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Abstract: Traditional procedures for oxidation processes suffer from a lack of selectivity, the use
of organic solvents, the toxicity of the reagents, and waste production. As a cleaner alternative,
highly dispersed Co over 12-tungstosilicicacid modified zirconia was synthesized and used for the
selective oxidation of benzyl alcohol and styrene with molecular oxygen to carbonyl compounds
under environmentally benign solvent-free conditions. The supremacy of the present catalyst lies
in achieving excellent selectivity (>90%) for products with a very high turnover number. The
catalytic activity of the recycled catalysts was also explored under optimized conditions to confirm
sustainability. Further, the viability of the catalyst was studied via oxidation of various alcohols and
alkenes under optimized conditions as well as superiority by comparison with the reported catalysts.

Keywords: cobalt; 12-tungstosilicicacid; heterogeneous catalysis; oxidation; carbonyl compounds

1. Introduction

Keggin heteropolyacids (HPAs; Ha[XM12O40]; X = P, Si; M = W, Mo etc.) have been
gaining importance due to their numerous advantages, including tunable acidic and redox
properties of the HPAs, making them sustainable alternatives as catalysts for vital organic
transformations [1,2]. Further, the replacement of protons in the secondary structure of
HPAs with different cations facilitates the development of catalysts with modified physic-
ochemical properties such as acidity, redox, solubility, porosity, and thermal stability for
the desired applications [1,3]. In the last decade, various metal-exchange HPAs (M’yHa-
y[XM12O40]; M’ = Cs, Co, Zr, Al, Fe, Cr, Sn, Cu, Zn, Pd) have been developed for oxida-
tion [4,5], esterification-transesterification [6–8], oxidative esterification [9], acetylation [10],
Friedel–Crafts acylation [11], etherification [12], dehydration [13], and hydrogenation re-
action [14]. The reported M’yHa-y[XM12O40] with altered properties often demonstrated
better catalytic activities as compared with the parent HPAs.

Towards the same, our group has contributed significantly to “metal exchanged-
supported HPA” catalytic systems, e.g., synthesis of Co- [15], Pd- [16–18], Ni- [19], and
Fe-exchange HPAs [20] and their applications for oxidation, C–C coupling, oxidative esteri-
fication, and hydrogenation. The reports suggested that these materials possess additional
advantages such as freedom to exchange/incorporate metal in the range of 0.1 to 10 wt%
of supported HPAs depending on the requirement of the reaction and nature of supports,
improved dispersion of exchanged metal, chemical stability (i.e., leaching resistance), and
decrease in cluster size, subsequently resulting in better performance of the catalysts.
Among the transition metals, cobalt-containing catalytic systems [21,22] have been proven
as efficient substitutes of stoichiometric metal- based-oxidants [23] for oxidation reactions
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with air or molecular oxygen as an oxidant. A literature survey shows that number of
studies on Co-incorporated polymers [22], zeolites [24–26], MOFs [27,28], silica [29], and
other supports [30,31], catalyzed oxidation of alkenes and alcohols are reported. To the
best of our knowledge, only one research paper on Co-exchanged supported HPAs has
been reported and that was from our group only [15]. Despite the superiority of Co as
well as supported HPAs, no reports on Co-exchanged supported HPAs are available in the
literature since 2010. Further, in oxidation chemistry, air or O2 as an oxidant is considered
one of the sustainable alternatives in the context of cost and environmental factors [32].
Thus, it would be of interest to develop highly dispersed Co over supported HPAs for
oxidation of alcohols and alkenes with O2 as an oxidant.

