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Abstract: The formation of tars during coal or biomass gasification is a serious issue resulting
in decreasing efficiency of the process and increased maintenance costs. The decomposition of
tars can be conducted via catalytic steam reforming that enriches the produced gas in hydrogen.
Nevertheless, the catalyst should be characterized by high activity, stability, and resistance towards
carbon deposition. Ceria-zirconia supported nickel (Ni/CeZrO2) is a very good candidate to catalyze
tar removal—Ni is an active phase for reforming reactions, while CeZrO2 provides the active sites
that play important roles in protecting the catalyst from carbon deposition. Ni/CeZrO2 shows high
activity in the steam reforming of model tar compounds. In this paper, its performance in the steam
reforming of toluene and carbon deposition is discussed considering the changing parameters of the
reaction: the temperature, steam to carbon ratio, and the contact time.

Keywords: steam reforming; toluene; carbon deposits; ceria-zirconia; nickel

1. Introduction

Both coal and biomass gasification are accompanied by the formation of tars that nega-
tively influence the efficiency and total cost of the process. The most widely used techniques
for tar removal are thermal cracking, steam reforming, and mechanical separation [1]. The
latter, however efficient, has a significant negative impact on the environment. The cat-
alytic steam reforming of tar is a very attractive approach allowing for tar decomposition,
and it has been intensively studied using model compounds, such as toluene, benzene,
or naphthalene [2–6]. The main reactions occurring during steam reforming process are
steam reforming (SR) (Equation (1)), total oxidation (Equation (2)), water gas shift (WGS)
(Equation (3)), and coking (Equation (4)). Besides WGS, all reactions are endothermic.
The formation of CO2 in WGS is favored at low temperatures while the reverse reaction
(RWGS), which yields CO, is privileged at high temperatures.

CnHm + nH2O = nCO + (n + m/2)H2 (1)

CnHm + 2nH2O = nCO2 + (2n + m/2)H2 (2)

CO + H2O = CO2 + H2 (3)

CnHm = Cn + m/2H2 (4)

The deposition of carbon on the catalyst during the steam reforming process is cur-
rently a significant technological challenge. It negatively influences the performance of
the catalyst by blocking or destroying the active sites. The catalytic reforming of various
hydrocarbons (e.g., methane, ethane, ethanol, propane, toluene, and naphthalene) and their
derivatives has been extensively studied by several researchers [7–11]. These studies in
most concentrate on minimizing carbon formation and thus, catalyst deactivation.
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There are two main research blocks engaged in reducing carbon deposition during
reforming reactions. The first one deals with the selection of reaction conditions, e.g.,
temperature, steam to carbon ratio (S/C) in the case of steam reforming (SR), CO2 to
carbon ratio (CO2/C) for dry reforming (DR), and oxygen to carbon ratio (O/C) for the
reaction of partial oxidation (POX). Studies on the effect of water vapor on the performance
of Ni/Al2O3 and Ni-Mo/Al2O3 in the SR of hydrocarbons revealed that the presence of
H2 inhibits nickel oxidation by H2O but does not inhibit the oxidation of Mo. Therefore,
due to its higher oxygen content, Ni-Mo/Al2O3 was found to be more resistant to carbon
deposition during SR than Ni/Al2O3 [12]. Rh/MgO-Al2O3 has been found to be highly
active and stable in methane steam reforming. Moreover, it exhibited very good coke
resistance, even under S/C = 1 [13]. Studies on the steam reforming of m-cresol over
Ni/MgO revealed that sufficient water feeding can favor carbon conversion from solid
and liquid to a gaseous phase. However, high coke formation was noticed to occur at
temperatures ranging from 575 to 900 ◦C [14]. The increase in H2O content in the feed also
resulted in increased hydrocarbon conversion. Kim et al. [15] observed that CH4 conversion
over Ni/Al2O3 and Ni/MgOAl2O4 catalysts was 84% when the reaction was carried out at
S/C = 1 and increased to 97% at S/C = 2. The impact of S/C was even more pronounced in
the case of Ni/CeO2, over which CH4 conversion increased from 40% at S/C = 1 to 89% at
S/C = 2. Toluene, considered a model tar compound, was converted in the SR reaction over
Ni/Al2O3 [16]. The catalyst showed the highest toluene conversion and hydrogen yield
with the lowest coke deposition at elevated temperatures (above 800 ◦C). It was found that
the rate of carbon deposition over a Ni/Al2O3 catalyst increased as GHSV increased. A
higher S/C ratio increased the total conversion of toluene and promoted coke gasification.

The second research block concerns the catalyst design by modification of its physico-
chemical properties, e.g., by introducing appropriate additives, such as potassium [17] or
molybdenum [12,18,19] and thus increasing the basicity of the catalyst.

The application of supports with unique redox properties, like rare earth metal oxides,
has been also studied [20,21]. Laosiripojana and Assabumrungrat [22] studied the steam
reforming of methane (SRM) over a Ni catalyst supported on ceria-zirconia (Ni/CeZrO2)
at 650–900 ◦C. The resistance of Ni/CeZrO2 to carbon deposition was much higher than in
the case of Ni/Al2O3 at the same operating conditions. Nevertheless, a small catalyst deac-
tivation was noticed. High surface area ceria (HAS-CeO2) and CeZrO2 with a Ce/Zr ratio
of 3/1 were found to be very good supports for Ni catalysts for methane steam reforming.

The Ni-CeO2/SBA-15 catalysts with a different content of Ni-CeO2 phase were stud-
ied in toluene steam reforming by Tao et al. [23]. The catalysts exhibited good toluene
conversion and stability and were resistant to coke deposition. Toluene conversion in-
creased with CeO2 loading and the S/C ratio up to 3. The best performance was noticed
for Ni-CeO2(3 wt.%)/SBA-15 at 850 ◦C and S/C = 3.

Zhou et al. [24] obtained a series of three-dimensional ordered macroporous Ni-
Pt/Ce1−xZrxO2 using a colloidal crystal template method. Thanks to its textural properties,
a higher concentration of oxygen vacancies, and better reducibility compared to their
non-porous counterparts, those catalysts exhibited excellent catalytic performance at tem-
peratures as low as 500 ◦C. They also showed good stability and a carbon deposition rate
of only 1.7 mg/gcat/h during a 30 h test at 600 ◦C.

