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Abstract: Iron-based catalysts are widely used in water treatment and environmental remediation
due to their abundant content in nature and their ability to activate persulfate at room temperature.
Here, eggshell biochar-loaded natural iron slag (IO@ESBC) was successfully synthesized to remove
tetracycline hydrochloride (TCH) by activated persulfate. The morphology, structure and chemical
composition of IO@ESBC were systematically characterized. The IO@ESBC/PS process showed good
performance for TCH removal. The decomposition rate constant (k) for IO@ESBC was 0.011 min−1

and the degradation rate was 3690 mmol/g/h in this system. With the increase of PS concentration
and IO@ESBC content, the removal rate of TCH both increased. The IO@ESBC/PS process can
effectively remove TCH at pH 3–9. There are different effects on TCH removal for the reason
that the addition of water matrix species (humic acid, Cl−, HCO3

−, NO3
− and HPO4

2−). The
IO@ESBC/PS system for degrading TCH was mainly controlled by both the free radical pathway
(SO4

•−, •OH and O2
•−) and non-free radical pathway (1O2). The loading of ESBC slows down the

agglomeration between iron particles, and more active sites are exposed. The removal rate of TCH
was still above 75% after five cycles of IO@ESBC. This interesting investigation has provided a green
route for synthesis of composite driving from waste resources, expanding its further application for
environmental remediations.

Keywords: iron ore; eggshell biochar; tetracycline hydrochloride; persulfate-based advanced oxidation

1. Introduction

Tetracycline hydrochloride (TCH) belongs to the tetracycline class of antibiotics. It
is widely used to treat infections in poultry, cattle, pigs, sheep and aquatic products [1].
For the large number of poultry on commercial farms, antibiotics are added directly to
water, feed and aerosols [2]. However, part of the antibiotics is absorbed by animals, and
the other part enters the environment through animal excrement. Different concentrations
of antibiotics are released into municipal water, medical wastewater, and wastewater
from livestock farms [3,4]. In particular, TCH is highly stable and cannot be removed by
simple treatment, so it is of great significance to remove tetracycline hydrochloride from
water [5]. There are some methods to remove pollutants from the aqueous solutions, such
as adsorption [6] and coagulation [7], which could separate pollutants from water but could
not remove pollutants completely [8]. Moreover, membrane technologies [9], filtration [10],
and sedimentation [11] have high costs and low efficiency [12]. Therefore, it was necessary
to explore effective treatment methods to remove these organic pollutants from wastewater.
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Sulfate radical-based advanced oxidation processes (SR-AOPs) have been widely used
because the highly reactive species produced could remove refractory pollutants present
in water [13]. Reactive species include sulfate radical (SO4

•−) [14], hydroxyl radicals
(•OH) [2,7], and reactive oxygen (O2

•−) [15], as well as by the generation of non-radical
singlet oxygen (1O2) [16]. SR-AOPs has the advantages of low energy consumption, a high
efficiency and simple operation [17]. Today, a host of catalysts have been used and devel-
oped in SR-AOPs and exhibited good potential. Activated persulfates by transition metal
are commonly used, for example iron [18], cobalt [19], manganese [20] and copper [21],
among which iron is the most popular because of easy access, low costly and no secondary
pollution [22]. Researchers often prepared catalysts with specific features or functions to
improve the performance of catalysts by introduced some macromolecular compounds
or substances rich in functional groups in the process. Therefore, the preparation process
is complicated, and the cost is high. Directly using waste materials to prepare catalysts
not only has low cost and simple operation, but also does not cause secondary pollution
to the environment. Herein, we have directly explored a natural iron ore residue (IO)
from a mining company in the city of Pingdingshan, Henan Province, China, aiming to
efficiently degrade organic pollutants by activating PS in the water. However, due to its
own magnetic properties, iron-based catalysts often undergo agglomeration [23]. There-
fore, in order to suppress agglomeration, the researchers combined the iron material with
another substance.

In recent years, the composites which consist of iron-based catalysts and carbon have
often been used in SR-AOPs. The rich pore structure in carbon materials enhance the
mass transport of organic pollutant molecules in the pores and channels [24], the chance
of contact between pollutants and metal active sites is increased, so the removal rate
of pollutants is improved [25]. There have two ways to combine iron-based catalysts
and carbon, one was to derive carbon from the metal organic framework using a one-step
carbonization method; such as researches used MIL-88A-derived to a magnetic iron/carbon
nanorod, which successfully decolorized Rhodamine B by activated PS [26]. Others include
Fe-MIL-NM2 derived Fe/Fe3C@NC [27], MOF MIL-53(Fe)-driven Fe@porous carbon [28],
Fe (Hbidc)-driven Fe@Cs [29]. Another way to do it is to combine the iron-based catalysts
with pre-prepared carbon materials to form composites. For example, the researchers
prepared composite activated persulfates by loading FeCo2S4 onto g-C3N4 to degrade
sulfamethoxazole [30], sawdust biochar and FeS formed FeS@BC composites to remove
TC by activated PS [31]. Table S1 show some statistical results of current research about
Fe–Carbon composites for pollutants removal with SR-AOPs.

