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Abstract: Metalloporphyrins have been studied as biomimetic catalysts for more than 120 years and
have accumulated a large amount of data, which provides a solid foundation for deep learning to
discover chemical trends and structure–function relationships. In this study, key components of
deep learning of metalloporphyrins, including databases, molecular representations, and model
architectures, were systematically investigated. A protocol to construct canonical SMILES for metal-
loporphyrins was proposed, which was then used to represent the two-dimensional structures of
over 10,000 metalloporphyrins in an existing computational database. Subsequently, several state-of-
the-art chemical deep learning models, including graph neural network-based models and natural
language processing-based models, were employed to predict the energy gaps of metalloporphyrins.
Two models showed satisfactory predictive performance (R2 0.94) with canonical SMILES as the only
source of structural information. In addition, an unsupervised visualization algorithm was used to
interpret the molecular features learned by the deep learning models.

Keywords: metalloporphyrin; database; molecular representation; deep learning; property prediction

1. Introduction

Metalloporphyrins are coordination compounds of metal ions and porphyrins or por-
phyrin derivatives, derived from the core structure of cytochrome P450 enzymes [1–4]. As
a recognized class of biomimetic catalysts, metalloporphyrins can catalyze different types
of chemical reactions, mainly reduction and oxidation [1,5–8]. Since the earliest study in
1979 [9,10], experimental chemists have synthesized a variety of metalloporphyrins and
explored their functions in catalysis [11–15]. Meanwhile, computational chemists have
explored the mechanisms of metalloporphyrin-catalyzed reactions using quantum mechan-
ical atomistic simulation methods, mostly density functional theory (DFT) [16–18]. While
continued research using either computational or experimental approaches is necessary, it is
also essential to develop a method that can learn the chemical trends and structure–function
relationships of metalloporphyrins from the available data.

Recently, deep learning has emerged as an effective technique for molecular property
prediction, such as reactivity, synthesizability, solubility, binding affinity, and biological
activity [19–25]. Unlike quantum mechanical methods based on solving Schrödinger’s
equation, deep learning extracts features from a large amount of data generalizes them and
then maps the learned features to labels carried by the data. While quantum mechanical
methods are good at explaining organic chemistry mechanisms on a case-by-case basis,
deep learning models extract the overall trends and relationships from large amounts of
data. In addition, the overall computational cost of deep learning is lower than that of DFT
computations. While it may take hours to days to train deep learning models, once the
models are trained properly, they can make predictions in seconds.

Currently, there are two main challenges in using deep learning models to study
metalloporphyrins. First, although recognized public small molecule databases such
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as PubChem [26], ChemBL [27,28], DSSTox [29], MoleculeNet [30], and ZINC [31] have
adopted the canonical SMILES as one of the representations of molecular 2D structure,
there is no such general molecular representation for metalloporphyrins, which makes it
more difficult to index, merge, read, and process the data. Furthermore, although one of
our previous works showed the possibility of using deep learning models to predict the
properties of molecular complexes, such as solute–solvent pairs [32], metalloporphyrins
have significantly larger structures than “drug-like” small molecule complexes and contain
additional inorganic components (i.e., center metal ions), which may increase the difficulty
for deep learning.

In this study, we first proposed a protocol for assembling the canonical SMILES
for a recognized computational database of metalloporphyrins. Afterward, state-of-the-
art deep learning models, including three graphical neural network models (hereinafter
referred to as molecular graph-based model) and two attention-based natural language
processing models (hereinafter referred to as string-based model), were trained on this
database and tested for energy gap (E gap) prediction. In addition, the molecular features
extracted by these models were visualized using a big data-based visualization algorithm
for better interpretability. The overall workflow of this study is shown in Figure 1.
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2. Results
2.1. Establishing Canonical SMILES for Porphyrins and Metalloporphyrins

To the best of our knowledge, no canonical SMILES rules have been established for
porphyrins or metalloporphyrins prior to our study, probably due to their more complex
structures compared to “drug-like” small molecules. Most small molecule databases,
such as ZINC, PubChem, and ChemBL, provide canonical SMILES representing the two-
dimensional (2D) structure of molecules, while the Porphyrin Based Dyes Database (PBDD)
provides the molecular formula (e.g., ZnC56H46N4O11), the short name of side groups
(e.g., TMP), and the metal center (e.g., ZnP). The establishment of canonical SMILES
for porphyrins and metalloporphyrins not only facilitates the use of existing databases
(e.g., PBDD) for deep learning studies, but also encourages the entire research community
to store existing and newly designed porphyrin and metalloporphyrin structures in a big-
data format.