The Ni/ZrO2 catalysts were studied in toluene, methane, and toluene/methane steam
reforming by Silveira et al. [25]. The catalyst’s deactivation caused by carbon deposition
depended strongly on the composition of the reaction feed and the crystallographic features
of the catalysts. It was found that more carbon deposited on the catalysts containing
tetragonal ZrO2, which showed higher acidity and catalyzed oligomerization of toluene
molecules, whereas the monoclinic ZrO2 contained more hydroxyl groups and was more
resistant to carbon build-up.

The formation of carbon deposits over nickel catalysts was studied by [22,26,27]. It
was reported that the support/s modifications and the size of Ni crystallite have significant
effects on carbon formation. It is also well known that carbon deposition on the metal-
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supported catalyst is significantly influenced by the metal-support interaction (MSI), which
is associated with the method of catalyst preparation, the temperature of calcination, and
its pre-treatment [28].

There are different types of carbon deposits on the catalyst surface. The most popular
are pyrolytic carbon, whisker carbon, and encapsulating carbon. The formation of pyrolytic
carbon takes place when the temperature is increased to over 600 ◦C while whisker carbon
is usually produced at 500–600 ◦C [14,28–32]. The formation of whisker carbon during
biomass steam reforming was studied by Kihlman et al. [33]. The authors found that
carbon deposition over Ni can be significantly reduced when the catalyst is doped with
Ca. Moreover, the beneficial impact of the H2S introduction, which has poisoned the active
sites for C deposition, was observed. The “whisker carbon-free” operating temperature
of the biomass steam reforming depended on the following factors: the composition of
biomass, the concentration of the unsaturated C2+ hydrocarbons which rapidly form C
deposits, the concentration of H2S in the dry biomass gasification gas, and the S/C ratio.

Filamentous carbons, such as carbon nanotubes (CNTs) have been identified on the sur-
faces of catalysts spent in SR reactions. In recent years, several works have been published
on the intentional production of CNTs (together with H2) during steam reforming processes.
Those works relate to the SR of formaldehyde over NiO/MoO3 at 300–600 ◦C [34], the SR
of ethanol over Ni/CaO at 600 ◦C [35], or the “pyrolysis-catalytic” SR of used tires over
Ni/Al2O3 at 900 ◦C [36]. CNTS are often produced in the reaction of CO disproportionation
or CH4 dehydrogenation. However, arenes such as benzene or naphthalene are also feasi-
ble materials for obtaining CNTs [37]. Before building up a CNT, those hydrocarbons are
believed to form small polycyclic arenes (PCAs) that undergo condensation. For example,
Tian et al. [38,39] who studied CNT formation from benzene, reported that PCAs were built
from the benzene blocks. Their observations were proved by Zhang et al. [37]. The growth
mechanism of CNTs from a benzene precursor over a nickel catalyst was also studied by
Feng et al. [40] using the density functional theory (DFT). Multiwalled carbon nanotubes
(MWNTs) and nanofilaments were produced in supercritical toluene by Lee et al. [41]
using ferrocene, or prefabricated Fe or FePt nanocrystals. According to this study, efficient
MWNT formation requires temperatures in the 550–625 ◦C range. Moreover, the formation
of carbon nanotubes was promoted over smaller particles (<30 nm diameter), while the
larger particles produced carbon nanofilaments with disordered graphitic cores.

The activity of the catalyst in the steam reforming of tars (being partly composed of
aromatic hydrocarbons) may be deteriorated owing to the formation of structural carbon
deposits. Hence, to reduce the risk of catalyst deactivation, one must pay attention to its
chemical composition and morphology. In this work, Ni/CeZrO2, which is characterized by
very good activity in reforming reactions and shows high resistance towards deactivation
by carbon species, was studied in toluene steam reforming. The performance of this catalyst,
especially regarding toluene conversion, hydrogen production, and carbon deposition, was
investigated during tests conducted under different steam excesses and various contact
times. The participation of reactions occurring in parallel to steam reforming, i.e., WGS
and H2O dissociation, was also examined.

2. Results and Discussion
2.1. Catalytic Runs of Toluene Steam Reforming over CeZrO2 and Ni/CeZrO2

The results of the catalytic runs of steam reforming of toluene (SRT) over CeZrO2 and
Ni/CeZrO2 conducted at S/C = 2.4 and tc = 0.36 s are presented in Table 1, which shows
that toluene converts mainly to CO and CO2, with some insignificant transformation to
benzene in the reaction of steam dealkylation (Equation (5)). Some works reported the
formation of CH4 during SRT [29]; nevertheless, it was not detected in this study. Methane
can be produced in the reaction of toluene hydrodealkylation (Equation (6)) and as an
important precursor for carbon deposition (Equation (7)), its formation during SRT is
unwanted. In the present work, the only by-product detected by GC and GC-MS in the
product gas was benzene. From Table 1, it can be seen that toluene conversion to benzene
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is higher over CeZrO2 than over Ni/CeZrO2, and for both, it decreases with the increase of
the reaction temperature. The selectivity to benzene is much higher for CeZrO2 than for
Ni/CeZrO2. Bion et al. [42], who studied toluene steam dealkylation over Al2O3-supported
Rh, Pd, Pt, Ni, Co, Ru, and Ir, found out that contrary to the SRT reaction, toluene steam
dealkylation is insensitive to the nature of the metal and the structure of the catalyst (that is
also changing due to carbon deposition). However, toluene steam dealkylation was found
to be very sensitive to the nature of the support. For example, for metal catalysts supported
on alumina, silica, or chromium oxide, toluene dealkylation to benzene (that immediately
desorbs to the gas phase) and CHx species takes place on the metal active sites, while H2O
is activated on the support sites. In the next step, the OH groups diffuse from the support
to the CHx (remaining on the metal sites) and oxidize them to CO and H2. According to
Wang and Gorte [43], toluene steam dealkylation is not occurring on the CeO2-supported
Pt and Pd catalyst. Nevertheless, in the present work, it is shown that some small amounts
of benzene are formed during SRT over CeZrO2 alone, but production of this hydrocarbon
is significantly decreased in the presence of Ni.