Therefore, iron ore (IO) enriched in iron active sites were found, but visible aggrega-
tion limited its application, and a pore structure was required to inhibit its aggregation.
Biochar was a kind of multifunctional material with large specific surface area, abundant
pore structure, abundant oxygen-containing functional groups and good acid and alkali
resistance [32]. The majority of the carbon materials used have either been derived from
metal–organic frameworks or materials such as graphene, sludge biochar and carbon
nanofibers. There were no studies using eggshell biochar (ESBC). In theory, it was feasible
to load IO onto ESBC to form composite materials activated PS to remove pollutants.

In this work, a composite material IO@ESBC was formed by loading natural iron slag
onto eggshell biochar. The prepared materials were characterized by different characteriza-
tion methods and applied to TCH removal. The reaction conditions were optimized and
the effects of common substrates in water on the IO@ESBC/PS/TCH system were explored.
The possible TCH removal pathways and existing mechanisms were explored by radical
quenching experiments and EPR detection, too. This study may have important technical
implications on TCH removal and material innovation.
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2. Results and Discussion
2.1. Characterization of the Green Synthesized IO@ESBC

In order to explore the structural characteristics of IO@ESBC, the properties of IO,
ESBC and IO@ESBC were analyzed by SEM, VSM, BET, XRD and Raman.

The aggregation between iron ore particles can be observed in Figure 1a. The apparent
irregular pore structure on the ESBC surface could be observed in Figure 1b. The surface of
IO@ESBC could be cleared to see IO particles interspersed in the pores of ESBC (Figure 1c),
which increased the spacing between IO particles and inhibiting the agglomeration be-
tween particles. To prove that the addition of ESBC could inhibit IO aggregation, room
temperature magnetization vs. field curves of IO and IO@ESBC detected by magnetic
properties were exhibited in Supplementary Materials Figure S1. Notably, two samples
showed typical S-type. It was also showed that the saturation magnetization (Ms), coer-
civity (Hc), remanence (Mr) value for two samples. When the IO loaded to the ESBC, the
values of Ms and Mr became smaller and the value of Hc became larger. This was because
the introduction of ESBC has increased the anisotropy of IO@ESBC [33]. The changes of
these three values indicated that the addition of ESBC reduces the magnetism between IO
particles and prevents the IO agglomeration.
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Figure 1d shows the N2 adsorption-desorption isotherms of the ESBC, IO and IO@ESBC.
The samples belonged to IV isotherms. The hysteresis ring in N2 adsorption desorption
curve of ESBC belonged to H3 type, indicated that the pores on ESBC surface were slit
holes formed by the accumulation of lamellar particles, which could be confirmed by
Figure 1b. The hysteresis ring in N2 adsorption desorption curve of IO moved forward
when ESBC were introduced into IO, which indicated that porosity decreased significantly.
The decrease of BET specific surface and total pore volume could also explain this. It further
confirmed that IO successfully loaded onto the ESBC surface.

The crystallographic structures of ESBC, IO and IO@ESBC were characterized by
XRD (Figure 1e). Remarkably, the XRD pattern of samples exhibited obvious diffraction
peaks, indicated that the crystalline structures were better. The peak from 20◦ indicated
amorphous structure and incomplete graphitization in ESBC. The peaks were consistent
with the crystal planes of Fe3O4 (JCPDS 88-0866), α-Fe2O3 (JCPDS 87-1165) and γ-Fe2O3
(JCPDS 39-1346) in IO. As was shown in Figure 1e, the characteristic peaks of IO and
ESBC could be observed in the XRD patterns of IO@ESBC, which indicated that IO were
successfully loaded onto ESBC.

Figure 1f shows the Raman spectrum of ESBC, IO and IO@ESBC. There were two
peaks in the Raman spectrum, where the D band represents disordered carbon at 1380 cm−1
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and the G band corresponds to graphitic carbon at 1591 cm−1 [34]. Compared with the
IO@ESBC and ESBC, the intensity of D band and G band were smaller. It suggested that
the ESBC was overwritten by IO and the IO were successfully loaded onto the ESBC. The
ID/IG values of ESBC, IO and IO@ESBC were 0.82, 1.40 and 1.59. These values indicated
that the degree of graphitization of ESBC was large, which could also be seen from the
Figure 1b. However, the degree of defects of IO and IO@ESBC were larger, which could
enhance the electron transfer between catalysts and PS [35,36], so the catalytic performance
of the IO@ESBC was improved. The figure showed at 218.9, 292.2, 614.3 cm−1 that were
characteristic peaks of α-Fe2O3 [37]. At 408.3 and 660.2 cm−1, which were attributable to
Fe3O4, and at 507.3 cm−1 that were assigned to γ-Fe2O3 [38]. The intensity of these peaks
in IO@ESBC material were not significant, probably because of the IO loading in the pore
structure of carbon.