Thus, in the present study, synthesis of highly dispersed Co(II) on 12-tungstosilicic
acid (TSA) modified zirconia (ZrO2) was attempted. In order to derive thermal stability
as well as the chemical and structural environment, various physico-chemical techniques
were employed including thermo-gravimetric analysis (TGA), elemental analysis, Fourier
Transform Infrared (FT-IR) spectroscopy, N2-physisorption, and X-Ray Diffraction (XRD).
Further, the presence of highly dispersed Co (along with other element) was also confirmed
by TEM and elemental mapping. The catalytic activity was investigated for oxidation
of benzyl alcohol and styrene as model reactions with O2 as an oxidant and tert-Butyl
hydroperoxide (TBHP) as an initiator under solvent-free conditions. The viability of hetero-
geneous Co/TSA-ZrO2 was explored for different alcohols and alkene substrates under
optimized conditions. Further, stability and recyclability studies were also carried out.

2. Results and Discussion
2.1. Characterization

The cobalt estimation analysis showed that the Co/TSA-ZrO2 contains 1.29 wt% Co
(and 1.38 wt% Co from TEM EDS), i.e., 12.9 mg/g of TSA-ZrO2.

TSA-ZrO2 exhibited (Figure 1) 11.5% weight loss up to 100 and 180 ◦C, respectively,
due to the removal of adsorbed water as well as the water of crystallization. Similarly,
Co/TSA-ZrO2 (Figure 1) showed weight loss of 18% up to 180 ◦C for loss of water molecules.
The additional weight loss of about 7% may be due to the loss of acetate ions. Both
the materials showed minor weight loss (4%) in the region 200–500 ◦C indicating the
synthesized materials are stable up to 500 ◦C.
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Figure 1. TGA of TSA-ZrO2 and Co/TSA-ZrO2.

The FT-IR of TSA, TSA-ZrO2, and Co/TSA-ZrO2 are represented in Figure 2. All the
synthesized materials showed a band in the region 3390–3370 cm−1 for O–H stretching,
and at around 1617 cm−1 for H–O–H bending mode vibrations. TSA evinced major
characteristic bands at 1017 cm−1 υas(Si-Oa), 976 cm−1 υas(W = Ob), 907 cm−1 υas(W–Oc–
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W) and 742 cm−1 υas(W–Od–W). The TSA-loaded ZrO2. i.e., TSA/ZrO2 showed identical
peak values to TSA, suggesting the presence of unfragmented TSA on the surface of ZrO2.
A weak band at 592 cm−1 was assigned to the Zr–O–H bending vibration. Similar to the
counter components, Co/TSA–ZrO2 also exhibited all the characteristic bands of TSA–ZrO2.
Besides, the new bands appearing at 1552, 1416 cm−1 as well as 511 cm−1 may correspond
to the presence of acetate ion and Co–O vibration, respectively [33].
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Figure 2. FT-IR of TSA, TSA–ZrO2 and Co/TSA–ZrO2.

Figure 3 represents the result of N2-physisorption analysis of ZrO2 and Co/TSA–
ZrO2. The nature of the N2 adsorption–desorption isotherm curves for both the materials
showed the Type II hysteresis, with a sharp uptake at p/po- 0.4–0.9 related to unrestricted
monolayer-multilayer adsorption in a wide range of meso-to-macropores [34]. The ob-
served results were further confirmed by BJH pore size distribution (Figure 3 inset). The
BET surface area value of Co/TSA-ZrO2 (124 m2/g) was found lower as compared with
ZrO2 (170 m2/g). Additionally, a decrease in single-point adsorption pore volume for
Co/TSA–ZrO2 (0.046 cm3/g) as compared with ZrO2 (0.071 cm3/g) suggested the incorpo-
ration of Co as well as TSA to ZrO2. n-Butyl amine acidity values indicate that, as expected,
acidity of TSA–ZrO2 (1.13 mmole/g) was higher as compared with ZrO2 (0.89 mmole/g),
acidic. At the same time, Co/TSA–ZrO2 (0.96 mmole/g) showed lower acidity as compared
with TSA–ZrO2, and this may be due to the exchange of available surface protons with
Co(II).

Catalysts 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 3. Nitrogen physisorption analysis of ZrO2 and Co/TSA-ZrO2. 