Table 1. The results of the catalytic runs of toluene steam reforming carried out in isothermal
conditions on CeZrO2 and Ni/CeZrO2 catalysts (S/C = 2.4, tc = 0.36 s, TOS at each temperature was
4 h).

Catalyst T (◦C)
C7H8

Conversion to
CO/CO2 (%)

C7H8
Conversion
to C6H6 (%)

Selectivity to
C6H6 (%) H2 Yield (%)

CeZrO2

500 1 1.51 60.1 >1
600 22 1.89 7.9 30
700 49 2.1 4.1 51
800 73 0 0 64
900 78 0 0 65

Ni/CeZrO2

400 21 - - 36
450 36 0.15 0.4 47
500 64 0.25 0.4 68
600 88 0.21 0.2 86
700 98 0 0 80
800 97 0 0 81
900 99 0 0 85

In general, the performance of Ni/CeZrO2 is much better than of CeZrO2—especially
at temperatures up to 700 ◦C, which is owing to the presence of the Ni active phase. But
it must be pointed out that CeZrO2 alone exhibits relatively good performance in SRT,
especially at elevated temperatures (800 and 900 ◦C). Thus, it is evident that ceria-zirconia
provides some catalytic activity to the Ni/CeZrO2 system. The reduced ceria (Ce3+) is
responsible for H2O dissociation, while Ce4+ is the site for toluene dealkylation to CHx and
C6H6, followed by the hydrogenation of the latter to a cyclic ring that breaks to form CHx.
The CHx species are dehydrogenated to H2 and active carbon species that are oxidized
to CO using the oxygen from CeO2 (supplied by dissociating H2O molecules). In the
Ni/CeZrO2 catalyst, ceria-zirconia is considered as the oxygen source that is used for the
oxidation of carbon species on the Ni, rather than as the active site for toluene activation.
Whereas the nickel species Ni0 and Nix+ are responsible for C7H8 and H2O dissociation,
respectively.

C7H8 + H2O→ C6H6 + CO + 2H2 ∆H = +164 kJ/mol (5)

C7H8 + H2 → C6H6 + CH4 ∆H = −42 kJ/mol (6)

CH4 → C + 2H2 ∆H = +74.9 kJ/mol (7)
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2.2. The Influence of S/C on the Ni/CeZrO2 Activity in SRT

The results of the catalytic runs conducted at S/C = 1, 1.2, 2.4, and 4 (Figure 1) prove
that the increase in H2O content in the reaction mixture has a positive influence on C7H8
conversion. The most important effect of S/C on hydrocarbon conversion is observed at
lower temperatures. For example, at 420 ◦C, toluene conversion is only 30% for S/C = 1
and 96% for S/C = 4. It should be noticed also that at a high steam content, the conversion
of toluene is almost constant in the whole range of applied temperatures (Figure 1d). A
slight increase in S/C (from 1 to 1.2) does not influence toluene conversion; however,
it enables to improve the suppression of carbon deposits and protect the catalyst from
deactivation. A further increase in H2O concentration in the feed (Figure 1c,d) results in
a visible increase in hydrocarbon conversion. For example, at a temperature as low as
420 ◦C, toluene conversion is 66% and 96% for SC = 2.4 and 4, respectively. At an increased
steam excess, the Ni/CeZrO2 catalyst shows very good performance in SRT even at lower
temperatures (500–600 ◦C). For S/C = 2.4, toluene conversion of ca. 90% is observed from
600 ◦C, while for S/C = 4, over 99% toluene conversion is noticed even from 500 ◦C.
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Figure 1. The evolution of C7H8 conversion and CO, CO2, and H2 yields during catalytic runs of SRT
carried out on Ni/CeZrO2 at tc = 0.36 s and under the S/C ratio of 1 (a), 1.2 (b), 2.4 (c), and 4 (d).
Time-on-stream at each temperature was 24 h.

It can be seen from Figure 1 that the yields of CO and CO2 also depend on the
applied S/C ratio. The production of CO2 during catalytic runs of SRT is ascribed to the
occurrence of the WGS reaction (Equation (3)), which is thermodynamically favored at
lower temperatures. The CO2 formation during catalytic runs increases with increasing S/C.
The higher the H2O concentration in the feed, the more CO2 is detected at the reactor’s
outlet. For S/C = 4, the CO2 formation predominates in the whole range of applied
temperatures.

The GC-MS analyses at the reactor’s outlet during tests carried out at S/C = 1 and 2.4
(Table 2) revealed that in the 420–600 ◦C range, the SRT over Ni/CeZrO2 produces small
amounts of benzene. It is observed that the formation of benzene is inversely proportional
to the temperature and steam excess. No benzene is produced at 700–900 ◦C for S/C = 1
and 2.4. Moreover, benzene was not present in the product gas (in the whole range of
temperatures) when S/C = 4. Doumani [44] reported that during toluene dealkylation at ca.
560 and 620 ◦C, the conversion to benzene decreased with an increasing H2O/C7H8 molar
ratio. The effect of H2O/C7H8 was also found to be more important at higher temperatures.
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Table 2. The conversion of toluene to benzene and benzene selectivity during catalytic runs of SRT
over Ni/CeZrO2 at tc = 0.36 s, and S/C = 1 and 2.4, determined after 24 h time-on-stream at each T.

T (◦C)
C7H8 Conversion to C6H6 (%) Selectivity to C6H6 (%)

S/C = 1 S/C = 2.4 S/C = 1 S/C = 2.4

420 2.1 0.6 7.2 0.9
500 1.6 0.5 2.5 0.6
600 1.3 0.2 1.7 0.2

The results presented in this paper revealed that the effect of the S/C ratio on the
performance of Ni/CeZrO2 in toluene steam reforming is more important at temperatures
below 600 ◦C. At low temperatures, high H2O excess inhibits catalyst deactivation caused
by carbon deposition and enriches the product gas in hydrogen owing to the occurrence
of WGS and H2O dissociation [43]. However, a high content of H2O may lead to catalyst
sintering, finally causing a decrease of its activity.