Therefore, we implemented a framework that allows the assembly of canonical SMILES
for molecules in PBDD (Figure 2). First, translations from short names of side groups as
well as metal centers to their corresponding SMILES fragments were established (e.g., FPh
to C1(=C(C(=C(C(=C1[F])[F])[F])[F])[F]), ZnP to [Zn]) (Figure 2, top). Next, these SMILES
fragments were concatenated to the SMILES of the porphyrin backbone in a predetermined
order to produce the final canonical SMILES for the entire molecule (Figure 2, lower).
We designed the concatenation following the pattern of a limited number of examples of
metalloporphyrins in PubChem, including porphyrin (CID 66868), Porphyrin Fe(Iii) (CID
73154880), meso-Tetra(4-carboxyphenyl)porphine (CID 86278368), and Mn-TCPP (CID
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23789711). All of the established canonical SMILES built for PBDD have been validated by
RDKit [33,34].
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2.2. Comparing the Performance of Deep Learning Models

Using the SMILES representation of the molecular structure as a feature and E gap as
a target, PBDD was used to train several deep learning models. The data were randomly
split into a training set and a test set with a split ratio of 8:2. These models were trained with
the default hyperparameters of their original architectures. For each model, the distance
between the predicted and computed E gap was visualized and presented as a scatter
plot of the linear regression fit (e.g., Figure 3 left column). In addition, the overlap of the
distributions of the predicted and the computed E gap was also shown as a histogram
(e.g., Figure 3 right column). To ensure the reproducibility of the models, the training and
test of the models were repeated 10 times, and the averaged results are provided in the
Supplementary Materials Figure S4.

2.3. Molecular Graph-Based Model Results

As shown in Figure 3 (left column), as the molecular graph-based models evolve from
the earliest GCN to MPNN to D-MPNN, the prediction and generalization ability of these
models for metalloporphyrins improves. From the GCN to MPNN, the R2 of the test set
improved from 0.9027 to 0.9316, while the RMSE and MAE decreased from 0.1329 eV and
0.1108 eV to 0.1137 eV and 0.0949 eV, respectively. The results of D-MPNN show a similar
improvement compared to MPNN, with R2 improving from 0.9316 to 0.9446 and RMSE
and MAE decreasing from 0.1137 eV and 0.0949 eV to 0.1014 eV and 0.0872 eV, respectively.
Meanwhile, the overlap between the measured data and the data predicted from GCN,
MPNN, and D-MPNN showed a steady increase, reflecting their improved predictive
power from a different perspective (Figure 3, right column).
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the graph structure. The left column shows the regression plot of the model predictions, and the right
column shows the distribution plot of the model prediction data and the data stored in the database.
The larger area of the overlap in the data distribution plot on the right indicates better performance
of the model prediction.

Compared to GCN, MPNN has a modularized message passing stage, which makes
the model construction more suitable for molecular graph algorithms [19] and possibly
leads to its better performance than GCN in metalloporphyrin E gap prediction. On the
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other hand, GCN and MPNN pass atom-centric information, whereas D-MPNN passes
information across the molecule centering on directed bonds [22], which may lead to
prediction with higher R2, less error, and more significant overlap with true results.

2.4. String-Based Model Results

Based on the regression plots (Figure 4, left column), the performance of the BERT
model (R2 = 0.9371, RMSE = 0.1117 eV, MAE = 0.0951 eV) is significantly better than the
Transformer (R2 = 0.7111, RMSE = 0.2344 eV, MAE = 0.1812 eV). At the same time, the
overlap of measured data and the BERT predicted data is significantly larger than that of
the Transformer.
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2.5. Transfer Learning Results

Transfer learning strategies were used to further improve the performance of the
String-based models. The transfer learning of the Transformer is implemented directly on
the ChemBERTa [35] architecture. The model was first pretrained using the data collected
from PubChem and ZINC15 and then fine-tuned with the PBDD database.