TEM images (Figure 4) of Co/TSA-ZrO2 confirmed the presence of Co, W, Zr, Si, and 

O in the synthesized catalyst. Further, mapping of W and Co showed absences of any 

agglomeration of W (even at 30% loading of TSA) and Co, indicating higher dispersion of 

metal centres throughout the matrix. The Co/TSA–ZrO2 showed overall bulk morphology 

similar to typical ZrO2 [35]. 

 

Figure 4. TEM and Elemental mapping of Co/TSA–ZrO2. 

2.2. Catalytic Activity 

2.2.1. Oxidation of Alcohol 

To optimize reaction conditions, oxidation of benzyl alcohol and styrene were se-

lected as model reactions. Further to confirm the conversion of substrates is solely due to 

the activity of the Co/TSA–ZrO2, all the reactions were carried out under catalyst-free 

conditions. The absence of major oxidation products of (1) benzyl alcohol, i.e., benzal-

dehyde and benzoic acid as well as (2) styrene, i.e., styrene oxide, benzaldehyde, phe-

nylacetaldehyde, and 1-phenylethane-1,2-diol, confirmed that no oxidation occurred 

under catalyst-free conditions.  

Oxidation of Benzyl Alcohol 

The effect of various parameters such as reaction temperature, catalyst dosing, reac-

tion, and time was studied comprehensively to achieve optimum activity Co/TSA–ZrO2 

with maximum selectivity of benzaldehyde.  

Figure 3. Nitrogen physisorption analysis of ZrO2 and Co/TSA-ZrO2.



Catalysts 2022, 12, 1622 4 of 13

TEM images (Figure 4) of Co/TSA-ZrO2 confirmed the presence of Co, W, Zr, Si, and
O in the synthesized catalyst. Further, mapping of W and Co showed absences of any
agglomeration of W (even at 30% loading of TSA) and Co, indicating higher dispersion of
metal centres throughout the matrix. The Co/TSA–ZrO2 showed overall bulk morphology
similar to typical ZrO2 [35].
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2.2. Catalytic Activity
2.2.1. Oxidation of Alcohol

To optimize reaction conditions, oxidation of benzyl alcohol and styrene were selected
as model reactions. Further to confirm the conversion of substrates is solely due to the
activity of the Co/TSA–ZrO2, all the reactions were carried out under catalyst-free condi-
tions. The absence of major oxidation products of (1) benzyl alcohol, i.e., benzaldehyde and
benzoic acid as well as (2) styrene, i.e., styrene oxide, benzaldehyde, phenylacetaldehyde,
and 1-phenylethane-1,2-diol, confirmed that no oxidation occurred under catalyst-free
conditions.

Oxidation of Benzyl Alcohol

The effect of various parameters such as reaction temperature, catalyst dosing, reaction,
and time was studied comprehensively to achieve optimum activity Co/TSA–ZrO2 with
maximum selectivity of benzaldehyde.

• Effect of temperature

The reaction temperature considerably affects the rate of the reaction and subsequently
activity of the catalytic systems. Thus, the reaction progress was studied at 60, 70, 80, and
90 ◦C at constant catalyst amount (100 mg) and time (24 h). The data (Figure 5) showed
that a significant increase in conversion of benzyl alcohol was achieved with an increase
in reaction temperature and reached optimum at 90 ◦C. On other hand, an increase in
temperature disfavored the selectivity of the benzyl alcohol. The decrease in selectivity
of benzaldehyde from >99% to 90% is due to further oxidation to benzoic acid. It is also
expected that the temperature higher than 90 ◦C would further reduce the selectivity of the
carbonyl product. Thus, the temperature was fixed at 90 ◦C for further optimization.
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Figure 5. Effect of temperature; Conversion is based on benzyl alcohol; benzyl alcohol (100 mmol);
TBHP (0.15 mmol); amount of catalyst (100 mg); O2 balloon 1 atm; TBHP (0.15 mmol); time (24 h);
BzCHO—Benzaldehyde; BzCOOH—Benzoic acid.