According to the results of the catalytic tests presented in this paper, Ni/CeZrO2
shows high activity in SRT. If the step of dissociative adsorption of C7H4 molecules to
form surface carbon species is fast and the oxidation of those carbon species is slow, the
catalyst may suffer deactivation due to carbon accumulation. The excess of H2O in the
reaction feed helps to suppress carbon species from the catalyst surface and inhibits carbon
build-up. However, the application of a high S/C ratio may negatively influence the
morphology of the catalyst. Specifically, it may cause the sintering of the Ni particles,
leading to the decrease of the catalytically active surface. Moreover, when the catalyst is
exposed to elevated temperatures and a high steam concentration, the CeZrO2 phase can
also agglomerate and cover the Ni phase, reducing its accessibility to the regents. The
impact of the S/C ratio on the morphology of Ni/CeZrO2 was examined by using X-ray
diffraction (XRD) and scanning electron microscopy (SEM).

The results of the XRD analyses of Ni/CeZrO2 before SRT and after tests carried out
at S/C = 1 and 4 are presented in Figure 2. The typical reflexes of the CeZrO2 phase are
observed, e.g., at 2θ = 28.8, 33.8, 48.5, 58.6◦, while the small-intensity reflexes of the Ni0 are
detected at 44.5 and 52.6◦. The mean size of Ni and CeZrO2 crystallites calculated from the
Scherrer equation increases with the S/C ratio applied during the catalytic tests. For the
Ni crystallites oriented in the (111) direction, the rise of the mean size from 12.0 nm (fresh
catalyst) to 15.0 nm (after tests at S/C = 1) and 20.4 nm (after tests at S/C = 4) was noticed.
The mean size of CeZrO2 crystallites oriented in the (220) direction increased from 8.3 nm
to 9.6 and 15.2 nm after tests conducted at S/C = 1 and 4, respectively. Hence, high steam
content in the reaction mixture causes the sintering of the support and the active phase,
which results in the loss of the catalytically active surface.

The experiments of N2 sorption (Table 3) revealed that the specific surface area (SBET)
of the fresh and spent Ni/CeZrO2 is very similar. Nevertheless, some increase in the
mean pore size can be observed for the samples after tests conducted at high steam excess
(especially at S/C = 4). As was observed by the XRD, the extended exposition to H2O at
increased temperatures led to the sintering of the catalyst particles, and during this process
some small pores could have experienced coarsening to form bigger ones. Nevertheless, the
SEM observations (Figure 3) did not show significant changes in Ni/CeZrO2 morphology
after SRT tests conducted under different S/C ratios.
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Figure 2. The XRD patterns of the Ni/CeZrO2 catalyst: fresh (a) and spent in SRT at S/C = 1 (b) and
S/C = 4 (c).

Table 3. The textural properties of Ni/CeZrO2 before and after catalytic runs of SRT.

Ni/CeZrO2 SBET (m2/g) d (nm)

before SRT 66 14.91
after SRT at S/C = 1 78 14.12

after SRT at S/C = 2.4 62 15.64
after SRT at S/C = 4 65 19.62

SBET—specific surface area calculated using the Brunauer-Emmet-Teller method; d—mean pore size.
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Figure 3. SEM images of Ni/CeZrO2 before reaction (a) and after catalytic tests carried out at S/C = 1
(b), S/C = 1.2 (c), S/C = 2.4 (d) and S/C = 4 (e).

The experiments of N2 sorption also revealed some minor increases in the catalyst’s
surface area after SRT was carried out at S/C = 1 (Table 3). It could be related to the
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presence of carbon deposits detected by SEM (Figure 4), especially to the filamentous
carbons. According to TEM (Figure 5), the structural carbon deposits which have formed
on Ni/CeZrO2 are tubular and curly (Figure 5a). It can be noticed that the rhombohedral
nanoparticles of Ni/CeZrO2 are attached individually or as agglomerates to the walls of
CNTs (Figure 5a–c). Concerning the morphology of the obtained structural carbon deposits,
one can state that both the bamboo-like carbon nanofibers (CNFs) and the carbon nanotubes
(CNTs) may form during SRT carried out at S/C = 1. The outer diameters of the structures
pictured in Figure 5b–d range from ca. 20 to 80 nm. The detection of those structures in
the Ni/CeZrO2 sample with TEM was difficult. Firstly, the deposits were located only
in some areas of the sample, and secondly, the catalyst was found to be very resistant to
carbon deposition, so the concentration of the filamentous carbon species was very low. The
structural carbon deposits were not observed in the Ni/CeZrO2 samples after SRT carried
out in the excess of H2O (i.e., at S/C = 1.2, 2.4, and 4). According to the TGA, the weight
loss of the Ni/CeZrO2 sample spent in SRT at S/C = 1 (Table 4) was only 5.4%, which
corresponds to 0.45 mg of carbon deposited over 1g of catalyst per 1 h of the test run. For
example, Zhou et al. [24] reported that the amount of carbon deposited over Pt/Ce1−xZrxO2
was 1.7 mg/gcat/h; 3.8 times more than for the Ni/CeZrO2 reported here. From Table 4,
it is evident that even a small increase in S/C, i.e., from 1 to 1.2, considerably enhances
the suppression of the carbon species left on the catalyst surface during hydrocarbon
dehydrogenation, reducing carbon deposition from 0.45 to 0.26 mg/gcat/h. The impressive
reduction of carbon accumulation during SRT over Ni/CeZrO2 can be observed at S/C = 4.
Zhu et al. [16], who studied the Ni/Al2O3 catalyst in SRT, also noticed the decrease in coke
formation when the S/C increased. According to their work, 0.29, 0.22 and 0.17 g of carbon
deposited per 1 g of the catalyst after 5 h time-on-stream at S/C = 1, 2, and 3, respectively.
Converted to mg/gcat/h, it gives the following values: 58, 44, and 34, which are drastically
higher than for the Ni/CeZrO2 reported here. However, such a comparison is only sketchy.
There are few factors that play a role in increased C deposition over Ni/Al2O3 [16] and
must be underlined here: (i) the Ni loading, which was 20 wt.%, i.e., twice as high as in
the case of Ni/CeZrO2 (this is very important since Ni is the site for C deposition), (ii) the
support, which is not reducible, and unlike CeZrO2, does not provide the active oxygen
species for suppressing carbon species, and (iii) the contact time as low as 1.6 × 10−5 s
(shorter contact times results in increased coke formation; tc in the present work is 0.36 s).
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Table 4. The weight loss and carbon deposition rate for the Ni/CeZrO2 samples after toluene steam
reforming carried out at different S/C ratios at temperatures ranging from 420 to 800 ◦C (tc = 0.36 s,
TOS at each temperature = 24 h).

