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Abstract: Designing highly selective and efficient double-atom electrocatalysts (DACs) is essential
for achieving a superior nitrogen-reduction reaction (NRR) performance. Herein, we explored the
defective boron nitride–supported cage-like double-atom catalysts to rummage the qualified NRR
catalysts. Based on a systematic evaluation of the stability, N2 adsorption, NRR selectivity and
activity of 10 DACs of TM1-TM2@VB-BN, we predicted Ru-Ti@VB-BN to be the NRR candidate with a
limiting potential of −0.40 V. Compared to the corresponding single-atom catalysts, the introduction
of Ti/Mo modulates the d-band center of the active metal atom, which improves the NRR performance.
Moreover, the magnetic Ru-Ti dimer can facilitate the transfer of charge to molecular N2, ensuring
a significant activation of the inert N≡N bond. This research not only opens up new avenues for
designing boron nitride–supported DACs for NRR, but also deepens the understanding of DACs in
N2 activation.

Keywords: boron nitride monolayer; dual-atom catalysts; NRR; DFT

1. Introduction

Ammonia (NH3) plays an extremely important role in the modern agriculture and
chemical industry [1,2]. Currently, industrial NH3 synthesis requires the reduction of nitro-
gen (N2) to NH3 with the help of iron-based catalysts at a high temperature (300–500 ◦C)
and high pressure (150–300 atm) by means of the Haber–Bosch process [3,4]. Inspired by the
biological nitrogen fixation occurring under mild conditions, the electrochemical nitrogen
reduction reaction (NRR) has attracted great attention as a promising NH3 production
method [5,6]. However, efficient N2 reduction has been proven to be extremely tough owing
to the chemically inert N≡N triple bond with a high bond energy of 940.95 kJ mol−1 [7,8].
Meanwhile, most catalysts exhibit poor selectivity toward NRR, mainly due to the existence
of a competing hydrogen evolution reaction (HER) in aqueous solution and a low over-
potential of HER [9–12]. To overcome these challenges, searching for high-performance
catalysts with low working overpotential, good stability and high selectivity remains a
highly rewarding task.

As an emerging class of atomically dispersed catalysts, single-atom catalysts (SACs)
have been widely used in NRR due to their high atom utilization and excellent catalytic
performance [13]. However, the low stability of the anchoring individual metal atom
on the substrate material makes them prone to agglomerate during the reaction [14]. In
addition, NRR involves multiple reaction steps, and it is difficult for a single active site to
simultaneously regulate the adsorbed intermediates, resulting in its low Faradaic efficiency
and NH3 yield [15]. The introduction of bimetallic pairs can effectively solve this problem.
For example, Chen et al. [16] systematically explored the performance of double transition
metals (TMs) anchored on C2N (TM2-C2N) for NRR by first principles calculations. In
contrast with the performance on corresponding SACs (TM1-C2N), the studies highlighted
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that Mn2-C2N favors NH3 electrosynthesis and that the predicted overpotential can reach
−0.23 V. Zhang et al. [17] proposed double Fe anchored on N-doped graphene (Fe2N4@NG)
as the most excellent NRR catalyst, with a relatively low overpotential of −0.32 V. It is
evident that DACs emerge as promising NRR catalysts, benefiting from their higher metal-
atom loading and flexible active sites. The comparative information of SACs and DACs
catalysts is shown in Scheme 1.
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Scheme 1. Representative structures of single- and double-atom catalysts reported in the past five
years and their corresponding advantages and disadvantages.

In atomic catalysts, appropriate substrates also play major roles by stabilizing and
dispersing DACs at a specific site. Boron nitride (BN) nanosheets are widely used in
the field of energy storage due to their high chemical stability and unique physical and
chemical properties [18–20]. It has been proven that boron vacancies (VB) are easier to form
in h-BN sheets than nitrogen vacancies (VN). Moreover, the h-BN sheets containing VB
have been widely used as substrates to support metal atoms, which serve as a promising
catalyst for the NRR process. Zhao et al. [21] showed that single Mo anchored on the
defective BN exhibited high catalytic activity, along with extremely low overpotential
(−0.19 V). However, the study of the DACs based on defective BN remains in its infant
stage. Recently, researchers have designed DACs imitating the configuration of cage-like
nitrogenase active centers, such as Fe-TM double atoms anchored on graphene [22,23]. They
have been reported to not only show superior NRR activity, but also effectively retard the
agglomeration of metal atoms and facilitate electron transfer between N2 and the graphene
surface. It is evident that the cage-like double metal active centers have a unique application
potential in NRR catalytic reactions. These pioneering works in fabricating cage-like DACs
are of critical importance for the expansion of broad electrochemical reactions applying BN
as supported catalysts.