• Effect of catalyst amount

The effect of the amount of Co/TSA–ZrO2 on the activity and selectivity was studied
by carrying out the reaction at 90 ◦C, with 20, 40, 60, 80, and 100 mg of catalyst. From the
results (Figure 6) it can be observed that with an increase in Co/TSA–ZrO2 amount from
20 mg (0.258 mg Co; 4.6 mg TSA) to 100 mg (1.29 mg Co; 23 mg TSA), conversion increased
from 29% to 41%. In other words, the higher TSA concentration has no substantial effect
on the conversion of benzyl alcohol and the progression of the present catalytic reaction
mainly depended on the Co content. However, the combined effect of Co and TSA cannot
be ruled out and the role of TSA is explained in the control experiment. Further, catalysts
particles at higher amount showed agglomeration under neat reaction conditions, resulting
in blocking of active sites and insignificant increase in conversion was observed. Another
reason for a relatively minor increase in activity may be due to mass transport limitations
above 40% conversion. Thus, 100 mg Co/TSA–ZrO2 with 41% conversion of benzyl alcohol
and 90% selectivity of benzaldehyde was optimized for further studies.
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• Effect of reaction time

The progress of reaction at different time from 4 h to 24 h with 4 h interval was
monitored, and the effect on conversion and selectivity was investigated (Figure 7). From
Figure 7 it can be observed that with the time (up to 20 h) conversion of alcohol increased
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significantly with a slight decrease in selectivity in the later stage (after 16 h). The minor
increase in conversion was observed at 24 h, suggesting the catalytic system reached near
the equilibrium. Further, the reaction time promoted over-oxidation of benzaldehyde
to benzoic acid was also observed. Thus, the optimized condition for benzyl alcohol
conversion (>41%) with >90% selectivity of benzaldehyde is: 100 mg Co/TSA–ZrO2, time:
24 h, and temperature: 90 ◦C.

Catalysts 2022, 12, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 6. Effect of catalyst amount; conversion is based on benzyl alcohol; benzyl alcohol (100 

mmol); TBHP (0.15 mmol); temperature (90 °C); O2 balloon 1 atm; time (24 h); BzCHO- Benzalde-

hyde; BzCOOH- Benzoic acid. 

• Effect of reaction time 

The progress of reaction at different time from 4 h to 24 h with 4 h interval was 

monitored, and the effect on conversion and selectivity was investigated (Figure 7). From 

Figure 7 it can be observed that with the time (up to 20 h) conversion of alcohol increased 

significantly with a slight decrease in selectivity in the later stage (after 16 h). The minor 

increase in conversion was observed at 24 h, suggesting the catalytic system reached near 

the equilibrium. Further, the reaction time promoted over-oxidation of benzaldehyde to 

benzoic acid was also observed. Thus, the optimized condition for benzyl alcohol con-

version (>41%) with >90% selectivity of benzaldehyde is: 100 mg Co/TSA–ZrO2, time: 24 

h, and temperature: 90 °C. 

  

Figure 7. Effect of reaction time; conversion is based on benzyl alcohol; benzyl alcohol (100 mmol); 

TBHP (0.15 mmol); temperature (90 °C); O2 balloon 1 atm; amount of catalyst (100 mg); BzCHO- 

Benzaldehyde; BzCOOH- Benzoic acid. 

Scope and Limitations for Oxidation of Various Alcohols 

To explore the viability of the present catalyst Co/TSA–ZrO2, a reaction was carried 

out for various alcohols under the optimized conditions (Figure 8). From Figure 8, it is 

observed that in all the cases excellent selectivity (90%–99%) for desired carbonyl prod-

ucts was obtained. Further, it is clear that oxidation of benzylic alcohol was compara-

tively facile compared with secondary and aliphatic alcohols. Despite this, secondary 

0

20

40

60

80

100

20 40 60 80 100

%

Amount of Catalyst (mg)

Conversion BzCHO BzCOOH

0

20

40

60

80

100

4 8 12 16 20 24

%

Time (h)

Conversion BzCHO BzCOOH

Figure 7. Effect of reaction time; conversion is based on benzyl alcohol; benzyl alcohol (100 mmol);
TBHP (0.15 mmol); temperature (90 ◦C); O2 balloon 1 atm; amount of catalyst (100 mg); BzCHO—
Benzaldehyde; BzCOOH—Benzoic acid.