S/C Weight Loss (%) C (mg/gcat/h)

1 5.4 0.45
1.2 3.1 0.26
2.4 1.6 0.13
4 0.6 0.05

Based on the obtained results, the reaction pathways for the formation of filamentous
carbon during SRT over Ni/CeZrO2 can be proposed (Figure 6).

The toluene molecule adsorbs on the Ni active site, which leads to its demethylation.
The first route of filamentous carbon formation (I) assumes the formation of a biphenyl
from two adsorbed phenyl groups. The combination of a few biphenyls leads first to the
graphene layer, which can stack and roll up to form CNT [41]. The biphenyl formation via
dissociation of the C-I bond in iodobenzene adsorbed over Cu (111) was studied by Xi and
Bent [45]. The authors reported that phenyl groups adsorb on Cu (111) with their π-rings
approximately parallel to the surface. These phenyl groups were found to be thermally
stable to above 300 K, while above that temperature they can couple to form a biphenyl.
The decomposition of hydrocarbon can lead to graphite layers and to the formation of
CNFs [46,47]. The radical mechanism of the formation of bipyridyl molecule catalyzed by
Ni (111) using a pyridine precursor was studied by the DFT (density functional theory)
calculations by Feng et al. [48]. In that work, the bipyridyl was assumed as the initial
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process of the growth of N-doped graphene. In the second route (II), CNTs or CNFs are
obtained from methane decomposition. The molecules of CH4 are released to the gas
phase after the hydrogenation of the methyl groups adsorbed on the metal active site after
toluene demethylation. The filamentous carbon can be also formed from CO (route III),
which is a product of the steam reforming reaction. According to [49], the potential of
aromatic molecules towards carbon formation is reported to be several times higher than
CO or methane.
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CO disproportionation.

2.3. The Influence of Contact Time

The influence of contact time (tc) on toluene conversion and hydrogen yield during the
steam reforming reaction carried out at different S/C ratios is presented in Figure 7. For all
experiments, the increase in contact time increases toluene conversion and hydrogen yield.
From the presented graph, the impact of tc is more pronounced at lower temperatures.
As the temperature increases (for each S/C ratio), the dissimilarities in C7H8 conversions
and H2 yields for different tc values are less significant. Toluene steam reforming, as an
endothermic reaction, favors high temperatures. At elevated temperatures, the rate of
reaction is high; hence, the impact of parameters such as S/C or tc on toluene conversion is
minor. At lower temperatures, the rate of SRT decreases, thus the effect of S/C and tc is
more pronounced. From the collected data, one can say that the performance of Ni/CeZrO2
at lower temperatures (420–600 ◦C) can be significantly improved by increasing the contact
time, while at higher temperatures, the impact of tc is not that profound. For all experiments,
toluene conversion increases with reaction temperature. The increase in hydrogen yield
with temperature is observed only for S/C = 1 and 1.2, while for the experiments carried
out at higher steam excess (at S/C = 2.4 and 4), the H2 yield decreases above 500 ◦C owing
to the thermodynamic limitations of the WGS reaction (Equation (3)).
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Figure 7. The influence of contact time (tc) on C7H8 conversion (a) and H2 yield (b) vs. temperature
during the catalytic runs of SRT carried out in stationary conditions with the S/C ratios of 1 (green),
1.2 (purple), 2.4 (red), and 4 (blue). The darker the shade of the bar, the higher the tc value.

The calculation of the H2/CO and H2/(CO + CO2) ratios can give more insight
into the phenomena occurring during the SRT reaction over Ni/CeZrO2, such as the
“overproduction” of hydrogen. The steam reforming reaction, especially when conducted
under steam excess, is accompanied by a WGS reaction. Moreover, the presence of reduced
cerium species in the CeZrO2 allows for H2O dissociation to H2 and lattice oxygen. The
H2/CO will be more suitable to describe the SRT conducted at stoichiometric steam content
(S/C = 1), while the H2/(CO + CO2) is the proper one to explain the WGS-accompanied
SRT because it also considers the CO which was produced in the SR reaction but was
further converted into CO2 in the WGS reaction. An overall reaction of toluene conversion
concerning the participation of three steps, i.e., SRT (Equation (8)), WGS (Equation (3)) and
H2O dissociation (Equation (9)), may be written as Equation (10). The σ is the stoichiometric
number of the step. The H2/CO and H2/(CO + CO2) ratios are expressed by Equations (11)
and (12). By knowing the experimental values of both ratios (presented in Figure 8), one
can calculate the stoichiometric numbers for the WGS step (x) and the H2O dissociation
step (y).

C7H8 + 7H2O = 7CO + 11H2 σ = 1 (8)

CO + H2O = CO2 + H2 σ = x

H2O = 1/2O2 + H2 σ = y (9)

C7H8 + (7 + x + y)H2O = (7 − x)CO + xCO2 + (11 + x + y)H2 + y/2O2 (10)

H2/CO = (11 + x + y)/(7 − x) (11)

H2/(CO + CO2) = (11 + x + y)/7 (12)

For the SRT reaction taking place alone, “x” and “y” value zero. In such a case, the
H2/(CO + CO2) and H2/CO are equal (because CO2 is not produced) and amount to 1.57.
If H2/CO is above that value, it indicates the occurrence of the parallel reactions producing
H2 (Equations (3) and (9)) and is typical for the ceria-zirconia supported metal catalyst.
Figure 8 shows the H2/CO and H2/(CO + CO2) ratios as a function of temperature during
the SRT catalytic test carried out under changing tc and at different steam excess.
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Figure 8. The H2/CO (a–d) and H2/(CO + CO2) ratios (e–h) during toluene steam reforming carried
out at different S/C ratios and various contact times. The H2/(CO + CO2) value of 1.57 (for x = 0,
y = 0) is indicated with line A, and of 2.57 (for x = 7, y = 0) with line B.

