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Abstract: Emission of harmful gases, nitrogen oxides (NOx), and dioxins pose a serious threat to the
human environment; so, it is urgent to control NOx and dioxin emissions. The new regulations for
municipal solid waste incineration emissions set new stringent requirements for NOx and dioxin
emission standards. Most of the existing pollutant control technologies focus on single-unit NOx

reduction or dioxin degradation. However, the installation of separate NOx and dioxins removal
units is space-consuming and costs a lot. Nowadays, the simultaneous elimination of NOx and
dioxins in the same facility has been regarded as a promising technology. Due to the extremely
high toxicity of dioxins, the less toxic chlorobenzene, which has the basic structure of dioxins, has
been commonly used as a model molecule for dioxins in the laboratory. In this review, the catalysts
used for nitrogen oxides/chlorobenzene (NOx/CB) co-removal were classified into two types: firstly,
non-loaded and loaded transition metal catalysts, and their catalytic properties were summarized
and outlined. Then, the interaction of the NH3-SCR reaction and chlorobenzene catalytic oxidation
(CBCO) on the catalyst surface was discussed in detail. Finally, the causes of catalyst deactivation
were analyzed and summarized. Hopefully, this review may provide a reference for the design and
commercial application of NOx/CB synergistic removal catalysts.

Keywords: nitrogen oxides; dioxins; chlorobenzenes; synergistic removal; interaction

1. Introduction

In the process of urbanization, the accumulation of solid waste has posed a serious
threat to the ecological environment. The methods to deal with solid waste mainly include
sanitary landfill [1], waste incineration [2], and high-temperature composting [3]. Among
them, waste incineration technology has become the mainstream direction of municipal
solid waste treatment due to its advantages such as obvious volume reduction of solid
waste, strong destruction of organic toxicity, and recycling of incineration heat energy [4,5].
However, waste incineration exhaust gas contains secondary pollutants such as nitrogen
oxides (NOx), sulfur dioxide, carbon monoxide, hydrogen chloride, heavy metals, and
dioxins [6,7], and their hazards should not be underestimated. In particular, NOx and
dioxin emissions have caused widespread concern. NOx (mainly including NO and NO2)
is one of the main causes of acid rain, photochemical smog, ozone depletion, and eutroph-
ication [8–10]. Dioxins are a generic term for polychlorinated biphenyldioxins (PCDDs)
and polychlorinated biphenyldioxins and furans (PCDFs). Dioxins are extremely toxic,
chemically stable, metabolize extremely slowly after entering the human body, and have
been recognized as carcinogens [11,12]. In order to protect the environment and safeguard
human health, countries have put forward higher requirements for NOx and dioxin emis-
sion standards in the new regulations on exhaust gas emissions. Among them, China
has revised the emission standards for tail gas pollutants from waste incineration plants,
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tightening the dioxin emissions from 1.0 ngTEQ/Nm3 to 0.1 ngTEQ/Nm3 and strictly
specifying the control standards for NOx [13].

The main methods to control NOx emissions include adsorption [14], ionophore acti-
vation [15], selective catalytic reduction (SCR) [16], and selective non-catalytic reduction
(SNCR) [17,18]. Among them, NOx removal by catalytic materials using NH3 as a re-
ducing agent (NH3-SCR) is the most efficient and environmentally friendly and has been
widely used industrially [19]. In practical applications, NH3-SCR catalysts are classified
into three types: low-temperature catalysts, medium-temperature catalysts, and high-
temperature catalysts. Their detailed use temperatures and use characteristics are shown in
Table 1. Current studies have found that most catalysts followed Eley–Rideal (E-R) and
Langmuir–Hinshelwood (L-H) reaction mechanisms in the NH3-SCR reaction [20,21]. The
E-R mechanism refers to the reaction between the gas phase NOx and the adsorbed state
NH3; the L-H mechanism refers to the reaction between the adsorbed state NOx and the
adsorbed state NH3 [22]. The main chemical reactions of the NH3-SCR process can be
summarized as follows [23,24]:

4NH3 + 4NO + O2 → 4N2 + 6H2O (Standard SCR) (1)

2NO2 + 4NH3 + O2 → 3N2 + 6H2O (2)

2NH3 + NO + NO2 → 2N2 + 3H2O (Fast SCR) (3)

6NO2 + 8NH3 → 7N2 + 12H2O (NO2 − SCR) (4)

6NO + 4NH3 → 5N2 + 6H2O (5)

4NH3 + 4NO + 3O2 → 4N2O + 6H2O (SNCR) (6)

4NH3 + 5O2 → 4NO + 6H2O (C−O) (7)

Table 1. Activity characteristics of three types of industrial NH3-SCR catalysts.