The role of ESBC were analyzed in the following aspects. (1) The addition of ESBC
inhibited IO agglomeration, increased the active site of catalyst, and improved the catalytic
performance. (2) In the radical degradation process, ESBC as an electron transport agent
caused PS decomposition to be accelerated. Since the iron active site rapidly transfers
electrons to PS through special channels in ESBC, which resulted in the reactive radicals
can be produced quickly. (3) In the 1O2 degradation process, the introduction of ESBC
increased the defects on the catalyst surface, which accelerated the electron transport
between IO@ESBC and TCH, leading to the decomposition of TCH.

2.2. Catalytic Performance of IO@ESBC

TCH was hardly removed when PS was added alone, while there was a significant
removal of TCH after the continued addition of IO or IO@ESBC (Figure 2a). It indi-
cates that PS alone cannot remove pollutants and requires the addition of catalysts. In
IO/PS/TCH system, the removal rate of 58.94% for TCH was due to the presence of
Fe(II) and Fe(III) on the surface of IO. Fe(II) and Fe(III) could activate PS to produce SO4

−

(Equations (1) and (2)), which could effectively remove pollutants [39]. Furthermore, the
iron ions (0.5% of iron ore) would be leached from the solid phase catalysts to the solution.
Thus, the experiment for contribution of released iron species on TCH removal in PS solu-
tion was conducted and shown in Figure 2a, confirming the contribution of leached iron on
TCH degradation should be negligible. Nonetheless, the magnetic properties of IO made
it easy to agglomerate, resulting in a reduction of active sites. The removal rate of 68.64%
for TCH in ESBC/PS/TCH system, which because there were defective structures with
abundant functional groups on the surface of ESBC [40]. However, ESBC were not good for
recycling. The removal rate was 82.08% for TCH when IO@ESBC were added in PS/TCH
system. Obviously, TCH removal rate increased by 23.14%. This indicated that IO@ESBC
formed when IO were loaded onto ESBC had more active sites than IO, and the magnetic
properties of IO were more conducive to recycling. In order to explore whether TCH
removal was the result of adsorption of IO@ESBC or the activation of PS by IO@ESBC, the
adsorption effect diagram of IO@ESBC on TCH was made (Figure 2b). The results showed
that the residual amount of TCH remained at about 70.00% in 2 h as the dose of IO@ESBC
increased. This indicated that the removal of TCH was mainly attributed to the activation
of PS by the IO@ESBC. In addition, the XRD (Supplementary Materials Figure S2) and
Raman (Supplementary Materials Figure S3) patterns of IO@ESBC after the reaction could
be confirmed. In the XRD image of IO@ESBC after the reaction, it was obvious from
the figure that the peak intensity of Fe3O4 weakened, while the peak intensity of Fe2O3
increased slightly. It indicated that there was a conversion of Fe3O4 to Fe2O3 during the
reaction. In the Raman pattern of IO@ESBC after the reaction, the peak intensity decreases
at positions 408.3 cm−1 and 660.2 cm−1 and becomes larger at other positions. It indicates
that the Fe3O4 in the material was activated by PS and produced different levels of α-Fe2O3
and γ-Fe2O3.

Fe(II) + S2O2−
8 → Fe(III) + SO•−4 + SO2−

4 (1)

Fe(III) + S2O2−
8 → Fe(II) + S2O•−8 (2)
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2.3. Possible Mechanism of IO@ESBC System for TCH Removal

In order to investigate the pathway in the IO@ESBC/PS/TCH system, radical quench-
ing experiment and EPR detection (Figure 3) were performed, respectively. TBA scavenging
•OH (k•OH,TBA = (3.8–7.6 × 108) M−1s−1, kSO4

− ,TBA = (4.0–9.1 × 105) M−1s−1) [41], and
MeOH scavenging SO4

− and •OH (k•OH,MeOH = 9.7 × 108 M−1s−1, kSO4
− ,MeOH = 3.2 ×

106 M−1s−1) [42] were added to the system respectively. It can be seen from Figure 3a that
the addition of TBA with different concentrations in the IO@ESBC/PS/TCH system had no
effect on the removal of TCH. When MeOH were added, there was an inhibition effect on
the removal of TCH compared with the addition of TBA, which indicated the eliminate of
SO4

− causes the inhibition of TCH removal. The signals of DMPO-SO4
− and DMPO-OH

were also detected in EPR (Figure 3c). The appearance of DMPO-SO4
− [43] was consistent

with the results of quenching experiments. IO provided metal ions, involving Fe(II)-Fe(III)-
Fe(II) redox cycle participate in the catalytic oxidation reaction and the PS could activated
by iron ions to generate SO4