The best pre-trained model named ‘PubChem10M_SMILES_BPE_396_250′ was se-
lected from the ChemBERTa (detailed comparison results are provided in the Supplemen-
tary Materials Figure S5). Compared to the model without transfer learning, the R2 of
Transformer was improved to 0.8010, and the RMSE and MAE were reduced to 0.1965 eV
and 0.1524 eV, respectively (Figure 5).

The data used for pretraining BERT consisted of 1,000,000 molecules randomly se-
lected from the ZINC15 database. Fine-tuning the pretrained BERT model with PBDD
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improved the R2 to 0.9372 and decreased the RMSE and MAE to 0.1114 eV and 0.0919 eV, re-
spectively (Figure 6). It is worth noting that the pretraining phase of BERT is unsupervised
learning, i.e., the pretraining only extracts structural information from the input SMILES.
Although the molecules of ZINC15 are small, metal-free organic molecules with structures
significantly different from metalloporphyrins, the BERT model still learns features from
these small molecules, which significantly improves its predictive power.

Figure 5. Results of the prediction sets for the Transformer Model with transfer learning.

Figure 6. Results of the prediction sets for the BERT Model with transfer learning.

2.6. Comparing the Computational Costs of Different Models

To understand the computational cost of the deep learning models in this study, the
runtime of each model, including data reading, feature extraction, and model training, was
recorded on an NVIDIA GeForce RTX 3060 Lite Hash Rate platform, as well as the epochs
to achieve the above performance. Table 1 shows that the models without transfer learning
need fewer than 1000 s to complete the training, while fine-tuning training on pretrained
models consumes even less time (210 s).

2.7. Mapping the Chemical Space of the Porphyrin Database under the D-MPNN Model and
BERT Model

We used the TMAP algorithm and the Faerun visualization library [36] to visualize the
chemical space of PBDD with the features extracted by the D-MPNN model (Figure 7a,b)
and BERT model (Figure 7c,d), the final output of the high-dimensional feature vectors
from the feature extraction layers of each model. The color bars in the upper panels (a and
c) depend on the value of the energy gap (red indicates a higher value and blue indicates
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a lower value), while in the lower panels (b and d) the color shows the classifications of
center metal. Figure 7 shows that the clustering and trends observed on the TMAP of the
features extracted by D-MPNN are more correlated with the energy gap, while the features
extracted by BERT are more correlated with the structure of molecules. This difference
coincides with the structural difference between the two models—the feature extraction
layers of BERT are trained mainly in the unsupervised training stage, which relies only on
the structure of molecules, while D-MPNN follows traditional supervised learning, where
the weights of feature extraction layers are adjusted according to the target.

Table 1. Training time and epochs for each model.

Model Time (s) Epochs

Transformer 825.30 5
Transformer_transfer 195.60 2

BERT 621.84 10
BERT_transfer 204.45 3

GCN 673.96 20
MPNN 538.59 50

D-MPNN 935.43 30
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3. Discussion

Databases, molecular representations, and model architectures are the three key com-
ponents of deep learning for chemistry. The protocol presented in this study for assembling
canonical SMILES of metalloporphyrins fills the gap between traditional metalloporphyrin
databases such as PBDD (which do not have SMILES) and the state-of-the-art chemical
deep learning models (which typically use SMILES as input). We encourage scientists
in the metalloporphyrin research community to use canonical SMILES to represent the
2D structures of metalloporphyrins, not only for deep learning, but also for easier data
indexing, searching, and curation.

Excitingly, both D-MPNN and BERT achieved satisfactory performance in predicting
the E gap of metalloporphyrin with canonical SMILES as the only source of structural
information. Although it is difficult to assess the results by comparing them with the
performance of these models on small molecules, the distribution of predicted results and
computed results (Figures 3 and 4) shows clear overlaps.