Catalyst Type Operating Temperature (◦C) Main Features

High-Temperature Catalyst 345–595 High NOx conversion rate; less leakage of NH3; strong
resistance to SO2 poisoning above 425 ◦C

Medium-temperature catalyst 260–425 Wide application and high denitrification efficiency
Low-temperature catalyst 150–300 Low operating temperature, low energy consumption

Among them, (1) and (2) are the main reactions in NH3-SCR. The “fast SCR” is more
efficient than the “standard SCR” at 200 ◦C [25]. The process of NO oxidation to NO2 is
the rate-limiting step of the “fast SCR” [24,26]. The rate of the “NO2-SCR” is much lower
than that of the “standard SCR”. The production of N2O in the “NSCR” is the main reason
for the reduced selectivity of N2. In the SCR process, the strong oxidation of the catalyst at
high temperature leads to a direct redox reaction between NH3 and O2, resulting in the
inability of NH3 to react with NO, a reaction process defined as the C-O reaction. In the
C-O reaction (7), NH3 is inactivated by the over-oxidation of O2. This is the main reason for
the decrease in NOx conversion rates in a high-temperature environment [27]. The effect of
the NO to NO2 ratio and temperature on the NH3-SCR process is shown in Figure 1 [24].
When designing catalysts for different temperature conditions, care should be taken to bias
the reaction toward fast SCR while avoiding NO2-SCR, NSCR, and C-O.
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Figure 1. Effect of NO to NO2 ratio and temperature on NH3-SCR reaction [24]. Copyright 2010, 
Elsevier B.V. 
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Figure 1. Effect of NO to NO2 ratio and temperature on NH3-SCR reaction [24]. Copyright 2010,
Elsevier B.V.

The degradation pathways of dioxins mainly include microbial degradation [28,29],
photodegradation [30,31], and thermocatalytic degradation [32–34]. Thermocatalytic degra-
dation is the conversion of dioxins into harmless products (CO2, CO, and H2O) and easily
removable products (HCl and Cl2) by using catalysts to accelerate the dechlorination and
degradation process of dioxins under heating conditions [33]. This technology has the
advantages of lower reaction temperature and higher dioxin removal efficiency and is con-
sidered the best dioxin removal pathway. Dioxins are very difficult to study because of their
complex structure, huge toxicity, and high price. Chlorobenzene, which has low toxicity,
cheap cost, and a structure similar to that of dioxins, is commonly used in experiments to
replace dioxins [35]. The first step of CB catalytic oxidation is the adsorption of CB on the
catalyst surface. The second step is dechlorination, in which Cl− is attacked by nucleophiles
and replaced by O2

−. The third step is ring opening, the aromatic ring generated after the
dechlorination of chlorobenzene is oxidized by electrophilic substitution [36]. The degrada-
tion mechanism of CB over Mn0.8Ce0.2O2/H-ZSM5 catalyst is shown in Figure 2 [37]. CB is
adsorbed on the catalyst surface. Then, the C-Cl bond and Brønsted acidic site undergo
nucleophilic substitution reaction with the neighboring oxides or hydroxyl radicals, during
which the C-Cl bond breaks to generate phenol salts and, in turn, intermediates such as
benzoquinone and cyclohexanone are produced. These intermediates are converted by O2
nucleophilic attack to maleic acid and aldehydes and are eventually deeply oxidized to end
products such as CO2, H2O, and HCl. In the catalytic oxidation of chlorobenzene, the redox
properties, surface acidity (Brønsted and Lewis acid sites), surface adsorbed oxygen, and
mobility of lattice oxygen play important roles in CB catalytic combustion [36,38].
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Most of the existing pollutant control technologies focus on stand-alone NOx emission
reduction or dioxin degradation. However, setting up single NOx or dioxin removal units is
not only space intensive but also economical and energy intensive. The catalytic conversion
of both NOx and CB utilizes the redox properties and surface acidity of the catalyst, which
provides the feasibility of the combined removal of both. The simultaneous removal of NOx
and dioxins in the same facility would have considerably economic and environmental
benefits. Therefore, the synergistic removal of NOx and dioxins has become a hot research
topic in recent years. However, the activity of conventional SCR catalysts for the catalytic
oxidation of CB (a dioxin substitute) is relatively low, and the selectivity of the products
CO, CO2, and HCl is even lower than 60%. Therefore, the development of innovative and
efficient catalysts is the key to achieving the synergistic removal of NOx and CB. After
masses of scientific research, some results have been achieved in improving the performance
of catalysts for efficient synergistic removal. Yin et al. [39] integrated FeVO4 and Fe2O3
semiconductor materials into a bifunctional catalyst with stable bifunctional removal of
NOx and CB (>95%) and high HCl selectivity (>85%). Yang et al. [40] prepared Nb-doped
MnCe0.2Ox composite oxide catalysts, which achieved 94.5% and 96% removal of NOx and
CB, respectively, at the temperature of 220 ◦C. However, there are still some scientific issues
in the synergistic removal process that have not yet been concluded: (1) the competitive
adsorption of multiple reactants on the catalyst active sites and their effects on the catalytic
performance; (2) the interaction of multiple gas components in the synergistic removal
reaction; (3) the gradual deposition and coverage effects of carbon and halogen species on
the catalyst surface; (4) the effects of other components in the waste incineration exhaust
gas (SO2, heavy metals, H2O, HCl, etc.) on the catalyst activity. Based on the above, this
paper first summarizes the classification of catalysts used for NOx/CB synergistic removal
and analyzes the catalytic properties of each type of catalyst in detail. Then, the mechanism
of the interaction between NH3-SCR, and CBCO on the catalyst surface is discussed in
detail. Finally, the causes of catalyst deactivation are analyzed and summarized.

2. Types of Catalysts for NO and CB Co-Removal

As the core of NOx and CB synergistic removal technology, catalysts are used to
accelerate the reaction, improve the selectivity of N2 and CO2 in NOx and CB end products,
and avoid the occurrence of side reactions. The selection of catalysts is crucial. Specifically,
qualified NO and CB synergistic removal catalysts should have the following characteristics:
(1) high efficiency of NO and CB removal; (2) strong resistance to poisoning; (3) suitable
operating temperature range; and (4) high mechanical strength.

