate of transformation of the active complex, [HRh(CO3)], leads to the
decrease in the steady-state concentration of this complex. As result, the deactivation of
this complex by the cluster generation is hindered. So, we can consider this publication
as an experimental justification of the phenomenon, i.e., an enhancement of the catalyst
lifetime by the decrease of the steady-state concentration of the free active sites. However,
the theoretical analysis related to this phenomenon was still not done, and its corresponding
relationships are absent.

6. Conclusions and Perspectives

In this paper, for the basic catalytic two-step mechanism (Temkin–Boudart mechanism)
with irreversible reactions and irreversible deactivation, two analytical results have been
obtained, i.e., the expression for the integral consumption of the gas substance and the
expression for the catalyst lifetime. These results became a basis for distinguishing the
new phenomenon, the enhancement of the catalytic reaction with deactivation via the
regime with the small steady-state concentration of free active sites. In some domain of
parameters, it can be achieved by increasing the steady-state (quasi-steady-state) reaction
rate of the fresh catalyst. We can express this conclusion as follows: under some conditions,
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the elevated fresh catalyst activity protects the catalyst from deactivation. These analytical
results are illustrated by computer calculations.

We consider these results as prototypes of analogous results for similar models men-
tioned in the introduction of this paper, i.e., two-step mechanism and n-step single route
linear mechanism with reversible steps, models with reversible deactivation, and models
of reactions in the CSTR. For some of these models, we already have preliminary results
and are going to develop them more applying this approach to the description of the
experimental kinetic data with catalyst deactivation.

On the other side, the idea of “protecting active centers from deactivation by catalytic
process” can be used heuristically for the intensification of the catalytic process.
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Appendix A. Epsilon Analysis

In this section we give a mathematical implications of having small parameters ε.
For this analysis we stick to the quasi-steady state domain of the system.

As derived in Section 3.4, the set of equations that hold in this domain look as follows,

C′AZ =
k1NVC′A

k1NVC′A + k2
N′S, (A1)

C′Z =
k2

k1NVC′A + k2
N′S, (A2)

dN′S
dτ

=− ε2

ε1

k1k2NV
k1NVC′A + k2

N′S, (A3)

dC′A
dτ

=−
k1k2NVC′A

k1NVC′A + k2
N′S, (A4)

C′B =1− C′A − ε1
k1NVC′A

k1NVC′A + k2
N′S. (A5)

Note that if there is no deactivation Equation (A3) will be equal to zero, and we find the
equations as presented in Section 3.3.1.

We have separated our analysis of the small parameters into two cases:

1. Only one small parameter is present, i.e., ε1 > 0 and ε2 = 0. As a result there is no
deactivation and NS(t) = N0

S or equivalently N′S(t) = 1.
2. Two small parameters are present, i.e., ε1, ε2 > 0.

(a) ε1 � ε2
(b) ε1 � ε2
(c) ε1 ≈ ε2
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Case 1 is worked out in detail in Section 3.3.1. Case 2 makes use of the hierarchy of
small parameters.

Appendix A.1. Case 2a: Two Small Parameters and ε1 � ε2

In the following case, the hierarchy of small parameters is ε1 � ε2. As such the factor
ε2
ε1

in Equation (A3) is approximately zero.

dN′S
dτ
≈ 0 (A6)

Replacing Equation (A3) with (A6) will result in a set of equations equivalent to those
presented in Section 3.3.1.

We see that the solutions presented in Section 3.3.1 are a good approximation for this
case. But only for a limited time.

As C′A becomes zero the effect of deactivation becomes prevelent again.
The two reactions

A + Z AZ,
Z X,

will no longer be in competition when C′A ≈ 0.

Appendix A.2. Case 2b: There Are Two Small Parameters ε1 � ε2

In the following case, the hierarchy of small parameters is ε1 � ε2. As such the factor
ε2
ε1

in Equation (A3) is going to infinity.
To combat this, we introduce the following time scaling,

C′AZ =
k1NVC′A

k1NVC′A + k2
N′S, (A7)

C′Z =
k2

k1NVC′A + k2
N′S, (A8)

dN′S
dτε

=− k1k2NV
k1NVC′A + k2

N′S, (A9)

dC′A
dτε

=− ε1

ε2

k1k2NVC′A
k1NVC′A + k2

N′S, (A10)

C′B =1− C′A − ε1
k1NVC′A

k1NVC′A + k2
N′S. (A11)

where τε =
ε2
ε1

τ = ε2t. Now ε1
ε2

is approximately zero and by extension dC′A
dτε
≈ 0.

We solve the system,

C′AZ =
k1NVC′A

k1NVC′A + k2
N′S, (A12)

C′Z =
k2

k1NVC′A + k2
N′S, (A13)

dN′S
dτε

=− k1k2NV
k1NVC′A + k2

N′S, (A14)

dC′A
dτε

=0, (A15)

C′B =1− C′A − ε1
k1NVC′A

k1NVC′A + k2
N′S, (A16)
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analytically and find,

CA =C′A(0) = C′A, f resh, (A17)

N′S(τ) = exp

(
− ε2

ε1

k1k2NV
k1NVC′A, f resh + k2

τ

)
, (A18)

CAZ(τ) =
k1NVC′A, f resh

k1NVC′A, f resh + k2
exp

(
− ε2

ε1

k1k2NV
k1NVC′A, f resh + k2

τ

)
, (A19)

CZ(τ) =
k2

k1NVC′A, f resh + k2
exp

(
− ε2

ε1

k1k2NV
k1NVC′A, f resh + k2

τ

)
, (A20)

CB(τ) =1− C′A, f resh − ε1
k1NVC′A, f resh

k1NVC′A, f resh + k2
exp

(
− ε2

ε1

k1k2NV
k1NVC′A, f resh + k2

τ

)
. (A21)

If we determine the rate equation for this system,

R(τ) =k2CAZ = k2C′AZ N0
S ,

=
k1k2NVC′A, f resh

k1NVC′A, f resh + k2
N0

S exp

(
− ε2

ε1

k1k2NV
k1NVC′A, f resh + k2

τ

)
. (A22)

This rate equation coincides with the three-factor rate Equation (11) presented in [11],
specifically for the case where there is no reversible deactivation.

Appendix A.3. Case 2c: There Are Two Small Parameters ε1 ≈ ε2

In this case the system of equations are given by,

C′AZ =
k1NVC′A

k1NVC′A + k2
N′S, (A23)

C′Z =
k2

k1NVC′A + k2
N′S, (A24)

dN′S
dτ

=− ε2

ε1

k1k2NV
k1NVC′A + k2

N′S, (A25)

dC′A
dτ

=−
k1k2NVC′A

k1NVC′A + k2
N′S, (A26)

C′B =1− C′A − ε1
k1NVC′A

k1NVC′A + k2
N′S. (A27)

Because there is no clear hierarchy in the small parameters we are not able to set one of the
derivatives to zero. Instead we introduce the new differential equation,

dN′S
dC′A

=
ε2

ε1C′A
. (A28)

The analytical solution to this equation is found to be

N′S(C
′
A) =

ε2

ε1
ln(C′A). (A29)

For this case, to find the time dependency we must refer back to numerical techniques.
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