

Article $Ce_{1-x}Fe_xVO_4$ with Improved Activity for Catalytic Reduction of NO with NH_3

Li Wang¹, Junbo Wang², Heping Cheng^{3,4}, Xiangxiang Zhou² and Zhen Ma^{5,6,*}

- ¹ College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; wlll36@163.com
- ² Key Laboratory of Inorganic Functional Materials, School of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, China; wangjunbo@tech.hsu.edu.cn (J.W.); zxx169385@163.com (X.Z.)
- ³ School of Information Engineering, Huangshan University, Huangshan 245041, China; chenghp@tech.hsu.edu.cn
- ⁴ State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- ⁵ Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- ⁶ Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- * Correspondence: zhenma@fudan.edu.cn

Abstract: A series of $Ce_{1-x}Fe_xVO_4$ (x = 0, 0.25, 0.50, 0.75, 1) catalysts prepared by modified hydrothermal synthesis were used for selective catalytic reduction (SCR) of NO_x with NH₃. Among them, $Ce_{0.5}Fe_{0.5}VO_4$ showed the highest catalytic activity. The catalysts were characterized by X-ray diffraction (XRD), N₂ adsorption–desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction using H₂ (H₂-TPR), and temperature-programmed desorption of NH₃ (NH₃-TPD). The results indicated the formation of Ce-Fe-V-O solid solutions. The average oxidation states (AOS) of Ce, Fe, V, and O atoms changed obviously with the incorporation of Fe³⁺ into CeVO₄, and the acidity of Ce_{0.5}Fe_{0.5}VO₄ differs from that of CeVO₄ and FeVO₄. The presence of more acid sites and a sharp increase in active oxygen species in Ce_{0.5}Fe_{0.5}VO₄ effectively improved the selective catalytic reduction (SCR) activity.

Keywords: selective catalytic reduction; nitrogen oxides; cerium vanadate; iron vanadate; ceriumiron vanadate

1. Introduction

NO_x pollutants released from power plants and car emissions have attracted much concern for their serious harm to the atmospheric environments and human health. The selective catalytic reduction (SCR) of NO_x with NH₃ has been extensively studied as one of the most effective methods to remove NO_x [1–3]. V₂O₅-WO₃-TiO₂ is the most widely used SCR catalyst for its extraordinarily high activity in NO reduction. However, it generally operates in a high-temperature window (300–400 °C), and it can be deactivated by the flue gas containing H₂O/SO₂, phosphorus, ash, and alkali metals [4,5]. CeO₂-based materials have been studied as either catalysts or catalyst supports due to their excellent redox property and oxygen-storage capacity [6]. These catalysts include CeO₂-WO₃-TiO₂ [7], CeO₂-ZrO₂-WO₃ [8], Mn/Ce-ZrO₂ [9], MnO_x-CeO₂ [10], Sn-MnO_x-CeO₂ [11], MnO_x-CeO₂ [12], and V₂O₅/CeO₂ [13]. However, CeO₂-based catalysts may suffer from sulfation [14].

Metal vanadates (AVO₄, A = La, Fe, Ce, etc.) is another kind of catalysts attracting attention. The reported AVO₄-based catalysts include FeVO₄/TiO₂ [15], Ni-FeVO₄/TiO₂ [16], Fe_xEr_{1-x}VO₄ [17], Sn-CeVO₄ [18], Sb-CeVO₄ [19], Ce_{0.5}RM_{0.5}VO₄ (RM = Tb, Er, or Yb) [20], LaVO₄/TiO₂-WO₃-SiO₂ [21], CeV_{1-x}W_xO₄ [22], and Zr-CeVO₄/TiO₂ [23]. For instance, Zr-CeVO₄/TiO₂ has high N₂ selectivity and H₂O/SO₂ durability in NH₃-SCR [23]. However, further promotion of AVO₄ is needed [24,25].