Many catalysts have been shown to be active for SCR reactions and CBCO reactions.
The common catalysts mainly include noble metal catalysts (Pt, Pb, Ag, etc.), perovskite cat-
alysts (ABO3 type), and transition metal oxide catalysts (V, Mn, Ce, Co, Fe, Cu, etc.) [38–42].
Although noble metal catalysts have excellent catalytic activity, they cannot be used in
large-scale industrial applications because of their high cost, poor stability, weak resistance
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to chlorine poisoning, and susceptibility to electrophilic chlorination reactions, which lead
to the generation of polychlorine by-products [38,43]. Perovskite catalysts are inexpensive,
thermally stable, and have some resistance to poisoning, but they have high activity tem-
peratures and are also susceptible to the generation of polychlorine by-products [41,44]. In
contrast, transition metal oxide catalysts are considered ideal for the synergistic catalytic
removal of NOx and CB because of their low cost, high catalytic activity, high selectivity,
and strong resistance to poisoning. Herein, the catalytic characteristics of the catalysts
are summarized by dividing them into two categories: non-loaded transition metal oxide
catalysts and loaded transition metal oxide catalysts.

2.1. Non-Loaded Transition Metal Oxide Catalysts

Transition metal oxides (e.g., CeO2, MnOx, CoOx, VOx, FeOx, and CuOx) are often
used as redox centers for the synergistic NO and CB removal reactions due to the valence
difference of the metal ions, which leads to good mobility of electrons and lattice oxygen
and can significantly reduce the activation energy of the reaction. Further, the metal ions
of the catalyst can act as Lewis acid sites, which play an important role in NH3 and CB
adsorption, facilitating the reaction [45]. Moreover, the catalytic performance of single
metal oxide catalysts is not satisfactory because of their small specific surface area, poor
thermal stability, and their inherent tendency to chlorinate and generate volatile products;
therefore, they are less used [46–49]. The addition of dopants to form multi-metal composite
oxide catalysts is a common method to improve the defects of single metal oxides. The
synergistic removal of NOx and CB using one catalyst was achieved by rational adjustment
of catalyst components. Table 2 shows some non-loaded transition metal oxide catalysts
and their synergistic removal efficiencies for NO and CB.

CeO2 catalysts have received wide attention because of their high oxygen storage
capacity and oxygen mobility due to their surface oxygen vacancies and valence transitions
between Ce4+ and Ce3+, such as superoxide species (O2

-) and peroxide species (O2
2-), which

show good activity in catalytic reactions [50]. However, pure CeO2 has low resistance to
chlorine, poor thermal stability, easy sintering at high temperatures, and reduced oxygen
storage capacity, leading to a decrease in catalytic activity [51]. Doping with other transition
metals, such as Mn [52], Nb [53], and Zr [54] can effectively increase the rate of Cl removal
from the surface of the CeO2 catalyst while decreasing the energy required for oxygen
vacancy generation, improving catalytic activity and stability. Wang et al. [52] showed
that the efficiency of MnOx-CeO2 composite oxide catalysts for CB removal was much
higher than that of CeO2 and MnOx single-component catalysts due to the higher mobility
of lattice oxygen and surface oxygen of MnOx-CeO2, and the large amount of surface
active oxygen can effectively remove the Cl components generated at the surface during
the catalytic reaction, thus maintaining the high catalytic efficiency of the catalyst. Gan
et al. [55] prepared a series of MnOx-CeO2 catalysts with different ratios of metals by a co-
precipitation method for the synergistic removal of NO and CB. According to the findings,
MnOx and CeO2 formed MnyCe1-yO2-δ solid solution. When the Mn content was 40%, the
redox performance of the catalysts was well balanced with the surface acidity, resulting in
catalysts having excellent activity in the reduction of NO and catalytic oxidation of CB in
the range of 200–300 ◦C. In addition, to further improve the performance of the synergistic
catalytic removal of NOx and CB at low temperatures, Yang et al. [40] prepared Nb-doped
MnCe0.2Ox composite oxide catalysts by the homogeneous precipitation method. The
results showed that the introduction of Nb increased the average pore size, pore volume,
and specific surface area of MnCe0.2Ox; enhanced the stability of the catalyst structure;
and significantly promoted the growth of Lewis acid amount at 220 ◦C. The removal rates
of NOx and CB reached 94.5% and 96%, respectively, with excellent sulfur resistance and
water resistance.

Fe is widely available, reasonably priced, and stable. However, the single component
FeOx has low activity in the synergistic removal of NOx and CB, and the catalytic activity
can be substantially improved by doping the composite. Yin et al. [39] integrated FeVO4
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and Fe2O3 semiconductor materials into a bifunctional catalyst and balanced the redox
properties and surface acidity of the catalyst by interfacial charge modulation to ensure ex-
cellent NOx and CB synergistic removal performance. The optimized FeVO4-Fe2O3 catalyst
showed stable bifunctional removal of NOx and CB (>95%) and high HCl selectivity (>85%)
over the state-of-the-art V2O5-WO3/TiO2 catalyst. This provides an effective strategy for
the design of advanced catalysts for multi-pollutant control.