− (Equations (1) and (2)) [44]. Quenching experiments showed
that there was no •OH in IO@ESBC/PS/TCH system, but the DMPO-OH [45] were also
detected in the EPR. This was because PS was decomposed to produce SO4

− in the first
stage, and SO4

− combines with H2O to produce •OH (Equation (10)) [46]. In addition to
the presence of SO4

− and •OH, it was also examined whether another free radical O2
−

plays a role in the reaction. PBQ were added to the IO@ESBC/PS/TCH system to quench
O2
− (kO2

−
,PBQ = 0.9–1.0 × 109 M−1s−1) [47]. The presence of PBQ significantly inhibited

the removal of TCH, and the higher the concentration of PBQ, the less TCH was removed
(Figure 3a), which means that O2

− played a dominant role in the system. The typical
quadruple peaks of DMPO-O2

− were showed in Figure 3c, which indicated the production
of O2

− in IO@ESBC/PS/TCH system. Since the existence of oxygen vacancies has been
proved in the XPS, it could be inferred that the formation of O2

− was mainly the electrons
given by oxygen vacancies, which was consistent with the XPS O1s analysis of IO@ESBC.

O2
− was unstable and it will continue to react to form 1O2 [48], so adding histidine

to quench 1O2 (k1O2,histidine = 8.2 × 109 M−1s−1) in the syetem [49]. The removal of TCH
received a hindrance in IO@ESBC/PS/TCH/histidine system (Figure 3b). Furthermore,
the EPR spectra showed the intense triplet peaks of TEMP-1O2 in Figure 3d. The 1O2 was
generated in the system which because O2

− readily continues to react to form 1O2 in an
acidic environment (Equation (3)) [50]. To sum up, it could be concluded that there were
two pathways that were found in this reaction by a combination of free radical quenching
experiment and EPR detection. One was a free radical pathway where the major free
radicals were SO4

•−, •OH and O2
−; the other non-radical path was made up of 1O2.
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As a result, the TCH removal process in IO@ESBC/PS/TCH system was depicted
in Figure 4. Notably, it can be seen that the removal rate of TCH by iron released from
the catalyst is only about 1% in Figure 2a, so the contribution of leached iron ions to TCH
removal is negligible. Hence, the whole reaction takes place on the surface of the catalyst.
Firstly, the TCH were enriched in the surface of IO@ESBC by specific recognition and
the adsorption of ESBC. The PS reached the active sites (Fe) (Equations (1) and (2)) [51],
then Fe(II) captured electrons from PS which resulted in O–O bond disconnect and SO4

•−

and Fe(III) generation (Equation (1)). The Fe(III) would react with PS to generate Fe(II)
(Equations (2) and (8)). Thus, a cycle of iron between the Fe(II) and Fe(III) would be
formed and continued, aiming to increase the quantity of SO4

•− in an aqueous solution.
Immediately, the SO4

•− would also react with H2O to generate •OH radicals in the reaction
system. The oxygen vacancy on the surface of IO@ESBC reacted with PS to form O2

−

(Equation (7)), and then 1O2 produced by the recombination of O2
− (Equation (3)). The

formed reactive free radicals and 1O2 were efficiently contacted and oxidized TCH on the
surface of IO@ESBC (Equation (4)).
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The mineralization rate (TOC) for TCH in IO@ESBC/PS/TCH system within 120 min
was determined as 44.3% (Supplementary Materials Figure S6), confirming that the TCH
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could not be completely mineralized. And some by-products were generated in
IO@ESBC/PS/TCH system.

O•−2 + 2H+ → 1O2 + H2O2 (3)

SO•−4 + O•−2 + 1O2 + TCH → products (4)

2.4. Effect of Different Conditions on TCH Removal

The actual effluent will change in pH due to environmental changes. Therefore, it
was of great necessity to explore the feasibility of this reaction system in different pH
environments (Figure 5a). It was clear that the removal rate of TCH in acidic environment
was higher than that in alkaline and neutral environment. In general, the main free
radicals were different in different acid-base environments [52]. Between pH 2 and 7, the
major radicals were SO4

•− [53]; between pH 7 and 10, the major radicals were SO4
•−

and •OH [54]. The reason for the higher removal of TCH in an acidic environment was
the decomposition of PS and the rapid hydrolysis. Researchers thought that the acidic
environment not only facilitated the decomposition of PS, but also enhanced the acid
catalysis [55]. Furthermore, O2

•− was produced in the presence of dissolved oxygen, but
O2
•− will continued to react to form 1O2 in the acid environment (Equations (5)–(9)) [56].

Hence the presence of SO4
•−, O2

•−and 1O2 allowed an increased removal of TCH in an
acidic environment. In contrast, the removal rate decreases when SO4

•− and •OH exist
simultaneously in alkaline environment. This can be explained by the following reasons.
On the one hand, •OH will be the dominant free radical because SO4

•− could be quenched
by •OH in an alkaline environment (Equations (11) and (12)) [57]. However, •OH reacted
pollutants though hydrogen abstraction reaction, which it was slower than the reaction of SO4

•−

and pollutants by electron transfer [58]. On the other hand, the metal precipitates could be
generated in an alkaline environment [59], which leads to a reduction in the active sites.