Scope and Limitations for Oxidation of Various Alcohols

To explore the viability of the present catalyst Co/TSA–ZrO2, a reaction was carried
out for various alcohols under the optimized conditions (Figure 8). From Figure 8, it is
observed that in all the cases excellent selectivity (90%–99%) for desired carbonyl products
was obtained. Further, it is clear that oxidation of benzylic alcohol was comparatively
facile compared with secondary and aliphatic alcohols. Despite this, secondary alcohol
showed significantly higher conversion than aliphatic alcohols. Almost all the substrates
conversion showed good to excellent TON with the present catalytic system. The activation
of long-chain aliphatic alcohols over Co/TSA-ZrO2 is still a challenging objective and
requires efforts in studies related to experimental designs, chemometrics, etc.
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2.2.2. Oxidation of Alkenes

Optimization was also performed for oxidation alkenes (styrene as a model substrate)
by varying reaction parameters under solvent-free conditions using environmentally benign
oxidant O2 (Figure 9a–c), similar to oxidation of benzyl alcohol. The reported oxidation
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of styrene reaction follows oxidative cleavage of C=C rather than epoxidation, and thus
benzaldehyde was observed as a major product (>92%), and styrene oxide and benzoic acid
minor products (<8%). In addition to this, similar trends were observed for effect of time,
amount of catalysts, and temperature. However, the oxidation of styrene was found quite
susceptible to temperature over 80 ◦C and time beyond 4 h. for both the cases decrease in
the selectivity of carbonyl product was found due to the formation of unidentified sticky
side-products. Thus, the optimized condition for styrene conversion (>48%) with >92%
selectivity of benzaldehyde is as follows: styrene (100 mmole); Catalyst amount (150 mg);
reaction time (4 h); temperature (80 ◦C).
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Depending on the reaction conditions, the alkenes typically oxidized to their epoxides
either as a product or an intermediate product. However, in the present cases (Figure 9d),
styrene derivatives transformed to stable product carbonyl compounds with excellent
selectivity and high TON and TOF were observed as major products via (i) direct oxidative
cleavage of C=C and/or (ii) conversion of epoxides to carbonyl compounds. It is well
known that the catalytic transformation involved TBHP and metal based active centers
prefer to follow an oxidative cleavage route over epoxidation [36]. further, the obtained
results are in good agreement with the reported oxidation reactions under similar reaction
conditions [37]. However, in the case of cyclohexene, very low conversion (<6%) with
epoxidation product was observed. This could be attributed to the stability of the cyclic
structure as well as lower reactivity of Co/TSA–ZrO2 towards cyclic olefins. Thus, the
reported catalytic system is not pertinent to the oxidation of cyclic olefins.

2.2.3. Control Experiment

Under the optimized reaction conditions, ZrO2 was found inactive for both the oxida-
tion processes. Besides, TSA–ZrO2 showed very lowered activity for oxidation of benzyl
alcohol as well as styrene (up to 8%) as compared with Co/TSA–ZrO2 (>40%) (Table 1).
Cobalt acetate was also found active for oxidation of both the substrate. However, un-
supported Co-acetate exhibited significantly less conversion and selectivity. Further, with
reaction progress, Cobalt acetate particles agglomerated to form a sticky mass at the wall of
the reaction vessel. As a result, decrease in activity was seen. On the other hand, highly
dispersed Co on TSA modified ZrO2, i.e., Co/TSA–ZrO2, was found excellent in terms of
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activity and selectivity under present reaction conditions. The results also indicated that
Co has major contribution in the catalytic transformation to carbonyl products.