The activity of the catalyst is influenced by the valence of the doped metal. Doping
with different metal elements can regulate the amount of Bronsted and Lewis acids on
the catalyst. Brønsted acid can provide protons that facilitate the breaking of C–Cl bonds
and promote the production of HCl [56]. The strength of Lewis acid determines the
redox performance of the catalyst and promotes the deep oxidation of intermediates, thus
enhancing CO2 selectivity [57]. Wei et al. [58] doped CeO2 with low-valence Al3+ and
high-valence Ta5+, respectively. It was found that the introduction of low-valence Al3+

increased the number of Lewis acid sites in the catalyst and facilitated the formation of
lattice oxygen, thus achieving excellent performance in the synergistic removal of NO and
CB through characterization and simulation. In contrast, the introduction of the higher
valence state Ta5+ brought the opposite effect. Ta5+ provided more electrons to the ligand
oxygen than Ce4+, which hindered the detachment of lattice oxygen from the catalyst
surface and weakened the oxidation ability of the catalyst, and thus performed poorly in
NH3-SCR and CBCO.

Table 2. Non-loaded transition metal oxide catalysts and their synergistic removal efficiencies for
NO and CB.

Catalyst Reaction Conditions Conversion Reference

FeVO4-Fe2O3

NOx = 500 ppm, CB = 50 ppm,
NH3 = 515 or 485 ppm,

O2 = 10 vol%, H2O = 5 vol%,
SO2 = 100 ppm,

N2 as balance gas
GHSV = 60,000 h−1

NOx: ~100% (200 ◦C)
CB: ~90% (275 ◦C) [39]

MnNb0.4Ce0.2O2

NOx = 600 ppm, CB = 50 ppm,
NH3 = 600 ppm, O2 = 12 vol%,

H2O = 7 vol%,
N2 as balance gas

GHSV = 30,000 h−1

NOx: ~100% (170 ◦C)
CB: ~90% (250 ◦C) [40]

MnOx(0.4)-CeO2

NO = 500 ppm, CB = 50 ppm,
NH3 = 500 ppm, O2 = 10 vol%,

N2 as balance gas
GHSV = 60,000 h−1

NOx: ~100% (200 ◦C)
CB: ~90% (270 ◦C) [55]

Al0.1-CeO2

NO = 500 ppm,
CB = 500 ppm, NH3 = 500 ppm,

O2 = 10 vol%, H2O = 5 vol%,
N2 as balance gas

GHSV = 40,000 h−1

NOx: ~100% (300 ◦C)
CB: ~90% (300 ◦C) [58]

MnFe0.7

NO = 500 ppm, NH3 = 550 ppm,
O2 = 2 vol%,

or CB = 250 ppm, O2 = 2 vol%,
N2 as balance gas

GHSV = 100,000 h−1

NOx: >90% (150 ◦C)
CB: ∼40% (275 ◦C) [59]

SO4
2–

0.10Fe–MnOx

NO = 500 ppm,
CB = 100 ppm, NH3 = 500 ppm,

O2 = 3 vol%,
N2 as balance gas

GHSV = 30,000 h−1

NOx: >90% (140 ◦C)
CB: ∼90% (200 ◦C) [60]
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2.2. Loaded Transition Metal Oxide Catalysts

Loaded transition metal oxide catalysts usually contain one or more transition metal
oxides as active components, which are uniformly distributed on carriers such as TiO2,
SiO2, CeO2, Al2O3, and molecular sieves. Generally, the carrier materials have high specific
surface area and good thermal stability, which help to improve the activity and durability
of the catalyst. The catalyst surface structure is determined by the nature of the active
component and the carrier itself, and the high dispersion of the active component on the
carrier surface contributes to the improvement of catalytic activity. In addition, the success
of catalytic removal of multi-pollutants relies heavily on the adsorption capacity of the
multiphase interface for the target pollutants [61], and weakly acidic metal oxides such
as TiO2 and Al2O3 as carriers can provide abundant surface acid sites, which play an
important role in NH3 and CB adsorption. At the same time, the synergistic effect between
the active component and the carrier is also beneficial for enhancing the reactivity of the
catalyst. The efficiencies of some loaded transition metal oxide catalysts for the synergistic
removal of NO and CB are listed in Table 3.

The charge transfer between the active component oxide and the reduced carrier
(e.g., TiO2, CeO2) is advantageous for increasing the catalyst activity. However, in practical
studies, pure CeO2 is seldom used as a catalyst carrier for the synergistic removal of
pollutants such as NOx and CB, because CeO2 easily reacts with Cl, leading to a decrease
in catalytic activity. Martín et al. [62] prepared two oxide catalysts, MnOx and CeOx,
for the synergistic removal of NO and 1,2-dichlorobenzene (o-DCB) by co-precipitation
and impregnation methods, respectively. It was found that compared with MnOx/CeO2
prepared by the impregnation method, the catalyst prepared by co-precipitation has better
activity because of the MnOx-CeO2 solid solution, which improved redox, acidity, and
resistance to chlorine. Furthermore, Bertinchamps et al. [63] demonstrated experimentally
that most of the active metal oxides can be well dispersed on the TiO2 surface, while the
dispersion on the SiO2 and Al2O3 surfaces is relatively poor. Therefore, the catalysts with
TiO2 as the carrier tend to show better catalytic activity.