S2O2−
8 + H+ → HS2O−8 (5)

HS2O−8 → SO2−
4 + H+ + SO•−4 (6)

2O−V + S2O2−
8 → O•−2 + SO•−4 + SO2−

4 (7)

Fe(III) + O•−2 → Fe(II) + O2 (8)

S2O2−
8 + H2O→ 2HSO−4 +

1
2

O2 (9)

In addition, the pH after the reaction tended to decrease during the reaction process
(Supplementary Materials Figure S4). Moreover, they were close to original pH that it was
not adjusted with H2SO4 or NaOH in the IO@ESBC/PS/TCH system. It has already been
reported that the H+ were released by the reaction of SO4

•− with H2O (Equation (10)) and
OH− were consumed by the reaction with SO4

•− (Equation (11)). Furthermore, H+ had
other sources. It was the reaction of SO4

•− and •OH, S2O8
2− and H2O all produced HSO4

−,
which decomposed to produce H+ (Equations (12) and (13)) [60]. This decomposition
will occur more easily in an alkaline environment, so the pH of the reaction solution
decreases even at a high pH. Therefore, it was not necessary to adjust the pH for the
IO@ESBC/PS/TCH system that could effectively in the practical application.

SO•−4 + H2O→ SO2−
4 + •OH + H+ (10)

SO•−4 + OH− → SO2−
4 + •OH (11)

SO•−4 + •OH → HSO−4 +
1
2

O2 (12)

HSO−4 → SO2−
4 + H+ (13)
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Figure 5. (a) The influence of pH (ranging from 3 to 11) on TCH removal efficiency; (b) Effect of
IO@ESBC dosage (ranging from 0.50 g/L to 1.50 g/L) on TCH removal efficiency; (c) Effect of PS
dosage (ranging from 4 mM to 12 mM) on TCH removal efficiency; (d) Effect of the original TCH
concentration (ranging from 30 mg/L to 70 mg/L) on TCH removal efficiency.

Figure 5b showed the removal efficiency of TCH with the different IO@ESBC dosage.
The residual TCH was 85.25% when the absence of IO@ESBC and the remaining amount
of TCH was significantly reduced after adding IO@ESBC. The removal rate of TCH was
increased (57.83%, 81.64%, 81.68%, 82.08%, 81.39%) with the increase of IO@ESBC content
(0.50 g/L, 0.75 g/L, 1.00 g/L, 1.25 g/L, 1.50 g/L). This was because the amount of IO@ESBC
determined the active site of Fe(II) in the reaction process [61], and the more active site
of Fe(II) were more favorable to the removal of TCH to some extent. However, when the
content of IO@ESBC exceeded 1.25 g/L, the removal rate of TCH was found to decrease.
There were two reasons. One was that in this reaction system, not only the catalyst content
will affect the removal of TCH, but also the amounts of PS [62]. Therefore, when the
dosage of PS was consumed, the removal rate of TCH will not increase even if the catalyst
dosage was increased. Secondly, the excess catalyst will react with SO4

•− and •OH, which
increased the consumption of additional PS and catalyst (Equations (14) and (15)) [18], thus
inhibiting the further removal of TCH. Considering the utilization efficiency, 1.25 g/L was
selected as the IO@ESBC dosage in the following experiment.

•OH + Fe(II)→ OH− + Fe(III) (14)

SO•−4 + Fe(II)→ SO2−
4 + Fe(III) (15)

The PS dosage was an important factor for the removal of TCH in the IO@ESBC/PS/TCH
system because it was the source of SO4

•−. In Figure 5c, when PS was not added, the
removal rate of TCH was 30.61% within 2 h. Overall, the removal rate of TCH also increased
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with the increase of PS dosage, but when the PS dosage exceeded 6 mM, the removal rate
of TCH basically remained the same (82.02%, 82.08%, 82.22%) with the increase of PS
dose (8 mM, 10 mM, 12 mM). When the catalyst dosage was constant, PS was activated
by the catalyst to produce reactive radicals for TCH removal, so the removal rate of TCH
will increase with the increase of PS dosage. Nevertheless, excess PS will react with
SO4

•− (Equation (16)) [63], and the quenching reaction between SO4
•− and SO4

•− will
occur (Equation (17)) [64], thus reducing the active site and further removal of TCH was
inhibited. Thus, the PS dosage of 10 mM was considered as the most optimal dosage in the
IO@ESBC/PS/TCH system.