Table 1. Control experiments and effect of HPAs.

Sr. Catalysts %
Conversion

% Selectivity TON
Benzaldehyde Other

1. ZrO2 -/- - - -
2. TSA-ZrO2 8 a/7 b >99 a/>99 b - -
3 Co-acetate c 24 a/34 b >86 a/>84 b 14 a/16 b -
4. Co/TSA-ZrO2 41 a/48 b 90 a/92 b 10 a/8 b 1872 a/1461 b

5. Co/TSA-ZrO2
d <2 a/3 b >99 a/>99 b - -

6. Without catalyst e -/- - - -

Conversion is based on substrate; substrate: benzyl alcohol a; styrene b (100 mmol); TBHP (0.15 mmol); tempera-
ture (a 90 ◦C/b 80 ◦C); O2 balloon 1 atm; amount of Co/TSA-ZrO2 (a 100 mg (1.29 mg Co)/b 150 mg (1.93 mg Co);
c amount of Co-acetate (a 5.46 mg/b 8.16 mg); time (a 24 h/b 4 h); d Without O2; e Without O2 and catalyst.

In order to examine role of TBHP, reactions without O2 as well as without (O2 + cata-
lyst) were also carried out (Table 1; Entry 5,6). In both the cases, no significant conversion
of substrates was observed, indicating that O2 acts as the sole oxidant and TBHP as an
initiator, which is in good agreement with the reported POMs-catalyzed aerobic oxidation
reactions [38]. The reactions with different solvents were also carried out and results are
presented in Table S1. From the data, it is clear that water as a solvent was found incongru-
ous and showed drastic reduction in activity of the catalyst. At the same time, the use of
organic solvents such as hexane and toluene showed similar activity with better selectivity
of benzaldehyde as compared with solvent-free conditions. Despite this fact, solvent-free
conditions seem a more environmentally benign alternative to avoid the use of organic
solvent, product separation, and solvent recovery.

2.3. Heterogeneity Test

Co/TSA–ZrO2 was subjected to a leaching test, and it showed negative results, i.e., no
leaching of Co was found or it was <1 ppm. These remarks indicated that the Co/TSA–ZrO2
is truly heterogeneous in nature. Heterogeneity test was carried out, in which the catalyst
was filtered from the reaction mass at the desired time and the filtrate was allowed to react
up to the completion of the reaction. The reaction mass before and after completion of the
reaction was analyzed by gas chromatography and the result is presented in Figure 10.
From the data, it is concluded that after filtration of catalysts, no evidence in the progress of
the reaction in terms of conversion was found, suggesting that no leaching of active metals
occurred in the reaction mass and Co/TSA–ZrO2 is truly heterogeneous.
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Figure 10. Heterogeneity test for oxidation of (a) benzyl alcohol and (b) styrene Conversion is based
on the substrate (benzyl alcohol/styrene); TBHP (0.15 mmol); temperature (90 ◦C/80 ◦C); O2 balloon
1 atm; amount of Co/TSA-ZrO2 (100 mg/150 mg).
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2.4. Recycling of the Catalyst

At desired time, the reaction mass was extracted and the catalyst was recovered by
centrifugation. The catalyst was washed with a small portion of CH2Cl2 and dried at
100 ◦C. The oxidation reaction under optimized conditions was carried out with a recycled
catalyst and the results are represented in Figure 11.
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Figure 11. % Conversion is based on the substrate (benzyl alcohol/styrene); TBHP (0.15 mmol);
temperature (90 ◦C/80 ◦C); O2 balloon 1 atm; amount of Co/TSA-ZrO2 (100 mg/150 mg); BzOH—
Benzyl alcohol; Sty—Styrene; BzCHO—Benzaldehyde; BzCOOH—Benzoic acid.