VOx-based catalysts with TiO2 as a carrier are mainly used as commercial SCR cat-
alysts with high deNOx activity and anti-poisoning properties [64]. In recent years, it
has been found that VOx/TiO2 catalysts also have good stability and catalytic activity in
the catalytic oxidation of chlorinated aromatic pollutants such as CB. For the synergistic
removal of pollutants such as NOx and CB, the structure of surface VOx plays an important
role. It is generally believed that monomeric vanadium species are more effective for the
oxidation of CB, o-DCB, etc., while polymerized vanadium species are more advantageous
for the catalytic reduction of NO [65,66]. Zhai et al. [67] further investigated the reaction
properties of VOx/TiO2 for the catalytic removal of NOx and CB using a combination of
DFT calculations and experimental investigations. It was found that the main adsorption
site of CB on monomeric vanadium species was the V-OH bond, and the main adsorption
site on the polymerized vanadium species was the V-O bond. The monomeric vanadium
species facilitated the conversion of Lewis V-O to Brønsted V-OH, thus providing sufficient
H protons for HCl formation, while the polymerized vanadium species could effectively
retain the redox cycle of V4+/V5+, yielding superior activity in the CBCO and SCR reactions.
In addition, the loading of VOx on TiO2 carriers has a very important effect on catalyst
activity and selectivity, with the first growth followed by a decrease in pollutant conversion
with increasing VOx loading [68].

Additives such as WOx and MoOx are commonly added to VOx/TiO2 catalysts to
provide additional surface acid centers and to prevent the transformation or sintering
of the TiO2 carrier from the anatase to rutile phase. They can significantly improve the
catalytic performance and stability of catalysts, influence the surface acidity and VOx
dispersion of catalysts, and broaden the active temperature range [69,70]. As MoO3 has
better reduction and higher Brønsted acid center strength than WO3, Mo-V/Ti exhibited
higher SCR and CB oxidation activity than Mo-W-V/Ti and W-V/Ti catalysts, achieving
100% NO conversion and more than 95% CB conversion at 300–400 ◦C [49]. Yu et al. [46]
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used Al2O3 and SiO2 to further dope the Mo-V/Ti catalysts and investigated the effect of
doping on the simultaneous removal of NOx and CB. Compared with SiO2, the doping
of Al2O3 broadened the active temperature window and provided more surface acidity,
reaching 100% NO conversion at 250–400 ◦C and nearly 10% higher CB conversion of Al-
VMo/Ti than VMo/Ti in the range of 300–350 ◦C. In addition, Al-VMo/Ti had a stronger
tolerance to SO2 while reducing the amount of polychlorinated by-products.

In addition to VOx-based catalysts, other metal oxide catalysts (e.g., MnOx, FeOx) with
TiO2 as the carrier also have more outstanding catalytic activity in the removal of chlori-
nated aromatic pollutants such as CB. Li et al. [71] prepared a series of MnOx/TiO2 and
MnOx-SnOx/TiO2 catalysts by the co-precipitation method and investigated their CBCO
performance, which showed that they had excellent performance in the low-temperature
range. The introduction of Sn inhibited the formation of chlorine-containing oxides of
Mn elements and suppressed the volatilization loss of the core active components, thus
significantly improving the stability of the MnOx/TiO2 catalysts. The catalytic efficiency of
MnOx-SnOx/TiO2 for CB remained above 97% after 100 h of continuous reaction at 225 ◦C.
Khaleel et al. [72] prepared Fe2O3/TiO2 by the impregnation method, which can achieve
complete conversion of CB at 400 ◦C. The doping of Ca can lead to the reduction in pore
size, increase in specific surface area, and grain size reduction of Fe2O3/TiO2 catalysts,
which is beneficial for the catalyst activity [73]. However, these metal oxide catalysts are
yet to be investigated for the synergistic removal of NOx and CB.

The main disadvantages of TiO2 compared with other carriers (e.g., Al2O3 and SiO2)
are its high cost, small specific surface area, and poor thermal stability. In contrast, compos-
ite carriers can combine the advantages of different carriers. For example, TiO2-Al2O3 and
TiO2-SiO2 composite carriers can combine the advantages of Al2O3 and SiO2 in terms of
large specific surface area, inhibit the clustering of surface active components, slow down
the deactivation of catalysts, and significantly enhance the redox ability of catalysts [74,75].
In addition, multiphase carrier-loaded multi-metal oxide catalysts have been used for the
synergistic removal of NOx and CB. Jin et al. [48] designed a series of W-Zr-Ox/Ti-Ce-Mn-
Ox (WZ/TCM) catalysts for the synergistic removal of NOx and CB. Among them, the
active component W-Zr-Ox mainly provided solid super acids; CeO2 and MnO2 enhanced
the redox performance; and TiO2 had a large specific surface area. These factors ensured
the excellent performance of the WZ/TCM catalyst. At 350–500 ◦C, the NO conversion of
WZ/TCM reached 100% and the oxidation activity of CB was higher than 85%, with high
N2 selectivity and excellent sulfur and water resistance. Similarly, Jin et al. [76] prepared
WCeMnOx/TiO2-ZrO2 catalysts to study their catalytic performance for the synergistic
catalytic removal of NO, Hg0 and synergistic catalytic removal of NO and CB. The catalyst
performance was improved by solid phase structure control. MnWO4 improved the solid
acidity of the catalyst and enhanced the catalytic activity at high temperatures; the forma-
tion of Ce0.75Zr0.25O2, Ce2WO6, Ce2Zr2O7, and Ce2Ti2O7 improved the low-temperature
catalytic activity.