SO•−4 + S2O2−
8 → SO2−

4 + S2O•−8 (16)

SO•−4 + SO•−4 → 2SO2−
4 (17)

The influence of original TCH concentration on TCH removal in IO@ESNC/PS/TCH
system was investigated as described in Figure 5d. It could be seen from the graph that
the removal rates of TCH were all around 80.00% at TCH concentrations ranging from
30 mg/L to 70 mg/L. This indicated that the system has good stability.

Common anions and natural organic matter in wastewater will compete for free
radicals with pollutants [65]. They will affect the catalytic process and the pollutants
removal process [66]. Hence, it was no wonder that explore the effect of various anions
(Cl−, HCO3

−, NO3
− and HPO4

2−) (Figure 6) and fulvic acid in the IO@ESBC/PS/TCH
system (Supplementary Materials Figure S5).
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(a) Cl−; (b) HCO3

−; (c) NO3
−; (d) HPO4

2−. Experimental conditions: IO@ESBC dosage of 1.25 g/L,
the original PS concentration of 10 mmol/L, TCH dosage of 50 mg/L, initial pH, and temperature of
25 ◦C.

In this work, it could be seen from Figure 6 that the presence of Cl− and HCO3
− did

not show an inhibitory effect on the removal of TCH. Normally, the two anions mentioned
above had an inhibitory effect on the removal of pollutants. This is because the form of
reactive chlorine species (Cl•) by the reaction of Cl− and SO4

•− (Equation (18)) [67] and
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the form of ClOH•− by the reaction of Cl− and •OH (Equation (19)) [68], which could
hardly remove pollutants [25]. On the- side, the HCO3

− could competitively react with
•OH and SO4

•− to generated CO3
•− (Equations (20)–(23)), which had a low redox potential

(1.63 V) [69]. These were reactions between anions and •OH and SO4
•− in the reaction

system, resulting in inhibition of pollutant removal. However, in IO@ESBC/PS/TCH
system, there had not only •OH and SO4

•− but also had O2
•− and non-free radical paths,

so the existence of Cl− and HCO3
− had no influence on TCH removal. Compared with the

Cl− and HCO3
−, NO3

− had a little boost to the removal of TCH. Although NO3
− could also

react with free radicals, their reaction rate was low (Equations (24) and (25)) [70], and a small
amount of NO3

• could be produced to further remove TCH [71]. Contrary to the above
phenomenon, the higher the concentration of HPO4

−, the more difficult it was to remove
TCH. Since the phosphate radicals were generated by the reaction •OH, SO4

•− and HPO4
2−,

which had a lower oxidation potential than •OH, SO4
•− (Equations (26) and (27)) [72]. This

result was consistent with previous reports that phenol was removed with active substances
dominated by •OH, SO4

•− and 1O2. The removal rate of phenol decreased by 55% even
though the concentration of HPO4

2− was very low [73].
As a representative of natural organic matter, fulvic acid was used to explore the

influence of natural organic matter in the IO@ESBC/PS/TCH system (Supplementary
Materials Figure S5). Surprisingly, the removal of TCH had no effect even though the
concentration of fulvic acid was high, because of the presence of the active substance (•OH,
SO4

•−, O2
•− and 1O2) in the reaction system. These active substances may counteract the

competition between fulvic acid and TC for reactive substances [21].

Cl− + SO•−4 → Cl• + SO2−
4 k = 2.1 × 1010 M−1s−1 (18)

Cl− + •OH → [ClOH]•− k = 6.1 × 109 M−1s−1 (19)

CO2−
3 + SO•−4 → CO•−3 + SO2−

4 k = 6.1 × 106 M−1s−1 (20)

•OH + CO2−
3 → CO•−3 + OH− k = 3.9 × 108 M−1s−1 (21)

SO•−4 + HCO−3 → SO2−
4 + CO•−3 + H+ k = 2.8 × 106 M−1s−1 (22)

•OH + HCO−3 → CO•−3 + H2O k = 8.5 × 106 M−1s−1 (23)

NO−3 + SO•−4 → SO2−
4 + NO•3 k = 5.5 × 105 M−1s−1 (24)

NO−3 + •OH → OH− + NO•3 k < 5.5 × 105 M−1s−1 (25)

HPO2−
4 + •OH → OH− + HPO•−4 k = 1.5 × 105 M−1s−1 (26)

HPO2−
4 + SO•−4 → SO2−

4 + HPO•−4 k = 1.2 × 106 M−1s−1 (27)