For all S/C ratios and contact times, the H2/CO (Figure 8a–c) exceeds 1.57, indicating
the occurrence of said parallel reactions. The highest production of hydrogen out of the
steam reforming catalytic cycle is observed for higher S/C ratios and at lower temperatures
(especially at 420 ◦C, and to a lesser extent at 500 ◦C). This is explained by the fact that
at high steam concentrations, the WGS equilibrium is shifted towards H2 production,
not to mention that this reaction favors low temperatures. The H2/(CO + CO2) ratios
(Figure 8d–h) also show an overproduction of hydrogen because their values exceed 1.57
(marked with dotted line “A”).

It can be observed that the contact time has no effect or a minor effect on the H2/(CO
+ CO2) ratios. Some influence of contact time is noticed at lower temperatures and for
lower tc values. The increase in S/C ratio increases H2/(CO + CO2), owing to increased
participation of WGS reaction. If the stoichiometric number of the WGS reaction “x”
(Equation (3)) reaches its maximal value of 7 (because one catalytic cycle of SRT gives
7 moles of CO, and each mole of CO can be converted into 1 mole of CO2 within one
catalytic cycle of WGS), the H2/(CO + CO2) is equal to 2.57, and that is indicated with line
“B”. It can be seen from the graphs in Figure 8g and h that the application of high steam
excess (S/C = 2.4 and 4) results in significant overproduction of H2 in the whole range of
applied temperatures.

One must remember that except for the SRT and WGS, another reaction which pro-
duces hydrogen during toluene steam reforming over the studied Ni/CeZrO2 catalyst is
H2O dissociation (Equation (9)). The adsorptive dissociation of steam occurs on oxygen va-
cancies and surface oxygen (O2−) of ceria-zirconia and produces H2 and Ce4+ via formation
of the surface hydroxyl (OH−) as described by Equations (13) and (14) [50]. These reactions
are the elementary steps occurring within the catalytic cycles of SRT and WGS reactions;
however, owing to the nature of CeZrO2 support, they can also take place beyond those
cycles, increasing the overall H2 production.

H2O(g) + O2− + 2Ce3+ → 2OH− + 2Ce3+ (13)

2OH− + 2Ce3+ → H2(g) + 2O2− + 2Ce4+ (14)

The formation of oxygen vacancies in pure ceria starts from 350 ◦C [51], thus allowing
the formation of oxygen vacancies on which H2O can dissociate—also beyond the catalytic
cycles of the SR and WGS reactions. It is also widely known that the formation of oxygen
vacancies is facilitated when ceria is doped with zirconium, because due to the smaller
ionic radius of the Zr compared to Ce, the mobility of the surface oxygen is increased.

The surface hydroxyls that form during H2O dissociative adsorption are thermally
stable up to 130–330 ◦C and may produce either H2 or H2O [52,53]. The DFT calculations
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performed by Hansen and Wolverton [50] revealed that H2O adsorbed near the surface
vacancy easily dissociates to OH−. This step is highly exothermic. Whereas the decompo-
sition of hydroxyls to H2 requires the breakage of the O-H bond and is endothermic. On
a fully hydroxylated ceria, the OH− species can decompose to H2 at high temperatures.
Also, according to Henderson [54], the rate of H2 desorption from the hydroxylated surface
of ceria increases with temperature. Carrasco et al. [55] studied Ni/CeO2 (111) in H2O
dissociation and found that Ni2+ sites support the dissociation of the O-H bond. Those
Ni2+ sites are generated by the strong metal-support interaction or by the formation of
Ce1−xNixO2−y solid solutions. On the contrary, the Ni atoms which form clusters and
are not in an intimate contact with ceria show low activity in H2O dissociation (which is
comparable to the performance of unsupported Ni).

The contribution of H2 (x) produced in SRT, WGS, and H2O dissociation over the
Ni/CeZrO2 catalyst in the product gas from toluene steam reforming was calculated using
Equations (15)–(17) and is presented in Figure 9.
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Figure 9. The contribution of H2 produced in the SRT reaction (a), the WGS reaction (b) and the H2O
decomposition reaction (c) during the catalytic tests of toluene steam reforming carried out at S/C = 1
(green), 1.2 (purple), 2.4 (red), and 4 (blue), with contact time (tc) varying from 0.003 to 0.36 s (the
darker the shade of the bar the higher the tc value).

xH2 SRT =
11·([CO](out) + [CO2](out))

7[H2](out)
·100 [%] (15)

xH2 WGS =
[CO2](out)

[H2](out)
·100 [%] (16)

xH2 dissociation = 100− xH2 SRT − xH2 WGS (17)

As is displayed in Figure 9a, the contribution of the H2 produced in the SRT reaction
increases with temperature and is the highest at S/C = 1. Moreover, it decreases with
increasing steam excess owing to the growing participation of WGS and H2O dissociation
(Figure 9b,c). As is presented in Figure 10, the stoichiometric numbers of both reactions, i.e.,
“x” for WGS and “y” for H2O dissociation, increase with raising the S/C ratio because more
H2O is introduced to the reaction feed. In addition, “x” and “y” decrease with temperature
owing to the reactions’ thermodynamics. Based on the collected results, one can state that
the impact of tc on the contribution of both reactions occurring in parallel to SRT is minor,
especially at higher temperatures. Nevertheless, to resolve this issue, more sets of catalytic
runs should be conducted under varying S/C and tc.



Catalysts 2022, 12, 219 14 of 19

Catalysts 2021, 11, x FOR PEER REVIEW 14 of 19 
 

 

(Figure 9b and c). As is presented in Figure 10, the stoichiometric numbers of both 

reactions, i.e., “x” for WGS and “y” for H2O dissociation, increase with raising the S/C 

ratio because more H2O is introduced to the reaction feed. In addition, “x” and “y” 

decrease with temperature owing to the reactions’ thermodynamics. Based on the 

collected results, one can state that the impact of tc on the contribution of both reactions 

occurring in parallel to SRT is minor, especially at higher temperatures. Nevertheless, to 

resolve this issue, more sets of catalytic runs should be conducted under varying S/C and 

tc. 