In addition to the commonly used TiO2 carriers, molecular sieve carriers usually have
a large specific surface area, good stability, sufficient surface acidity, special morphology,
and unique advantages in terms of adsorption of reactants and reaction diversity [77].
In the removal of chlorinated aromatic pollutants such as CB, the appropriate acidity
facilitates the conversion of Cl species to inorganic chlorine species and to some extent
avoids the production of polychlorinated organics [78]. Gallastegi-Villa et al. [79] prepared
metal-loaded ZSM-5 catalysts with Cu, Fe, Mn, and V and investigated their ability to
synergistically catalyze the removal of NO and o-DCB. The highest catalytic activity of
Cu/ZSM-5 was observed based on the TOF value (number of reactant molecules converted
per unit time per unit catalytic active site) of o-DCB oxidation at 150 ◦C and the stability
test results of NO conversion at 300 ◦C. However, it is still difficult to apply practically due
to the presence of more polychlorinated by-products.
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Table 3. Loaded transition metal oxide catalysts and their synergistic removal efficiency of NO
and CB.

Catalyst Reaction Conditions Conversion Reference

WZrOx/TiCeMnOx

NO = 500 ppm, CB = 100 ppm,
NH3 = 500 ppm, O2 = 10 vol%,

N2 as balance gas
GHSV = 30,000 h−1

NOx: ~100% (250 ◦C)
CB: ~100% (400 ◦C) [76]

V/Ti

NO = 500 ppm, CB = 50 ppm,
NH3 = 500 ppm, O2 = 3.5 vol%,

N2 as balance gas
GHSV = 60,000 h−1

NOx: ~100% (250 ◦C)
CB: ~20% (300 ◦C) [80]

V-Ce/Ti

NO = 500 ppm, CB = 50 ppm,
NH3 = 500 ppm, O2 = 3.5 vol%,

N2 as balance gas
GHSV = 60,000 h−1

NOx: ~100% (300 ◦C)
CB: ~20% (300 ◦C) [80]

V-Mn/Ti

NO = 500 ppm, CB = 50 ppm,
NH3 = 500 ppm, O2 = 3.5 vol%,

N2 as balance gas
GHSV = 60,000 h−1

NOx: ~100% (300 ◦C)
CB: ~5% (300 ◦C) [80]

V-W/Ti

NO = 600 ppm, CB = 100 ppm,
NH3 = 600 ppm, O2 = 5 vol%,

N2 as balance gas
GHSV = 40,000 h−1

NOx: ~100% (275 ◦C)
CB: ∼100% (350 ◦C) [81]

V-Mo/Ti

NO = 500 ppm, CB = 100 ppm,
NH3 = 500 ppm, O2 = 10 vol%,

N2 as balance gas
GHSV = 30,000 h−1

NOx: ~100% (250 ◦C)
CB: ~100% (350 ◦C) [81]

V-Mo/Ti

NO = 500 ppm, CB = 100 ppm,
NH3 = 500 ppm, O2 = 10 vol%,

N2 as balance gas
GHSV = 30,000 h−1

NOx: ~100% (200 ◦C)
CB: ~100% (300 ◦C) [82]

Pd-V/Ti

NO = 600 ppm, CB = 100 ppm,
NH3 = 600 ppm, O2 = 10 vol%,

N2 as balance gas
GHSV = 30,000 h−1

NOx: ~100% (250 ◦C)
CB: ~100% (400 ◦C) [83]

3. Mechanism of Synergistic Multi-Reactant Removal Interaction

In the synergistic NOx/CB removal process, NH3-SCR and CBCO inevitably interact
with each other. However, the interaction between multiple reactants is not single facilita-
tion or inhibition but depends on various factors such as reaction temperature, reactant
concentration, and catalyst properties (surface acidity, redox properties, adsorption proper-
ties). The interaction between multiple reactants is complex, and an in-depth understanding
of the interaction mechanism of multiple reactants and the influence of reaction conditions
on the synergistic removal efficiency can help guide the design and preparation of NO and
CB synergistic removal catalysts.

3.1. Effect of NH3-SCR on CBCO

Aniline, nitrobenzene, and benzonitrile were detected in the by-products of NOx/CB
co-removal, indicating that a portion of NH3-SCR reactants was involved in CB oxida-
tion [82,84,85]. It is of great practical importance to clarify the effect of NH3-SCR reactants
on CB oxidation efficiency and to investigate in-depth the mechanism of NH3-SCR effect
on CB oxidation to improve the removal rate of CB in the combined removal process.