In this work, we adopted four commonly used transition metal atoms (TM = Ti, Fe, Mo
and Ru) and designed cage-like diatomic TMs N2-fixing catalysts on defective BN (VB-BN).
The justification for choosing these TMs lies in the fact that numerous studies have shown
that Fe, Mo and Ru could act as catalytic centers for NRR [24–27]. More recently, Xia et al.
predicted that Ti doping could improve the stability of defective BN and enhance the NRR
performance compared with the pristine BN [28]; hence, we adopted the earth-abundant
transition metal Ti to anchor on BN for NRR. Based on density functional theory (DFT),
we systematically evaluated the stability of the substrate, N2 adsorption, NRR selectivity
and activity of 10 TM1-TM2@VB-BN candidates. Three promising DACs were proposed
(Ru-Mo/Ru/Ti@VB-BN) as excellent NRR catalysts, and the best one was predicted to be
Ru-Ti@VB-BN, with a low overpotential of −0.40 V, along the enzymatic pathway. We
also performed an in-depth interaction mechanism and electronic structure analysis to
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reveal the inherent regularity of catalytic activity. Our work not only enriches existing
BN-supported NRR electrocatalysts, but also offers a feasible clue for the experimental
explorations ahead.

2. Results and Discussion
2.1. Structural and Electronic Properties of TM1-TM2@VB-BN

Defective BN (VB-BN) with one B atom removed was adopted as the substrate to
anchor the transition metal atoms (TM = Ti, Fe, Mo and Ru). Then 10 TM1-TM2@VB-BN
structures were locked by embedding a cage-like TM dimer (dopant pairs) in the VB-BN
substrate adjacent to the B vacancy. All the optimized structures of the TM1-TM2@VB-BN
system are plotted in Figure 1a and Supplementary Figure S2.

Catalysts 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 1. (a) Schematic configurations of TM1-TM2@VB-BN. (b) Calculated formation energy and the 

difference between the adsorption energy and cohesive energy of the TM1-TM2@VB-BN systems. (c) 

Charge transfer from the TM pair to the VB-BN substrate. 

2.2. N2 Adsorption and Selectivity on TM1-TM2@VB-BN 

Firstly, the capture and adsorption of N2 are prerequisites, meaning that the Gibbs 

free energy change (ΔG) for stable N2 adsorption should be lower than 0 eV (ΔG(*N2)< 0)) 

[30]. Considering the adsorption of N2, the heteronuclear and homonuclear DACs provide 

two adsorption sites and one adsorption site, respectively. Consequently, we totally con-

sidered 16 adsorption configurations and calculated the ΔG(*N2) values of N2 terminated 

on TM1-TM2@VB-BN in end-on/side-on manners (see Table 1). Moreover, the NRR catalyst 

should effectively inhibit competitive HER, which is also an important indicator of the 

catalyst’s efficiency. The surface of catalysts must provide enough active sites for N2 acti-

vation, so as to facilitate the subsequent reactions. A stronger adsorption activity of the N2 

molecule is essential for high NRR selectivity, which ensures that the catalyst selectively 

adsorbs N2 molecular prior to H [31,32]. As a matter of convenience, we determined the 

catalytic selectivity of TM1-TM2@VB-BN through a comparison of the adsorption free en-

ergies of the *N2 and *H atom. 

  

(a)

(b) (c)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.61

1.54 1.53

1.75

1.59
1.53

1.77

1.15

1.71

1.97

T
i-T

i

Fe-
Fe

Fe-
M

o

Fe-
R

u

Fe-
T
i

M
o-

M
o

M
o-

R
u

M
o-

T
i

R
u-R

u

R
u-T

i

C
h

a
rg

e 
tr

a
n

sf
er

 (
e- )

Fe-
Fe

Fe-
M

o

Fe-
R

u

Fe-
T
i

M
o-

M
o

M
o-

R
u

M
o-

T
i

R
u-R

u

R
u-T

i

T
i-T

i

-1.6

-1.2

-0.8

-0.4

0.0

 Ef /eV

  Eads-Ecoh/eV

Figure 1. (a) Schematic configurations of TM1-TM2@VB-BN. (b) Calculated formation energy and
the difference between the adsorption energy and cohesive energy of the TM1-TM2@VB-BN systems.
(c) Charge transfer from the TM pair to the VB-BN substrate.