The results showed that no substantial variation in conversion and selectivity was de-
tected for up to five cycles. The comparative FT-IR spectra of the fresh and the regenerated
catalysts are represented in Figure 12. The recycled catalyst (after the fifth cycle) showed
all the bands with no significant shifting in the wavenumber similar to fresh Co/TSA-ZrO2
indicating no alalteration in chemical composition of the catalyst, i.e., the catalyst was
stable and reusable even after five cycles.
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2.5. Comparison with Reported Catalyst

Comparative catalytic data of the present catalyst for oxidation of benzyl alcohol and
styrene using O2 or air as an oxidant with the cobalt-based reported catalytic systems are
summarized in Table 2. From the data, it is clear that all the efficient catalytic systems
(Entry 1–4, 6) showed excellent conversion and selectivity of benzaldehyde. However,
higher loading of Co-contents as well as a lower concentration of substrate resulted in poor
TON. Despite this, the oxidation was carried out in various organic solvents. The reported
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Co/TPA–ZrO2 showed good-to-excellent conversion and selectivity with 623 TON, con-
firming the superiority of Co-HPAs based catalysts. Further, on comparing the present
catalytic system with (12.9 gm Co/gm of catalyst) with Co/TPA–ZrO2 (72 mg/gm of
catalyst; Entry 5) [15], it was observed that lower loading of Co resulted in better dispersion
of metal centers and subsequently provided the higher activity. Thus, the careful evalua-
tion of the result revealed that the presence of HPA not only provides positive synergies
but also assisted in higher dispersion of Co, eventually giving rise to higher activity of
Co/TSA–ZrO2.

Table 2. Comparison of catalytic activity for aerobic oxidation of styrene with reported catalyst.

Sr. Catalysts Conditions * %
Conversion

% Benzalde-
hyde TON Remarks Refs.

Benzyl alcohol oxidation

1 Co(II) salen
complex@KCC—1 1:60:0.5:60 - 95 ** 1.8

Isobutyraldehyde as
co—substrate,

HOAc—solvent
[29]

2 Co3O4/Activated
carbon 0.2:100:3:80 100 - - Very high

catalyst:substrate [39]

3 CoAl-ELDH/GO 1:100:4:120 92.2 99.3 5 DMF—solvent [40]

4 Co3O4/MnO2 1:25:12:100 93 99 16 Air, 1,4—Dioxane–
solvent [41]

5 Co/TSA–ZrO2 100:100:24:90 41 90 1872 TBHP—additive,
solvent–free Present work

Styrene oxidation
6 NaCoX96 10:200:4:100 100 67 16 DMF—solvent [25]

7 Co/TPA—ZrO2 100:100:4:80 76 >99 623 TBHP—additive,
solvent-free [15]

8 Co/TSA—ZrO2 100:150:4:80 48 92 1461 TBHP—additive,
solvent—free Present work

* Substrate (mmole): amount of catalyst (mg): t (h): Temperature (◦C); ** Yield; Conversion is based on substrate;
TBHP (0.15 mmol); O2 balloon 1 atm.

3. Materials and Methods
3.1. Materials

All chemicals used were of A.R. grade. Co(CH3COO)2·4H2O, Benzyl alcohol, cy-
clopentanol, 1-Hexanol, 1-Octanol, Styrene, α-Methylstyrene, Cyclohaxene, 30% H2O2,
Trichloroacetic acid (TCA), and Dichloromethane were obtained from Merck (Mumbai, In-
dia) and used as received. ZrOCl2.8H2O and H4[SiW12O40].xH2O were obtained from Loba
Chemie(Mumbai, India) and used as received. ZrO2 and 30% TSA–ZrO2 were synthesized
using the reported literature [42].

3.2. Synthesis of Co(II) Supported TSA-ZrO2 (Co/TSA-ZrO2)

Synthesis of Co/TSA-ZrO2 was carried out using previously reported procedure with
minor modifications [15]. Briefly, TSA–ZrO2 (1 g) was suspended in 0.5% aqueous solution
of Co(CH3COO)2·4H2O (25 mL) under the static condition at room temperature. Co+2 from
the aqueous solution was allowed to soak on TSA–ZrO2 for 30 h without stirring. After
30 h, the powder was collected by simple filtration followed by washing to remove excess
of cobalt. The obtained product was dried for 1 h at 100 ◦C. The resulting light pink powder
was designated as Co/TSA–ZrO2.