V2O5-MoO3/TiO2 is currently the best medium- and high-temperature SCR catalyst
for NO removal efficiency [23]; so, many NOx/CB synergistic removal studies have been
carried out based on V2O5-MoO3/TiO2 catalysts. However, there is no uniform knowledge
of whether there is synergy between NH3-SCR and CBCO on V2O5-MoO3/TiO2 catalysts.
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Some researchers have found the existence of synergistic NH3-SCR and CBCO removal
over V-M-T catalysts. NH3-SCR promotes CB-catalyzed oxidation because NO and NO2
act as oxidants to accelerate the oxidation cycle of VOx species. NO is oxidized to NO2
at WOx or MoOx active sites on V2O5-WO3 (MoO3)/TiO2. NO2 oxidation performance
is greater than oxygen, which accelerates the conversion of V4+ to V5+. V5+ is the active
substance for CB oxidation; so, the increase in V5+ accelerates CB conversion and improves
CB conversion [86,87]. However, by comparing the CB removal process alone on V-M-T
catalyst with the CB removal process in NOx/CB synergy, some researchers have found that
there is a certain inhibition of CB oxidation by NH3-SCR; this is caused by the competitive
adsorption between NH3, NO, and CB [80,82]. To better demonstrate the inhibitory effect
of NH3 and NO on CB adsorption, Gan et al. performed a series of TPD experiments
(Figure 3) [88]. When NO, NH3, and CB were present as a single gas, their adsorption
capacities were 238 µmol g−1, 145 µmol g−1, and 43 µmol g−1, respectively, indicating
that all three reactants could be adsorbed on the catalyst. The adsorption capacity of CB
pretreated with NO+NH3 decreased to 3.7 µmol g−1, indicating a significant inhibitory
effect of NO+NH3 on CB adsorption. CB was mainly adsorbed on the Brønsted acidic
site of the catalyst and completed the dechlorination process. The introduction of NH3
and NO occupied the acid site on the catalyst surface, leading to a shift in the conversion
temperature of CB toward higher temperatures [82,86]. To further clarify the effect of
NH3 and NO on CB oxidation, Gao et al. investigated in detail the effect of NH3 and
NO on CB in an aerobic environment [89]. On V2O5-MoO3/TiO2 catalysts, NH3 binded
significantly stronger to the catalyst than CB, the adsorption of CB decreased significantly
when NH3 was present, and the CB conversion efficiency decreased. NO has little effect
on the adsorption of CB. NO readily combines with O2 to form NO2 gas, which is more
oxidizing than O2 and contributes to CB oxidation. When NH3, NO, and CB were added
to the reaction simultaneously, the CB oxidation was promoted by NH3-SCR on V2O5-
MoO3/TiO2 catalyst. On the Mn-Ce catalyst, the same promotion of CB oxidation by SCR
was observed in the low-temperature section (below 200 ◦C) [90].
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There are obvious effects of gas components, intermediates, and reaction temperature
on the oxidation of CB during the synergistic removal process. Li et al. prepared PdV/TiO2
and studied its synergistic NO and CB removal mechanism (Figure 4) [83]. In the range
of 300~400 ◦C, the catalytic removal efficiency of CB under different atmospheres was in
the order of CBCO + NO2 > CBCO > CBCO + NO > CBCO + NH3 > CBCO + SCR. The O
vacancies generated during the ring opening of CB facilitated the adsorption of the reacting
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gas molecules and accelerated the CBCO + SCR reaction. The O vacancy structure on the
catalyst surface is restored by NO2 and O2 reoxidation, and the presence of NO2 molecules
facilitates the CBCO reaction. More in-depth studies have shown that the promotion and
inhibition of NO2 on catalytic combustion of VOCs is related to its presence morphology. In
the synergistic removal of NO and toluene, the effect of NO/NO2/N2O/O2 content on the
oxidation of toluene at 150 ◦C is shown in Figure 5. NO2 cannot promote the oxidation of
toluene when the NO2 concentration is lower than 400 ppm; however, NO2 has a promoting
effect on the oxidation of toluene when the NO2 content is higher than 400 ppm. This
is because NO2 forms nitrate species (NO3−) and nitrite species (NO2−) on the catalyst
surface. Nitrate species (NO3−) are inert on the catalyst surface, do not have oxidation
properties, and even cover the active site to affect the catalyst activity. As the concentration
of NO2 increases, nitrate production reaches equilibrium and NO2 exists in adsorbed form.
NO2 in the adsorbed state has stronger oxidation properties than oxygen, thus promoting
CB oxidation [85].
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3.2. Effect of CBCO on NH3-SCR

Normally, the NO conversion efficiency in NH3-SCR increases with the increase in
temperature and remains stable in a certain temperature range when the NO conversion
reaches its maximum; then, the NO conversion decreases as the C-O reaction occurs
with the increase in temperature. The conversion efficiency of CB usually increases with
the increase in temperature, reaches its maximum, and remains after reaching a certain
temperature. In the NOx/CB synergistic removal reaction, the initial temperature at which
NO conversion occurs is usually lower than that of CB. Here, the effect of CB on NH3-SCR
is discussed in two parts: the low-temperature section (where CB is not oxidized) and the
high-temperature section (where CB undergoes catalytic oxidation).

In the low-temperature section, CB is not decomposed and affects NH3-SCR mainly
by occupying the acidic sites with NO and NH3. On most catalysts, the E-R mechanism
coexists with the L-H mechanism during NO conversion; so, NO can participate in the
reaction in the gaseous state without pre-sorption on the catalyst. Therefore, the inhibition
of NO adsorption by CB at low temperature has a negligible effect on NH3-SCR. A series
of temperature-programmed desorption (TPD) experiments showed a small decrease in
NH3 and NO adsorption after the adsorption of CB, and NH3 adsorption was significantly
higher than that of NO (Figure 4) [90]. In the NH3-SCR reaction, NH3 adsorbed at the
L-acid site participates in the SCR reaction, while NH3 adsorbed at the B-acid site is used
as a supplement to the depletion of NH3 at the L-acid site [88]. Thus, although CB leads to
a decrease in NH3 adsorption, the inhibitory effect on NO conversion is not significant.

In the high-temperature section, CB is catalytically converted to produce large amounts
of CO2, HCl, Cl2, and some intermediate products (polychlorinated compounds). The
C–Cl bond is broken during CB oxidation. The produced free Cl- ions combine with the
metal in the catalyst forming metal chlorides to activate neighboring bridging hydroxyl
groups, providing additional B-acid sites, allowing for increased NH3 adsorption, avoiding
excessive oxidation of NH3, and inhibiting the C-O oxidation reactions [88,89]. With the
rise in NH3 adsorption, the inactive NH4Cl forms and occupies the catalyst’s active site,
regulating the redox performance of the catalyst and making the conversion efficiency
of NO at higher temperatures. In the high-temperature section, CB can improve NO
conversion efficiency and N2 selectivity and broaden the SCR temperature window [48,88].