To verify the experimental synthetic feasibility, we evaluated the structural and ther-
modynamic stability of all TM1-TM2@VB-BN candidates. As Supplementary Figure S2
shows, all the optimized DACs maintain their planar structures with the cage-like TM
dopants protruding out of the BN monolayer, implying high structural stabilities. The
formation energy of TM1-TM2@VB-BN was calculated based on the formula as follows:

Ef= (E catalysts − xµB − yµN − µTM1 − µTM2)/n

where Ecatalysts is the total energies of the TM-doped BN; µB, µN, µTM1 and µTM2 are the
chemical potentials of single B, N and TM atoms in their bulk structure; n is the total
number of atoms in TM1-TM2@VB-BN; and x and y are the number of B and N atoms in the
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substrate, respectively. The difference between the adsorption energies of the TM atoms
and the cohesive energy of the corresponding base species can be used to assess whether
the metal can be stably anchored on the base material or aggregates to form clusters.

Eads= (E catalysts − Eslab − ETM1 − ETM2)/2

Ecoh= [
(

Ebulk(TM1) − ETM1

)
+

(
Ebulk(TM2) − ETM2

)
]/2

where Ecatalysts and Eslab are the total energies of the TM-doped BN and supports; and
ETM1, ETM2, Ebulk(TM1) and Ebulk(TM2) are the energies of the isolated atom and the single
TM atoms in their bulk structure. The calculated corresponding energies can be found in
Figure 1b and Supplementary Table S1. As revealed in Figure 1b, it is interesting to note
that all the Ef and Eads− Ecoh values are well below zero, indicating the high stability of
the dopant TM atoms.

With respect to DACs, the insertion of dopant TM pairs leads to the change of the
local environment and electronic property [29]. We hence examined the TMs–substrate
interactions by performing the Bader charge analysis. From Figure 1c and Supplementary
Table S2, we found significant electron transfer from the TM atoms to the VB-BN substrate,
ranging from 1.15|e| to 1.97|e|, which supports the strong interactions between the TM
atoms and the VB-BN substrate. However, the electronegativity also affects the electron
transfer of the TM pairs embedded in VB-BN substrate. For instance, the Ti atom, which
has the smallest electronegativity (1.54 e) among all the candidate metal atoms, exhibits a
strong ability to bind to the substrate, accompanying large amounts of electron transfer.
However, for Ru (2.2 e for electronegativity), the electron transfer is not promising among
all the candidates.

2.2. N2 Adsorption and Selectivity on TM1-TM2@VB-BN

Firstly, the capture and adsorption of N2 are prerequisites, meaning that the Gibbs free
energy change (∆G) for stable N2 adsorption should be lower than 0 eV (∆G(*N2)< 0)) [30].
Considering the adsorption of N2, the heteronuclear and homonuclear DACs provide two
adsorption sites and one adsorption site, respectively. Consequently, we totally considered
16 adsorption configurations and calculated the ∆G(*N2) values of N2 terminated on TM1-
TM2@VB-BN in end-on/side-on manners (see Table 1). Moreover, the NRR catalyst should
effectively inhibit competitive HER, which is also an important indicator of the catalyst’s
efficiency. The surface of catalysts must provide enough active sites for N2 activation, so as
to facilitate the subsequent reactions. A stronger adsorption activity of the N2 molecule
is essential for high NRR selectivity, which ensures that the catalyst selectively adsorbs
N2 molecular prior to H [31,32]. As a matter of convenience, we determined the catalytic
selectivity of TM1-TM2@VB-BN through a comparison of the adsorption free energies of
the *N2 and *H atom.

As Figure 2a displays below, all structures have a negative ∆G (*N2), indicating that
the N2 molecule can be stably anchored on the catalyst for subsequent hydrogenation
reactions. For all the DACs, the capture of N2 prefers side-on mode with lower ∆G (*N2)
than that of end-on configurations. Fe-Fe@VB-BN was not displayed, since it has the most
negative ∆G(*N2), at −2.12 eV, and would be detrimental to production and desorption
of NH3. For catalyst selectivity, TM1-TM2@VB-BN in the lower-right region of Figure 2a
is favorable for NRR. Most of the dopant pairs decorated VB-BN are within the area of
∆G(*N2) < ∆G(*H), with the exception of Ti-Mo and Ti-Ru (see Table 1). Our results imply
that these candidates are more inclined to adsorb *N2 and that the adsorption of *N2 is
stronger than that of *H. This means that the coverage of N2 molecules on the surface of
these catalysts is relatively large; that is to say, these candidates show high NRR selectivity.
However, the candidate Ti-Mo/Ti-Ru@VB-BN displayed lower NRR activity when N2
molecules were adsorbed in end-on mode compared to HER, as they were deleted from the
ensemble of catalysts candidates.
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Table 1. Calculated free energy changes for *H (∆G(*H)) and *N2 (∆G(*N2)) on 16 TM1-TM2@VB-BN
catalysts. TM1 is the adsorption site for N2.