 

Figure 10. The number of catalytic cycles of the WGS (a) and H2O dissociation (b) reactions during the catalytic tests of 

toluene steam reforming carried out at S/C = 1 (green), 1.2 (purple), 2.4 (red), and 4 (blue), and contact times (tc) varying 

from 0.003 to 0.36 s (the shade of the bar darkens when the tc value increases). 

Table 5 shows the carbon formation over Ni/CeZrO2 catalyst during catalytic tests of 

toluene steam reforming carried out under S/C = 2.4 at different contact times. The highest 

carbon deposition determined by TGA is observed for the lowest contact time, 0.003 s, and 

it decreases with increasing tc. Hence, the application of higher contact times results in a 

higher conversion of toluene and H2 yield (Figure 7) and decreased carbon formation. 

Table 5. The weight loss of Ni/CeZrO2 samples and the rate of carbon deposition after toluene 

steam reforming carried out at S/C = 2.4 and different contact times (tc) at temperatures ranging 

from 420 to 800 °C (TOS at each temperature = 24 h). 

tc (s) Weight Loss (%) C (mg/gcat/h) 

0.003 6.8 0.57 

0.03 3 0.25 

0.08 1.8 0.15 

0.13 1.7 0.14 

0.36 1.6 0.13 

2.4. Stability tests 

The stability tests of toluene steam reforming were conducted at 600, 700, and 800 °C. 

Those experiments were carried out at S/C = 2.4 because such an excess of steam in the 

reaction feed ensures a good resistance of the catalyst both to carbon deposition and to 

sintering. Figure 11 shows that toluene conversions after 120 h of test-run at 600, 700, and 

800 °C reach 75, 90, and 95%, respectively, whereas hydrogen yields are 70, 77, and 80%. 

The highest production of CO2 is observed at 600 °C (42%) owing to the most important 

participation of the WGS reaction. On the contrary, at the temperatures as high as 800 °C, 

the CO2 yield is only 28%. The obtained results prove that Ni/CeZrO2 is very active and a 

stable catalyst for toluene steam reforming, even at 600 °C. 

 

0

2

4

6

8

10

12

14

16

18

20

800700600500420

y

Temperature (°C)

0

1

2

3

4

5

6

7

800700600500420

x

Temperature (°C)

0.003 s
0.03 s
0.08 s
0.13 s
0.36 s

tc:
(b)(a)

1 1.2 2.4 4S/C:

Figure 10. The number of catalytic cycles of the WGS (a) and H2O dissociation (b) reactions during
the catalytic tests of toluene steam reforming carried out at S/C = 1 (green), 1.2 (purple), 2.4 (red),
and 4 (blue), and contact times (tc) varying from 0.003 to 0.36 s (the shade of the bar darkens when
the tc value increases).

Table 5 shows the carbon formation over Ni/CeZrO2 catalyst during catalytic tests of
toluene steam reforming carried out under S/C = 2.4 at different contact times. The highest
carbon deposition determined by TGA is observed for the lowest contact time, 0.003 s, and
it decreases with increasing tc. Hence, the application of higher contact times results in a
higher conversion of toluene and H2 yield (Figure 7) and decreased carbon formation.

Table 5. The weight loss of Ni/CeZrO2 samples and the rate of carbon deposition after toluene steam
reforming carried out at S/C = 2.4 and different contact times (tc) at temperatures ranging from 420
to 800 ◦C (TOS at each temperature = 24 h).

tc (s) Weight Loss (%) C (mg/gcat/h)

0.003 6.8 0.57
0.03 3 0.25
0.08 1.8 0.15
0.13 1.7 0.14
0.36 1.6 0.13

2.4. Stability Tests

The stability tests of toluene steam reforming were conducted at 600, 700, and 800 ◦C.
Those experiments were carried out at S/C = 2.4 because such an excess of steam in the
reaction feed ensures a good resistance of the catalyst both to carbon deposition and to
sintering. Figure 11 shows that toluene conversions after 120 h of test-run at 600, 700, and
800 ◦C reach 75, 90, and 95%, respectively, whereas hydrogen yields are 70, 77, and 80%.
The highest production of CO2 is observed at 600 ◦C (42%) owing to the most important
participation of the WGS reaction. On the contrary, at the temperatures as high as 800 ◦C,
the CO2 yield is only 28%. The obtained results prove that Ni/CeZrO2 is very active and a
stable catalyst for toluene steam reforming, even at 600 ◦C.

The TGA performed for spent catalysts revealed the weight loss (assigned to oxidation
of carbon deposits) equal to 3.8 wt.% (at 600 ◦C), 1.9 wt.% (at 700 ◦C), and 1.3 wt.% (at
800 ◦C) (Table 6). Hence, the amount of deposited carbon was low, especially when the SRT
reaction was carried out at elevated temperatures. No change in the textural properties of
Ni/CeZrO2 was noticed. The SBET for the samples spent at 600, 700, and 800 ◦C were 64,
66, and 67 m2/g, respectively, which indicates that the catalyst is characterized by a very
good stability.
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Figure 11. The toluene conversion and products’ (CO, CO2, H2) yields during stability tests of toluene
steam reforming over Ni/CeZrO2 carried out at S/C = 2.4 and tc = 0.36 s at 600 ◦C (a), 700 ◦C (b),
and 800 ◦C (c).

Table 6. The weight loss of Ni/CeZrO2 samples and the rate of carbon deposition after stability tests
of toluene steam reforming carried out S/C = 2.4 and tc = 0.36 s.

T (◦C) Weight Loss (%) C (mg/gcat/h)

600 3.8 0.32
700 1.9 0.16
800 1.3 0.11

3. Materials and Methods

Catalyst synthesis. The preparation and characterization of a ceria-zirconia-supported
nickel catalyst were presented in [5]. The nominal loading of Ni over CeZrO2 was 10 wt.%.