2.5. Reusability of IO@ESBC

For heterogeneous catalysts, both catalytic performance and reusability were im-
portant [74]. XPS analysis and repeated experiments were performed to evaluate the
performance of IO@ESBC in removing TCH. The Fe2p, C1s and O1s peaks clearly appeared
in XPS survey spectra of samples (Figure 7a). The Fe 2p XPS of samples were shown in
Figure 7b. The Fe 2p3/2 peak for Fe(II) and Fe(III) emerged at 710.07 and 711.57 eV [75],
respectively. Fe 2p1/2 peak for Fe(II) and Fe(III) emerged at 723.55 and 725.31 eV [76],
respectively. In addition, the satellite peak positions were 718.95 and 732.65 eV [77]. The
presence of α-Fe2O3, γ-Fe2O3 and Fe3O4 were confirmed by the presence of these peaks.
The O 1s XPS of samples were fitted by two species (Figure 7c). It showed the spectra of
O 1s that peak at 529.84 eV was assigned to Fe-O of Fe2O3 and Fe3O4 [78]. Moreover, the
peak at 531.59 eV was typical of oxygen vacancies on the catalyst surface [79].
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Figure 7d showed the spectra of C 1s that peaks at 284.86 and 289.13 eV were corre-
sponded to the C–C bond from sp2-hybridized graphitic carbon and the carbon in C=O
bond [80]. The C–C bond from sp2-hybridized graphitic carbon were the main groups
for all biochar samples [81]. Obviously, the XPS diagram of IO@ESBC hardly changed
before and after the reaction, indicating that the catalytic reaction did not cause the change
of the catalyst structure. Further, IO@ESBC had good stability. As can be seen from Fig-
ure 7e, after IO@ESBC was reused five times, the system still maintained a high removal
rate for TCH. With the increase of reaction times, the removal rate of TCH was 82.08%,
78.91%, 78.12%, 77.31%, 76.39%. The reactivity of IO@ESBC slightly decreased, which was
because of the inevitable loss of catalysts during the reaction process and the increase of
intermediates adsorbed on the catalysts surface during the reaction process. In order to
explore the wider application of the reaction system, TCH was dissolved in river water,
tap water and ultra-pure water respectively to simulate different water quality (Figure 7f).
The results showed that different water quality had no effect on TCH removal, so this
IO@ESBC/PS/TCH system had great potential in practical application.

3. Materials and Methods
3.1. Materials

The IO used in this study was taken from the ferromagnetic phase of a mining company
in Pingdingshan City, Henan Province, China. Eggshells were taken from a bakery in Henan
University of Urban Construction, Pingdingshan City, Henan Province, China. The TCH
was purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China).
The reagents including PS (Na2S2O8, 98%), hydrochloric acid (HCl,36%), methanol (MeOH,
99.5%), tert-butanol (TBA, 99.5%), P-benzoquinone (PBQ, 99%), 5, 5-dimethyl-1-pyrrolidine-
N-oxide (DMPO, 97%), 2,2,6,6-tetramethylpiperidone (TEMP, 99%), histidine, sodium
hydroxide (NaOH, 98%), fulvic acid, sodium chloride (NaCl, 99.5%), sodium bicarbonate
(NaHCO3, ≥99.5%), sodium nitrate (NaNO3, 99%), dipotassium hydrogen phosphate
(K2HPO4, 98%), and sulfuric acid (H2SO4, 98%) were all purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). All the reagents used in this experiment
were of analytical grade without further treatment.
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3.2. IO@ESBC Synthesis

Iron ore sample (50 g) was passed through a 200-mesh sieve, aiming at the particles
under the sieve. The obtained particles after sieving were added into 1000 mL ultrapure
water, then stirred by JJ-1 precision booster electric stirrer at speed of 300 rpm. The ultrapure
water in the stirring would be replaced many times until the supernatant was transparent.
The iron ore sample after washing was filtered and dried at 105 ◦C for 12 h, then named IO.

The ESBC used in this study was obtained via slow pyrolysis of eggshells powder.
Fistly, 100 g of eggshells are washed 5 times with tap water and ultra-pure water, then dried
in a Desktop blast drying oven at 80 ◦C for 24 h. The washed eggshells are broken with a
crusher, sifted through under a 200-mesh sieve. Next, the sample was calcined in a tube
furnace with nitrogen flow at 150 mL/min. The pyrolysis temperature was 800 ◦C with
10 ◦C/min of the heating rate for 1 h. Then, the gained sample was dealt with HCl (2 M)
until no bubbles were generated to entirely remove the calcium-containing component.
The products were washed with ultra-pure water for five times and dried at 80 ◦C for 24 h
and placed in a sealed bag.

A total of 10 g of ESBC was added to 750 mL of distilled water and stirred continuously
using a JJ-1 precision booster electric stirrer (Electric mixer, MYP2011-100, Shanghai Mei
Yingpu instrument and Meter Manufacturing Co., Ltd., Shanghai, China) to obtain a
homogeneous suspension. Then, 50 g of IO was added and stirred for 1 h. The solid
materials were filtered and rinsed with distilled water to remove the unloaded iron and
other residues. Then, the solid catalyst was dried at 105 ◦C for 1 h and calcined at 600 ◦C
for 1 h. The obtained sample was named IO@ESBC.