Fe-Fe Fe-Mo Fe-Ru Fe-Ti Mo-Mo Mo-Ru

∆G(*H) −0.78 −0.73 −0.54 −0.81 −0.78 −0.81
∆G(*N2)/end-on −1.46 −1.29 −1.31 −1.44 −1.23 −0.99
∆G(*N2)/side-on −2.12 −1.06 −0.96 −1.26 −1.36 −1.1

Mo-Ti Ru-Ru Ru-Ti Ti-Ti Ti-Ru

∆G(*H) −0.80 −0.55 −0.62 −0.93 −0.87
∆G(*N2)/end-on −1.20 −1.12 −1.20 −0.40 −0.78
∆G(*N2)/side-on −1.31 −0.68 −0.89 −1.33 −0.90

Ti-Mo Ti-Fe Ru-Mo Ru-Fe Mo-Fe

∆G(*H) −1.00 −0.89 −0.57 −0.60 −0.87
∆G(*N2)/end-on −0.88 −0.98 −1.05 −1.38 −1.19
∆G(*N2)/side-on −1.07 −1.12 −0.70 −0.83 −1.23
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the TM1-TM2@VB-BN substrate through (b) end-on and (c) side-on pattern. (d) Free energy change
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We also measured the N-N bond length (dN-N) and the charge N2 gained from the base
material, and the relationships between the two are shown in Figure 2b,c. Interestingly,
Figure 2b,c show that the greater the charge accumulation on N2, the longer the N–N bond
length. Upon N2 adsorption, dN-N in terminated N2 is elongated and within the range
of 1.14–1.15 Å(end-on)/1.18–1.26 Å(side-on) (vs1.12 Å in free gas phase), implying that
TM1-TM2@VB-BN candidates are effective in the activation of N2 molecule. In addition,
these data also indicate that the bond length of N2 adsorbed in the side-on configuration
is significantly longer than that in the end-on configuration. This can be attributed to the
fact that when the TM adsorbs N2 in a side-on configuration, both N atoms will bond
with the TM and will mutual repulsion, resulting in a longer N-N bond. Figure 2b also
shows that the catalysts transferred 0.35–0.52 |e| to N2 adsorbed through end-on mode. In
contrast, our results indicate that N2 adsorbed through side-on mode can gain more charge
(0.46–0.86 |e|) from the catalysts, thus activating N≡N triple bond more effectively (see
Supplementary Table S3).

2.3. Catalytic Activity of TM1-TM2@VB-BN

After clarifying the N2 adsorption strength and selectivity, we further studied the catalytic
activity of DACs. Generally, the inevitable first hydrogenation step (*N2 + H- + e−→*N2H)
requires a large energy consumption to break the inert N≡N triple bond and, hence, induces
a positive ∆G. Moreover, the last hydrogenation reaction (*NH2 + H− + e−→*NH3) is
usually achieved with an uphill in ∆G due to the strong combination between the *NH2
species and TM atoms [33]. Therefore, we set the Gibbs free energy change of the first
(∆G*N2→*N2H) and the last hydrogenation step (∆G*NH2→*NH3) at less than 0.6 eV as a
criterion to ensure a low limiting potential. This criterion is half the rate-determining step
of pristine BN (1.20 eV), which is superior to the commonly used metal catalyst Ru (0001)
(0.98 eV).

As portrayed in Figure 2d, the TM1-TM2@VB-BN catalysts in the upper-left region,
corresponding to the structures in the upper-right panel of Figure 2b or Figure 2c, can meet
our restricted value only for the first hydrogenation step. Obviously, these catalysts exhibit
a significant activation of the N2 molecule, which makes the first hydrogenation step easier
to occur. However, too-strong N2 adsorption would lead to the unfavorable formation
and desorption of NH3; hence, the ∆G values of the last hydrogenation reaction for these
systems deviate from our criterion (0.6 eV). In contrast, those catalysts located in the bottom-
left corner of Figure 2b or Figure 2c require a higher energy demand in the formation of
*N2→*N2H. Those catalysts are finally found in the bottom-right area of Figure 2d and
ruled out at this step. Consequently, only the candidates located in the bottom-left area with
moderate N2 adsorption strengths can reach the criteria. Ru-Mo@VB-BN, Ru-Ru@VB-BN
and Ru-Ti@VB-BN show superior NRR activity, along with the least energy requirements for
both the first and last protonation process. In conclusion, Ru-Mo@VB-BN, Ru-Ru@VB-BN
and Ru-Ti@VB-BN are considered to be potential NRR catalysts, and they are discussed in
the following sections. Other structures’ values of ∆G for the two hydrogenation steps are
listed in Supplementary Table S4, respectively.