Catalytic tests. The Ni/CeZrO2 catalyst was first reduced in situ at 700 ◦C for 1.5 h in
5 vol.% of H2 in Ar (flowing rate of 100 mL/min) and then purged with Ar at 800 ◦C for
1 h (flowing rate of 100 mL/min). The catalyst pre-reduction was made to eliminate the
step of the total oxidation of toluene to CO2 and H2O, which typically occurs on the metal
oxide and leads to a zero-valent metal, but also takes place over the Ce4+, reducing it to
Ce3+. After purging the catalyst bed with Ar at 800 ◦C, the reaction mixture composed of
toluene (0.25 vol.%, POCH, Gliwice, Poland), water steam (varying concentrations), and
Ar as a balance was introduced. After 4 h (or 24 h) of a test run at 800 ◦C, the temperature
was first decreased to 700 ◦C, and next to 600, 500, and finally to 420 ◦C, and kept for
4 h (or 24 h) at each T. Tests were carried out at S/C = 1, 1.2, 2.4, and 4. For each S/C
ratio, four different contact times were applied: 0.03, 0.08, 0.13, and 0.36 s. Additionally,
for S/C = 2.4, a catalytic run at tc = 0.003 s was carried out. The stability tests of toluene
steam reforming over Ni/CeZrO2 were carried out at 600, 700, and 800 ◦C for 120 h at each
temperature. During those tests, the applied S/C was 2.4 and tc was 0.36 s. Each stability
test was conducted using the new pre-reduced catalyst sample.

The products of toluene SR were determined by gas chromatograph with a thermal
conductivity detector (Ai Scientific, Cambridge, England). Toluene conversion to CO and
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CO2 was calculated using Equation (18). The yields of gaseous products, i.e., H2, CO, and
CO2, were calculated using Equations (20), (22) and (23).

C7H8 conversion =
[C7H8](SR) · 100

[C7H8](in)
(%) (18)

[C7H8](SR) =
[CO](out) + [CO2](out)

7

(
mol/dm3

)
(19)

H2 yield =
[H2](out)

[H2](in)
·100 (%) (20)

[H2](in) = 4·[C7H8](in) + [H2O](in)

(
mol/dm3

)
(21)

CO yield =
[CO](out)

7·[C7H8](in)
·100 (%) (22)

CO2 yield =
[CO2](out)

7·[C7H8](in)
·100 (%) (23)

where:

[C7H8]SR—the concentration of C7H8 converted in SR reaction to CO and CO2;
[C7H8](in), [H2O](in), [H2](in)—the concentrations of C7H8, H2O, and H2 in the feed;
[H2](out), [CO2](out), [CO](out)—the concentrations of H2, CO2, and CO at the reactor’s outlet.

In addition, to determine the amounts of unreacted toluene and reaction by-products,
the gas was analyzed by GC-MS (Perkin Elmer, Waltham, MA, USA). These analyses were
performed during the catalytic runs of toluene SR at temperatures ranging from 500 to
900 ◦C at S/C = 2.4 and tc = 0.36 s.

Catalyst’s characterization. The X-ray diffraction (XRD) measurements were performed
with a TUR-M62 diffractometer (Carl Zeiss, Jena, Germany) with a copper anticathode
(λ = 1.54 Å), 34 kV voltage, and 25 mA current. The XRD patterns were acquired for 2θ
angles ranging from 20 to 100◦, with 0.03◦ steps. The crystallographic structures of the
samples and the Miller indices (hkl) of the diffraction lines were determined using biblio-
graphic data published by the Joint Committee on Powder Diffraction Standards (JCPDS
cards No. 01-078-0694 and 04-0850 for CeZrO2 and Ni, respectively). The mean crystallite
sizes of CeZrO2 and Ni were determined using the Scherrer equation (Equation (24)).

D(hkl) =
Kλ

B·cosΘ(hkl)
(nm) (24)

where: D(hkl)—the size of crystallite in (hkl) direction; K—Scherrer constant (0.9); λ—the
X-ray wavelength (0.1548 nm); B—the full width at half max of diffraction peak (rad);
Θ(hkl)—the diffraction angle.

Microscopic studies were performed using a high-resolution scanning electron micro-
scope Quanta 250 FEG (FEI Company, Hillsboro, OR, USA) and high resolution transmis-
sion electron microscope JEM 2011 (JEOL, Japan, Tokyo) associated with a top entry device
and operating at 200 kV.

The N2 sorption was performed using the Sorptomatic 1800 (Carlo Erba, Egelsbach,
Germany) at 77 K. Prior to analyses, the samples were outgassed at 150 ◦C for 12 h. The
average pore size and pore volume were calculated using the Barrett–Joyner–Halenda
(BJH) method.

The thermogravimetric analyses (TGA) were conducted by using a derivatograph
Q-1500 (TA Instruments, Budapest, Hungary). The experiments were carried out under
ambient pressure and air flowing with a rate of 100 mL/min. The experimental temperature
ranged from about 25 ◦C to 900 ◦C with a heating rate of 10 ◦C /min.
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4. Conclusions

The Ni/CeZrO2 catalyst was tested in toluene steam reforming under varying steam
excess and contact times. The catalyst exhibited very high toluene conversion and H2
yields, very good stability, and a high resistance to carbon deposition.

It was confirmed that the performance of Ni/CeZrO2 was improved when the S/C
ratio and contact time increased. The impact of both parameters was more important at
lower temperatures. For example, it was observed that the activity of Ni/CeZrO2 at lower
temperatures (420–600 ◦C) can be significantly improved by increasing the contact time.

Conducting the steam reforming reaction under H2O excess prevents the catalyst
deactivation caused by carbon deposition. Firstly, H2O is a source of the active oxygen
for the oxidation of carbon species on the catalyst surface. Secondly, steam excess reduces
toluene dealkylation to benzene, which may accumulate on the catalyst surface, forming
structural carbon deposits. In this work, benzene formation was negligible or did not take
place when the S/C was 2.4 and 4. Formation of the filamentous carbons (CNTs and CNFs)
during toluene steam reforming was observed only when S/C was 1. Even under such
conditions, the formation of carbon deposits was low thanks to the properties of ceria-
zirconia support, which provides the active sites for H2O dissociation. This reaction is an
elementary reaction within the steam reforming and WGS catalytic cycles. However, as was
confirmed in this study, H2O dissociation can also occur beyond those cycles, providing
more active oxygen to the catalyst and enriching the product gas in H2.
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