3.3. Characterization

The changes in morphologies of the samples were observed by the environmental
scanning electron microscope (SEM, FEI QuANTA 200, USA). The crystal phases compo-
sition of the IO, IO@ESBC before and after reaction were measured by the D8 Advance
X-ray diffractometer (XRD, Bruker, Karlsruhe, Germany) at 2θ ranging from 10◦ to 80◦.
The Raman spectroscopy (in Via confocal Raman, Renishaw Co., UK) were employed to
examine the composition of the IO, IO@ESBC before and after reaction. The specific surface
area and the pore size of the samples were determined by a Micromeritics TriStar II 3020
Version 3.02 analyze based on the Brunauer–Emmett–Teller (BET, Micromeritics Co., USA)
method. The X-ray Photoelectron Spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher Sci-
entific, Rockford, IL, USA) of the before and after reaction of IO@ESBC were measured by a
Perkin Elmer PHI 6000C ECSA system to analyze their surface composition and elemental
valence state. The free radicals (including •OH, SO4

− and O2
•−.) and no-radical (1O2)

generated in the removal process were determined by the electron spin resonance (ESR,
JES-FA200, JEOL Co., Japan) spectroscopy with a dose of 100 mM DMPO and 50 µM TEMP
as spin-trapping agents (Supplementary Materials Text S1). The magnetic properties of the
IO and IO@ESBC were analyzed by a physical property measurement system (Quantum
Design, USA).

3.4. Catalytic Activity Tests of IO@ESBC

The catalytic performance of IO@ESBC was investigated in the PS containing aqueous
solution by the removal rate of TCH. For the batch experiment, a certain amount of iron
ore sample was added into 250 mL conical flask containing 150 mL of TCH (50 mg·L−1)
solution, followed by adding a certain dosage of PS into the mixing slurry. Then, the conical
flasks containing mixing slurry were placed on a thermostatic shaker with a rotary speed
of 240 rpm at a constant temperature of 25 ◦C. Every 10 min, 1 mL of reaction solution
was quickly withdrawn from the slurry, then filtered by membrane (0.22 µm) to obtain
the filtrate. Afterwards, the concentration of TCH in the filtrate was measured by UV-VIS
(U7s, YOKE INSTRUMENT, Shanghai, China). The removal rate of TCH was calculated
according to (Ct − C0)/C0. Nevertheless, the reaction pH was adjusted by 0.1M H2SO4
and 0.1 M NaOH solutions when exploring the effect of initial pH. Other experiments used
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the initial pH of the reaction solution. Different quenching agents (MeOH, TBA, PBQ and
histidine) were added into the reaction system of IO@ESBC/PS/TCH in the experiment to
explore the free radical species.

In order to investigate the effect of the organic and inorganic anions present in the
water on the reaction system, different concentrations of humic acid, NaCl, NaHCO3,
NaNO3, and K2HPO4 were added to the system. The IO@ESBC sample was recycled,
washed repeatedly by the deionized water, and finally dried at 105 ◦C in a blast drying
oven. The catalyst would be reused for five times to investigate its stability and recycling
performance. In order to investigate the use of catalysts in a real environment, water
samples were taken from laboratory tap water and Shahe, Pingdingshan City, Henan
Province, respectively. All experiments were repeated three times.

4. Conclusions

Much of the current research requires the synthesis of catalysts using chemicals. In
this study, a novel material was synthesized by combining IO with ESBC, which both came
from real life and did not require the use of chemicals. It was used for the removal of TCH
by activating PS. The addition of ESBC not only effectively alleviates the aggregation of IO
and increases the number of active sites, but also effectively adsorbs TCH and increases the
chance of contact between active free radical and TCH, and finally improving the removal
rate of TCH. Free radical quenching and EPR detection showed that there were not only
free radical paths (•OH, SO4

•− and O2
•−) but also non−free radical paths (1O2) in the

reaction system. The removal rate of TCH was 82.08% in 2 h with the optimized conditions
of 1.25 g/L IO@ESBC, 10 mM PS, 30 mg/L TCH, initial pH. In addition, fulvic acid, Cl−,
HCO3

− and NO3
− often presented in water and water quality had no influence on the

reaction system, but the presence of HPO4
2− had a significant inhibitory effect on TCH

removal. The reusability of catalyst was also investigated and the removal rate of TCH was
not affected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12111345/s1, Figure S1: Magnetic hysteresis loop of IO and
IO@ESBC, Figure S2: The XRD pattern of IO@ESBC after reaction, Figure S3: The Raman spectra
of IO@ESBC after reaction, Figure S4: The pH change record of the aqueous solution at various
original pH, Figure S5: Effect of the fulvic acid (ranging from 0 mg/L to 15 mg/L) on TCH removal
efficiency, Figure S6: TOC removal in IO@ESBC/PS/TCH system, Figure S7: Reaction rate curve
of IO@ESBC/PS/TCH system; Table S1: Application of iron-carbon composites in water treatment;
Text S1: Detection of reactive free radicals in EPR. References [26,28,29,31,82–89] are cited in the
supplementary materials
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