2.4. Activation Mechanisms of N2 on Ru-Mo/Ru/Ti@VB-BN

To reveal the active origin of NRR, we analyzed the interactions between metal active
sites and reaction intermediates. As shown in Figure 3, we took the most promising
candidates, Ru-Mo@VB-BN, Ru-Ru@VB-BN and Ru-Ti@VB-BN, as the typical systems for
further analysis. Their charge-density-difference plots and key bond length are displayed in
Figure 3. Remarkably, N2 tends to interact with the top Ru atom; hence, we mainly analyzed
the electronic transfer situation between the Ru atom and N2. Obviously, Figure 3 reveals
a significant charge redistribution, which mainly occupies the antibonding orbitals of the
adsorbed N2, leading to the elongation of the N-N bond. Moreover, dN-N (1.18/1.19 Å) of
N2 absorbed in the side-on mode is longer than that in the end-on mode (1.14 Å), and this
resonates with the amount of charge transfer between the TM atom and *N2.
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Figure 3. Optimized structures and change density differences of *N2 on Ru-Mo@VB-BN, Ru-Ru@VB-
BN and Ru-Ti@VB-BN catalysts for (a) end-on and (b) side-on configurations. The key bond lengths
are also given.

In addition, we also compared the activation effect of the TM dimer on N2 by consid-
ering a model of single-atom Ru anchored on VB-BN. Similarly, N2 molecules are adsorbed
on the Ru active site in two manners, and the charge density differences and Bader charge
analysis were also analyzed (see Supplementary Figure S3). For Ru@VB-BN, the single
Ru atom donates 0.34|e| and 0.28|e| to *N2, which is less than the amount of charge
transferred in the case of Ru-Mo/Ru/Ti@VB-BN. Consequently, our simulations confirm
that N2 adsorbed on the DACs can gain more charge from the catalysts, thus activating the
inert N≡N bond more effectively.

To uncover the underlying mechanism of N2 activation, the partial density of states
(PDOS) of bare and N2-terminated Ru-Mo/Ru/Ti catalysts was analyzed. Particularly,
Figure 4a shows four characteristic orbitals, namely 2σ*, 1π, 3σ and 1π*, in free N2 molecular
within the range of −5 ~ 7 eV. As shown in Figure 4d–f, the electrons were obviously
transferred from the occupied Ru 4d orbital to the empty π* orbital of N2 after N2 adsorption.
As a result, the antibonding π* orbitals of adsorbed *N2 on these three catalysts reveal a
significant down-shifting in comparison with isolated N2 molecular. Correspondingly, the
unoccupied d orbitals of the Ru atom accepted the electrons from *N2, forming the Ru-N
bonding state to strengthen the N2 capture, as evidenced by the evident hybridization
between Ru_4d and N_2p orbitals around the Fermi level. In addition, the d-band centers
(εd) of the active Ru sites before the adsorption of N2 molecules for the three catalysts were
also calculated and marked in Figure 4. It can be seen from Figure 4c that the Ru-Ti structure
is easier to adsorb and activate N2 because its εd is closer to the Fermi level. Compared with
the homonuclear diatomic catalyst Ru-Ru@VB-BN, the introduction of coordinating metal
atoms Ti and Mo affects the εd of Ru atom to different degrees. Interestingly, the Ti atom
causes Ru to obtain a higher εd, which can be attributed to the higher electronegativity
of Ti, hence making the activation of Ru-Ti@VB-BN easier for N2. For Ru@VB-BN, we
also calculated its d-band center (see Supplementary Figure S4). In contrast, since the
second metal atom on the surface also interacts with the adsorbate, the d orbitals of both
metal atoms are involved to some extent. Their activities can be reasonably described
by the central location of the PDOS corresponding to the d state. It can be seen from the
numerical value that the diatomic catalyst has higher catalytic activity. Recently, Guo
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et al. suggested that the magnetic moment, µB, of a metal surface plays an important
role in NH3 synthesis [34]. Based on this, we investigated the µB of the Ru active site in
Ru-Mo/Ru/Ti@VB-BN systems (see Supplementary Table S5). The calculated µB values for
Ru atoms in Ru-Mo/Ru/Ti@VB-BN catalysts are 1.55, 1.08 and 1.60, respectively, while the
Ru-Ti@VB-BN system evidently shows the largest magnetic moment. For this reason, the
N≡N tripe bond of the N2 molecule on the magnetic Ru-Ti@VB-BN monolayer is weakened,
thus leading to stronger N2 adsorption.
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Figure 4. Partial density of states (PDOS) of (a) free N2 molecule and Ru 4d orbitals in (a) Ru-Mo@VB-