3.3. Analytical Techniques

Cobalt was estimated in the filtrate by UV–vis spectroscopy on Shimadzu, Uv-1900i
(Kyoto, Japan). TGA of the samples was carried out on a Mettler Toledo Star SW 7.01
(Columbus, OH, USA) from 50 to 600 ◦C temperature with a ramp rate of 10 ◦C min−1

under a nitrogen atmosphere (flow rate: 2 mL min−1). N2 adsorption–desorption isotherm
of samples were recorded on a Micromeritics ASAP 2020 (Norcross, GA, USA) surface area
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analyzer at −196 ◦C. The FTIR spectra of the samples were recorded on a Bruker (Alpha
II) instrument (Karlsruhe, Germany) in the range of 4000–500 cm−1. TEM analysis was
carried out on FEI TEM instrument (model: Tecnai G2, F30, Eindhoven, Netherland) with
an accelerating voltage of 300 kV. The samples were dispersed in ethanol and ultrasonicated
for 5–10 min. A small drop of the sample was then taken in a carbon-coated copper grid
and dried before viewing. The total acidity for all the materials has been determined by
n-butylamine titration [43]. A solution of n-butylamine in toluene (0.025 M) was used
for estimation, where 0.5 g material was suspended in the prepared solution for 24 h and
excess of n-butylamine was titrated against TCA using neutral red as an indicator.

3.4. Oxidation Reactions

In three neck-round bottom flask charged with the magnetic needle bar, substrate
(100 mmol), required amount of catalyst and TBHP (0.15 mmol) were charged at the desired
temperature (80 ◦C for alkenes and 90 ◦C for alcohols). The reaction was initiated by the
bubbling of O2 from a balloon connected through the bend-glass tube. The process was
optimized by varying the concentration of the catalyst, reaction time, and temperature.
After the desired reaction time, the products were extracted with CH2Cl2, dried over
MgSO4 and analyzed on a gas chromatograph (Shimadzu 2014, Kyoto, Japan) with RTX-5
capillary column and flame ionization detector. Product identification was carried out by
comparison with authentic samples. The conversion, selectivity, turn over number (TON)
and turn over frequency (TOF) were calculated as per the equations below [44].

Conversion (%) = [(Initial mol%) − (Final mol%)]/(Initial mol%)

Selectivity (%) = [(moles of product formed)/(moles of substrate consumed)] × 100

TON = moles of product/moles of catalyst

TOF = TON/unit time

4. Conclusions

In conclusion, Co- supported on TSA-modified ZrO2 was synthesized via a soaking
method using a diluted precursor solution. The characterization data, especially TEM
mapping, confirmed the high-dispersion of Co in the synthesized Co/TSA–ZrO2. The
present catalytic system was found as competent in obtaining excellent selectivity and TON
for the desired carbonyl products via (i) oxidation of alcohols and (2) oxidative cleavage of
C=C of alkenes with environmentally benign oxidant. Despite limitations for cyclic olefins
and long-chain alcohol, the Co/TSA–ZrO2 was found viable for the oxidation various
of alcohols and styrenes. The catalytic data showed that highly dispersed cobalt and the
presence of HPA resulted in a positive synergistic effect. Further, comparing different classes
of Co-based catalysts revealed that the present synergistic catalyst was found superior and
able to offer exceptional TON/TOF with a very small amount (100–150 mg Co/TSA–ZrO2;
1.2–1.9 mg of Co) under solvent-free sustainable reaction conditions. Moreover, simple
work-up for reuse as well as recycling up to five cycles without substantial loss in conversion
and selectivity makes the process captivating from the perspective of sustainability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12121622/s1. Table S1: Effect of Solvent on oxidation of
benzyl alcohol over Co/TSA-ZrO2.
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