Furthermore, we must emphasize that all the deep learning models tested in this study
do not require any feature engineering (i.e., manually selection of molecular features to be
provided to the models). Moreover, these models read structural information directly from
the SMILES without the need to compute molecular descriptors or fingerprints. This is in
contrast to an earlier study by Li, et al. which used traditional physicochemical descriptors
as molecular representations and traditional machine learning algorithms (such as Lasso,
kernel ridge regression (KRR), support vector machine (SVM), and feedforward artificial
neural networks (ANNs)) as models [37]. The performance of our approach in energy gap
prediction is comparable to the work of Li, et al. Considering the computational and labor
resources saved from feature engineering and descriptor computation, our method is more
efficient and economical.

Furthermore, both molecular graph-based and string-based deep learning models
have been successfully used to predict forward reaction outcomes, retrosynthesis planning,
and reaction condition recommendations [19,38–45], using SMILES-based graphical repre-
sentations or reaction SMILES as input to the model instead of molecular descriptors and
fingerprints. Therefore, one of our future works will combine the high-throughput DFT
computation and the deep learning models to study the relationships of metalloporphyrin
structures and selectivity in the catalysis of reduction and oxidation reactions.

4. Materials and Methods
4.1. Database
4.1.1. Porphyrin-Based Dyes Database

To the best of our knowledge, the Porphyrin-based Dyes Database (PBDD) [46,47] at
the Computational Materials Repository (https://cmrdb.fysik.dtu.dk/dssc/ (accessed on
12 November 2022)) is the largest computational database of porphyrins/metalloporphyrins
published online. PBDD contains 12,096 porphyrin structures—10,080 of them are metallopor-
phyrins and the rest are porphyrins without any central metal. In addition, 4032 molecules
have hydrogen substituted by fluorine at the β-position. Each porphyrin molecule contains
three aromatic side groups and an anchoring group that serves as an anchor point for the
semiconductor carrier.

The properties of porphyrins in PBDD include frontline orbital energy levels (HOMO
and LUMO), an optical gap, and an energy gap. Among these properties, the energy gap is
often chosen to represent the ability of metalloporphyrins to act as reduction catalysts [48].
The energy gap data in the database shows a normal distribution without any significant
data imbalance or outliers (Figure 8).

https://cmrdb.fysik.dtu.dk/dssc/
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4.1.2. Databases for Transfer Learning

Two databases from ZINC15 and PubChem were selected as pretraining databases for
transfer learning. The goal of transfer learning is to familiarize the model with the basics
of chemical structure, such as atoms, bonds, and function groups. ZINC15 is a publicly
accessible database containing more than 230 million purchasable compounds in 3D formats
for virtual screening [31] (https://zinc15.docking.org/ (accessed on 16 November 2022)).
In this study, a randomly selected subset of 1 million molecules from ZINC15 was used as
a dataset for pretraining. PubChem [26] is the world’s largest free repository of chemical
information, which records the structural information, activity data, and other relevant
information for 112 million compounds. We selected a subset of 10 million molecules of
PubChem compounds as another pretraining dataset.

4.2. Structural Representation

We use the simplified molecular-input line-entry system (SMILES) [49] to describe the
structure of a molecule. For example, a porphyrin molecule without any substituents or central
metal is shown as ‘C1=CC2=CC3=CC=C(N3)C=C4C=CC(=N4)C=C5C=CC(=N5)C=C1N2′.

4.3. Model Names and Architecture

The models used in this study are from the two most commonly used chemical deep
learning classes, namely graph neural networks based on graph structure and attention-
based natural language processing models. Depending on the form of molecular represen-
tation data desired by the model, it will be referred to as molecular graph-based model
and string-based model. A brief description of each model is given below, and detailed
information can be retrieved in the Supplementary Materials.

4.3.1. Graph Convolutional Neural Network (GCN)

A graph neural network propagates information about nodes and edges in a non-
Euclidean graph, and then compares the results of multiple propagations with existing
results to update parameters in the model for training purposes. A graph structure model
that contains convolutional layer(s) is called a graph convolutional neural network (GCN).
In this study, we used the GCN model architecture [50] and corresponding featurizer [51]
implemented by DeepChem [52].