BN; (b) Ru-Ru@VB-BN and (c) Ru-Ti@VB-BN before N2 adsorption. PDOS of N2p and Ru 4d orbitals 

in (d) Ru-Mo@VB-BN; (e) Ru-Ru@VB-BN and (f) Ru-Ti@VB-BN after N2 adsorption in end-on (upper  

Figure 4. Partial density of states (PDOS) of (a) free N2 molecule and Ru 4d orbitals in (a) Ru-Mo@VB-
BN; (b) Ru-Ru@VB-BN and (c) Ru-Ti@VB-BN before N2 adsorption. PDOS of N2p and Ru 4d orbitals
in (d) Ru-Mo@VB-BN; (e) Ru-Ru@VB-BN and (f) Ru-Ti@VB-BN after N2 adsorption in end-on (upper
panel) and side-on manner (bottom panel). The purple dashed line represents the corresponding
energy level of the d-band center (εd) of the Ru active site, and the Fermi level is set to 0 eV.

2.5. Full Conversion of N2 to NH3 on Ru-Mo/Ru/Ti @VB-BN

Based on the above discussion, we focused on three catalysts (Ru-Mo@VB-BN, Ru-
Ru@VB-BN and Ru-Ti@VB-BN) to search for the most promising catalyst. We canvassed the
full reaction path search through three possible mechanisms: distal, alternative and enzy-
matic mechanisms [35–37]. All of the optimized intermediates along the proposed reaction
mechanisms are illustrated in Figure 5a, and their relevant ∆G values are summarized in
Supplementary Tables S6–S11. As Figure 5b demonstrates, the optimal NRR mechanism for
the Ru-Mo@VB-BN and Ru-Ru@VB-BN systems are both the distal mechanism, while the
Ru-Ti@VB-BN catalyst prefers the enzymatic mechanism. Importantly, the rate-determining
step (RDS) of all catalysts is the first hydrogenation process. Our calculated RDSs for
Ru-Mo/Ru/Ti@VB-BN catalysts are 0.47, 0.54 and 0.40 eV, respectively. Apparently, Ru-
Ti@VB-BN possesses the highest activity, with a limiting potential of −0.40 V through an
enzymatic mechanism. It is worth noting that Ru-Ti@VB-BN exhibits comparable and even
better NRR activity than most of the reported NRR SACs, such as Mo2@PTI (−0.53 V) [38],
Ru@Ti3C2(−0.40 V) [39], Ru2@GDY(−0.55 V) [40], Fe-MoS2(−1.02 V) [41] and Ti@Ru(0001)
(−0.47 V) [42]. In addition, we also considered the effect of van der Waals correction. As
shown in Supplementary Figure S5, the van der Waals correction has no effect on the
rate-determining steps and overall reaction trend of NRR.
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Figure 5. (a) Schematic diagram of the possible reaction mechanisms and geometry structures of the
corresponding intermediate products during the NRR process. (b) Gibbs free energy diagram for
NRR on Ru-Mo@VB-BN, Ru-Ru@VB-BN and Ru-Ti@VB-BN catalysts.

Taking the optimal Ru-Ti@VB-BN as an example, we further examined the evolu-
tion behaviors of the Bader charge of each intermediate along the favorable enzymatic
mechanism. During the whole NRR process, each intermediate was divided into three
parts, namely the defective BN monolayer, the TM dimer and the adsorbed NxHy species.
Figure 6a shows the variations of the Bader charge of three parts, and all the data are sum-
marized in Supplementary Table S12. The adsorbed NxHy and VB-BN can gain electrons
from the Ru-Ti pairs for the N2 adsorption and the former two hydrogenation steps. Then
the electrons of the adsorbed NxHy backflow to the Ru-Ti dimer for the *NNH2 formation.
In the following hydrogenation processes, NxHy species continue to acquire electrons
from Ru-Ti, and the backflow of electrons occur until the subsequent desorption of NH3.
Thus, the defective BN monolayer acts as an electron acceptor during NRR, while Ru-Ti
pairs always reserve as the electron donors in the process of trapping the intermediates.
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Furthermore, we also examined the bond-length variations of N-N, Ru-N and Ru-Ti bonds
(see Figure 6b and Supplementary Table S13). Markedly, the N2 molecule can be properly
activated on Ru-Ti@VB-BN, as is proved by the constant increase (decrease) in dN-N (dRu-N).
When the first NH3 is desorbed, dN-N rapidly increases, signifying the breakage of the N-N
bond and practicability to generate and release the first NH3.
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Figure 6. (a) Charge variations of defective BN monolayer, dopant TM pairs and the adsorbed NxHy