4. Catalyst Deactivation

Catalysts gradually decrease in catalytic activity and selectivity to deactivation during
long-term use. Therefore, it is necessary to study the catalyst deactivation process and
extend the catalyst life.

Chlorine poisoning and coking are the main causes of catalyst deactivation. The Cl-

generated by CB through nucleophilic or electrophilic substitution occupies the active site
in the form of direct adsorption on the catalyst surface or occupying oxygen vacancies to
form metal chlorides and metal chloride oxides. The generated NH4Cl is deposited on
the catalyst surface leading to catalyst deactivation. In the NOx/CB synergistic removal
process, the generation of by-products is another important factor in catalyst deactivation.
The migration and transformation of carbon and chlorine during CB oxidation follow a
dynamic equilibrium. Most of them are eventually converted into inorganic products COx
and HCl or even Cl2, some of which are present in the flue gas as organic matter and
the rest accumulate on the catalyst surface as surface precipitates. CCl4 and C2Cl4 are
the main accumulators on the catalyst. They are the main by-products leading to catalyst
deactivation [68].

The actual plant exhaust gas components are complex and contain various components
such as SO2, H2O, HCl, and heavy metals. Among them, the reaction of SO2 with NH3 and
H2O result in the formation of (NH4)2SO4 and NH4HSO4, which deposit on the catalyst
surface and result in catalyst deactivation [91]. In addition, SO2 can react with the catalyst’s
active component to form sulfides or sulfates that destroy or block the active sites on the
catalyst surface. PdSO4 and NH4HSO4 species are deposited on the catalyst surface and
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occupy the catalyst active center, resulting in a blocked reaction on the catalyst surface
and a decrease in catalytic efficiency. In general, sulfate poisoning such as (NH4)2SO4
and NH4HSO4 is reversible. The generated sulfates (mainly NH4HSO4) are partially
decomposed at 400 ◦C; then, the catalyst activity is recovered. In contrast, the deactivation
caused by the formation of sulfate species from the catalyst active component with SO2 is
irreversible [92]. H2O exerts an inhibitory effect on catalytic activity and this inhibition is
generally reversible [93]. This inhibition is mainly caused by the competition of H2O with
the adsorption of the reactant gas on the surface of the active site. The degree of inhibition is
influenced by the catalyst type, reaction temperature, and H2O concentration, with higher
H2O concentrations showing more significant inhibition. In addition, H2O is a necessary
reactant for the formation of ammonium sulfate from NH3 and SOx; so, the presence of H2O
aggravates the inhibitory effect of SO2 on the catalyst activity. The inhibitory effect of HCl
on the NH3-SCR reaction in low-temperature environments (below 250 ◦C) is evident [48].
This is attributed to the following two points: (1) the presence of HCl severely inhibits NH3
adsorption; (2) NH4Cl generated from HCl and NH3 is deposited on the catalyst surface
and covers the active site. Heavy metals in the flue gas also have a significant effect on the
catalytic performance of the catalyst. As2O3 species can significantly reduce the formation
energy of oxygen vacancies at the V-O-V sites on V2O5-WO3/ TiO2 catalysts, which leads
to the formation of more toxic polychlorinated by-products [81].

5. Conclusions

Both NH3-SCR and CBCO utilize the surface acidity and redox properties of the
catalyst, which provides a theoretical basis for the synergistic removal of NOx and CB.
Balancing the surface acidity and redox properties of catalysts at a certain temperature is
the key to the efficient removal of NOx and CB. In this paper, the catalysts commonly used
for the synergistic NOx/CB removal are divided into two types: unloaded transition metal
catalysts and loaded transition metal catalysts. Their catalytic properties are summarized
and outlined, among which the unloaded transition metal catalysts are promising for their
excellent catalytic performance. The inevitable interaction between NH3-SCR and CBCO in
the synergistic NOx/CB removal is discussed.

1. Effect of NH3-SCR on CBCO. NH3 competes with CB for adsorption, and NH3 has
significantly stronger adsorption performance than CB, resulting in lower CBCO
low-temperature activity. NO2 is produced in the NH3-SCR process. NO2 has a
stronger oxidation performance than O2 and can promote CB conversion. However,
this promotion effect is related to the morphology of NO2, which can improve the CB
conversion efficiency and reduce the CB ignition point when NO2 is present in the
adsorbed form in the reaction system.

2. Effect of CB on NH3-SCR. The effect of CB on the amount of NH3 adsorbed was not
significant; so, there was no significant inhibition of the NH3-SCR reaction by CB at
low temperatures. The decomposition of CB at high-temperature and the generated
Cl- provided additional acid sites to increase the NH3 adsorption and improve the
NO conversion efficiency. The generated Cl- reacts with NH3 to form inert NH4Cl,
which regulates the redox performance of the catalyst, effectively inhibits the C-O
reaction, and widens the SCR temperature window.

Catalyst deactivation is a difficult problem encountered in practical industrial applica-
tions. The cause of catalyst deactivation is the accumulation of carbon and chlorine species
on the catalyst surface. The presence of SO2, H2O, HCl, and heavy metals in complex
flue gases leads to catalyst deactivation to different degrees. Rational design of catalysts;
balancing the acidic and redox properties on the catalyst surface in a certain temperature
interval; and improving N2, CO2 selectivity, catalyst thermal stability, and resistance to
poisoning are still bottlenecks that need to be broken in the future.
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