4.3.2. Message Passing Neural Network (MPNN)

MPNN is obtained by modularizing the convolution operation in the graph con-
volutional neural network into two parts—a message passing stage and a state update
stage. In this study, we implemented an MPNN model following the tutorial of Keras [53]
(https://keras.io/ (accessed on 12 November 2022)). Meanwhile, RDKit was used
(https://www.rdkit.org/ (accessed on 12 November 2022)) to extract the molecular fea-
tures including the symbol (element), the number of valence electrons, the number of
hydrogen bonds, orbital hybridization, bond type, and conjugation.

https://zinc15.docking.org/
https://keras.io/
https://www.rdkit.org/
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4.3.3. Directed Message Passing Neural Network (D-MPNN)

D-MPNN is a further update of MPNN. D-MPNN uses messages associated with
directed edges (bonds) instead of using messages associated with vertices (atoms). In
contrast to atom-based message passing methods such as MPNN, bond-based message
passing methods such as D-MPNN allow fixed message passing directions, thus avoiding
unnecessary loops in the message passing trajectory [54]. We used the model architec-
ture developed by Yang et al. [22], which reads both the atomic and chemical bonding
information of the molecules as well as the molecular descriptors.

4.3.4. Transformer

Transformer [55] is a relatively new class of NLP models based entirely on attention
mechanisms [56], which show a powerful ability in modeling sequential data [57]. The
underlying structure of Transformer models consists of a multi-layer encoder-decoder
architecture like the seq2seq model, where a multi-headed attention mechanism is used
in each encoder and decoder. A previous study used the Transformer model to make
predictions about molecular properties [35]. We used the Transformer architecture provided
by Simple Transformers [58] (https://simpletransformers.ai/ (accessed on 16 November
2022)). When transfer learning is performed, Transformer's pre-trained model is called via
hug-gingface [59].

4.3.5. Bidirectional Encoder Representation from Transformers (BERT)

The BERT model is a pre-trained language representation model based on the trans-
former model [60]. A new masked language model (MLM) was employed so that deep
bidirectional language representations can be created. In this study, we use the BERT
model architecture rxnfp built by Schwaller et al. [43], which has been adapted for chemical
reaction yield prediction [38,41] and molecular property prediction [32].

4.3.6. Tree MAP (TMAP)

TMAP (http://tmap.gdb.tools (accessed on 16 November 2022)) is an algorithm that
visualizes high-dimensionality data as a two-dimensional tree, preserving global and
local features with a sufficient level of detail for human inspection and interpretation [36].
In this work, the TMAP algorithm was applied to visualize the molecular features of
metalloporphyrins extracted by the deep learning models.

5. Conclusions

In this study, deep learning of metalloporphyrins was investigated from three im-
portant perspectives: database, molecular representations, and model. A protocol for
assembling canonical SMILES was developed to make the open-source metalloporphyrin
database PBDD available for the training of state-of-the-art deep learning models. Both the
D-MPNN and the BERT models trained on PBDD had R2 above 0.93 in terms of energy gap
prediction. It is worth mentioning that we only used data from one database because other
data on metalloporphyrins are scattered in various papers and difficult to collect in a short
time. Therefore, in the future, we plan to use deep learning-assisted automatic literature
data extraction methods [61,62] to curate another metalloporphyrin database containing
data with more diverse structures. In parallel, we are preparing to publish another study to
develop a high-throughput DFT method to compute the energy gaps of metalloporphyrins
that have appeared in literature in recent years, with a wider variety of central metals,
since only Ti and Zn are available in PBDD. On the other hand, we are also extending
the SMILES representation of metalloporphyrin molecules to metalloporphyrin-catalyzed
reactions in order to use deep learning models for reaction prediction to study the catalysis
of metalloporphyrin. Furthermore, we are studying metalloporphyrins using Graphormer,
an advanced Transformer model that combines the advantages of graph representation
with the power of Transformer and shows better performance than message passing-based
GNNs [53,57,58].

https://simpletransformers.ai/
http://tmap.gdb.tools
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