species along the enzymatic mechanism. (b) Bond-length evolutions of N-N, Ru-N and Ru-Ti dimer.
(c) Projected crystal orbital Hamilton populations (pCOHPs) between the TM and N atom in *N2,
*NNH, *NHNH, *NHNH2, *NH2NH2, *NH2 and *NH3 on Ru-Ti@VB-BN. (d) AIMD simulation for
Ru-Ti@VB-BN under 400 K.
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We further performed the projected crystal orbital Hamiltonian population (pCOHP)
analysis to illustrate the bonding-strength evolutions of the Ru-N bond for each NRR
species [43]. Figure 6c shows an increased orbital interaction of the Ru-N bond as the
hydrogenation step continues, and this can be confirmed by the increase of bonding
contributions below the Fermi level. To gain a quantitative indicator, we calculated the
integral value of COHP (ICOHP, a more negative value corresponds to a stronger TM-N
interaction). The obtained ICOHP values of *N2, *NNH, *NHNH, *NH2NH and *NH2NH2
are −1.14, −1.22, −1.29, −1.45 and −1.92, respectively, further proving the gradually
strengthened Ru-N bonding. After the first *NH3 desorbed, the bonding state of Ru-N
reached the strongest interaction, with an ICOHP value of −2.25. For *NH3, the ICOHP
value decreased to −1.05, indicating the weakened Ru-N bond to expedite the formation of
the second NH3.

Afterward, the thermal stability of Ru-Ti@VB-BN was further evaluated by AIMD
simulations, under 400 K for 4 ps, with the time step of 2 fs, as shown in Figure 6d. Obvi-
ously, the total energy converges quickly, and no significant geometrical distortion occurs
over the whole simulation time, implying the relatively high thermodynamic stability
of Ru-Ti@VB-BN. Ru-Ru/Mo@VB-BN exhibits similar behaviors under the same AIMD
simulation conditions (Supplementary Figure S6). On this basis, we can predict that the
established Ru-Ti@VB-BN catalyst is stable at ambient condition and holds great promise
to be synthesized experimentally ahead.

3. Materials and Methods

All of the spin polarized density functional theory (DFT) calculations were performed
by using the projector augmented wave (PAW) formalism and implemented in the Vienna
Ab initio Simulation Package (VASP) [44,45]. Exchange-correlation potential was treated by
the generalized gradient approximation (GGA) in the form of the Perdew–Bruke–Ernzerhof
(PBE) functional [46]. A plane-wave basis set with an energy cutoff of 520 eV was chosen
for all computations, based on our convergence test (see Supplementary Figure S1). A
(4 × 4 × 1) supercell was used to model the defective BN monolayer by removing one B
atom. To avoid interactions between periodic images, a vacuum of 20 Å was set in the
z direction. A Monkhorst–Pack grid of 3 × 3 × 1 was used to sample the first Brillouin
zones. The convergence limits for energy and force were set to 10−5 eV and 0.02 eV Å−1,
respectively. The long-range van der Waals interactions were treated by Grimme’s scheme
(DFT-D3) [47]. A Bader charge analysis was carried out to account for the quantitative
description of charge distribution and charge transfer. In addition, the thermodynamic
stability of the catalysts was investigated by using ab initio molecular dynamics (AIMD)
simulations under the NVT ensemble [48]. The AIMD calculations lasted for 4 ps, with a
time step of 2.0 fs at 400 K.

The change of Gibbs free energy (∆G) of each elementary step for NRR reaction was
calculated by the following equation:

∆G =∆E+∆EZPE − T∆S+∆GpH+eU

where ∆E denotes the reaction energy, which could be directly obtained from DFT calcu-
lations; and ∆EZPE and ∆S are zero-point energy and entropy change at 298.15 K, which
are computed from the frequency analysis [49]. Moreover, ∆GpH is the correction of the H+

free energy in the aqueous solution, which can be calculated by using the formula:

∆GpH= kBT × ln10 × pH

where the kB is the Boltzmann constant and the pH is set to be zero in this work; and e
and U refer to the number of electrons transferred and the applied electrode potential,
respectively. The applied electrode potential of each step is defined as follows:

U =− ∆G/e
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4. Conclusions

In summary, this study locked 10 cage-like dual-atom catalysts anchored in VB-BN
and fully investigated their stability, selectivity and activity. Based on a “three-step”
screening strategy, three promising NRR catalysts, namely Ru-Mo@VB-BN, Ru-Ru@VB-BN
and Ru-Ti@VB-BN, were singled out by the density functional theory calculations. In
particular, Ru-Ti@VB-BN was screened out as the most potential catalyst for NRR, as well
as a favorable limiting potential of −0.40 V, through enzymatic mechanism. Among the
Ru-Mo/Ru/Ti@VB-BN candidates, Ru-Ti dimer exhibits the largest magnetic moment,
which remarkably activates the N2 molecule. Compared with the corresponding SAC
(Ru@VB-BN), Ru-Mo/Ru/Ti dimes contribute more electrons to the molecular N2, which
also ensures a more significant activation of the inert N≡N bond. Moreover, heteronuclear
DACs (Ru-Ti/Mo) can effectively module the d-band center of the Ru active site better
than the homonuclear DACs (Ru-Ru). Hence, Ru-Ti with a d-band center closer to the
Fermi level reduces the RDS values for the first hydrogenation (*N2 + H− + e−→*N2H)
process, due to the highly activated N2 molecule and enhanced adsorption of NNH* with
lower energy. We hope that the findings and insights provide theoretical guidance for the
theoretical design and experimental synthesis of defective boron nitride–hosted DACs.
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(TM = Ti, Fe, Mo and Ru) anchored on the B-vacancy. Table S2. Calculated the amount of the
transferred electrons from the anchored TM atoms to the VB-BN (Q in e) of TM1-TM2@VB-BN.
Table S3. Calculated bond lengths of adsorbed *N2(dN-N in Å) and the amount of charge that *N2
gained from the TM1-TM2@VB-BN catalysts (Q in e). Table S4: Calculated free energy changes of the
first hydrogenation step (∆G*N2→*N2H) and the last hydrogenation step (∆G*NH2→*NH3) for 16 TM1–
TM2@VB-BN catalysts. “/ ” indicates that TM atoms cannot adsorb intermediate *N2H. Table S5: The
magnetic moments (MµB) of TMs in TM1-TM2@VB-BN catalysts. Table S6: The Gibbs free energies
changes for each intermediate on Ru-Mo@VB-BN via distal, alternating and enzymatic mechanisms
at 298.15 K (in eV). Table S7: Computed vibrational frequencies, zero-point energies and entropy of
reaction intermediates on Ru-Mo@VB-BN, where * denotes the adsorption site. Table S8: The Gibbs
free energies changes for each intermediate on Ru-Ru@VB-BN via distal, alternating and enzymatic
mechanisms at 298.15 K (in eV). Table S9: Computed vibrational frequencies, zero-point energies and
entropy of reaction intermediates on Ru-Ru@VB-BN, where * denotes the adsorption site. Table S10:
The Gibbs free energies changes for each intermediate on Ru-Ti@VB-BN via distal, alternating and
enzymatic mechanisms at 298.15 K (in eV). Table S11: Computed vibrational frequencies, zero-point
energies and entropy of reaction intermediates on Ru-Ti@VB-BN, where * denotes the adsorption site.
Table S12: Charge variations of Ru-Ti dimer, VB-BN substrate and NxHy species on Ru-Ti@VB-BN.
Table S13: Bond lengths of Ru-Ti, N-N and Ru-N on Ru-Ti@VB-BN. Table S14: The calculated total
energies (Energy-DFT), zero-points energy (ZPE) and entropy corrections (TS), in eV, for the gas phase
N2, H2, NH3 species of NRR (T = 298.15 K,P = 1 bar). In comparison, the experimental entropies
(TSexp) of the gas phase N2, H2, NH3 species are also shown, which are from NIST standard reference
database. Figure S1. Convergence test on the ENCUT value for the BN primitive cell. Figure S2.
Schematic diagrams of the fully relaxed structures of TM1-TM2 @VB-BN (TM = Fe, Mo, Ru and Ti).
Figure S3. Top and side views of N2 molecule adsorbed on a single Ru atom in (a) end-on and (b)
side-on configuration, respectively. Change density differences of N2 adsorption on Ru@VB-BN
monolayer for (c) end-on and (d) side-on configurations. Figure S4. Projected density of states
(PDOS) of Ru d orbitals in Ru@VB-BN. The red dotted line represents the position of the d-band center.
Figure S5. Gibbs free energy diagram for N2 electroreduction on Ru-Ti@VB-BN with and without
consideration of vdW interaction. Figure S6. Variations of the total energy against the time for the
AIMD simulation for Ru-Mo @VB-BN and Ru-Ru @VB-BN under 400 K.
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