Citation: Wang, L.; Wang, J.; Cheng, H.; Zhou, X.; Ma, Z. Ce_{1-x}Fe_xVO₄ with Improved Activity for Catalytic Reduction of NO with NH₃. *Catalysts* **2022**, *12*, 549. https://doi.org/10.3390/catal12050549

Academic Editor: Hamidreza Arandiyan

Received: 15 March 2022 Accepted: 11 May 2022 Published: 17 May 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Generally, there are two approaches to design better NH₃-SCR catalysts. One approach is to modify the primary catalyst with one metal oxide or multiple metal oxides. The other approach is to modify supports used to disperse transition metal oxides [26]. In particular, the formation of metal oxide solid solutions may lead to better catalytic properties [27], since it may increase the catalyst's surface area, thermal stability, and the number of active oxygen sites.

Previous research reported that Sn, Zr, La, etc., were doped into CeVO₄ [18,22,24,28] separately to investigate their influences on NO conversion. For instance, Huang et al. developed Sn_{0.20}Ce_{0.80}VO₄ for NH₃-SCR by citric-acid-assisted solvothermal synthesis and post-hydrothermal treatment [18]. Zhao et al. developed Ce_{0.85}Zr_{0.15}VO₄ for NH₃-SCR [24]. However, the content of Sn or Zr in the solid solutions was not very high. Kang et al. synthesized a series of Fe_{δ}Ce_{1- δ}VO₄ ($\delta \leq 0.4$) catalysts with good SO₂ tolerance and NO conversion activity by a hydrothermal method [14]. The highest NO conversion appeared at $\delta = 0.3$ for Fe_{δ}Ce_{1- δ}VO₄ ($\delta \leq 0.4$). When the Fe content was higher, minor segregation of CeO₂ occurred.

In this paper, $Ce_{1-x}Fe_xVO_4$ (x ≤ 0.75) solid solutions were prepared by a modified sol-gel hydrothermal method. The objective of our research was to incorporate more Fe into the solid solution to increase the number of active oxygen sites, facilitate the interactions among Ce, Fe, and V in fully mixed solid solutions, and achieve high activity in NH₃-SCR.

2. Results and Discussion

2.1. Catalytic Performance

Figure 1 depicts the NO_x conversions on five catalysts, in the reaction temperature range of 150–400 °C. The NO_x conversion on these catalysts increases as the temperature increases from 150 to 300 °C, and then decreases. Among them, Ce_{0.5}Fe_{0.5}O₄ gives the highest NO_x conversion (75.3%) at 300 °C. The catalytic activities of FeVO₄ and CeVO₄ are lower than those of Ce_{1-x}Fe_xVO₄. The overall activity of these catalysts follows the trend of CeVO₄ < Ce_{0.75}Fe_{0.25}VO₄ < Ce_{0.5}Fe_{0.5}VO₄ > Ce_{0.25}Fe_{0.75}VO₄ > FeVO₄, and the catalytic data are reproducible (Figure S1 in Supplementary Materials). It should be mentioned that the objective of this research was to identify the activity trends among these catalysts, i.e., to identify the best catalyst and understand why it is better than other catalysts. In addition, a small catalyst weight (200 mg) and a high flow rate (1000 mL/min) were adopted herein. Thus, the highest conversion was not 100%. Nevertheless, complete conversion can usually be achieved easily when more catalyst is used or the flow rate of the gas is decreased [27].

Figure 1. X_{NOx} over Ce_{1-x}Fe_xVO₄ catalysts prepared by a hydrothermal method. Reaction conditions: [NO] = 500 ppm, [NH₃] = 500 ppm, [O₂] = 3 vol.%, balance N₂; catalyst weight: 200 mg; total flow rate: 1000 mL·min⁻¹.

The stability of the optimal catalyst (Ce_{0.5}Fe_{0.5}VO₄) at 300 °C was tested as a function of time on stream. As shown in Figure S2 from Supplementary Materials, the NO_x conversion increases slightly in the initial 100 min, and it then becomes stable (74–75% conversion).

To set the result in perspective, the catalytic activity of $Ce_{0.5}Fe_{0.5}VO_4$ was compared with those of other catalysts. $Ce_{0.5}Fe_{0.5}VO_4$ is more active than $Ce_{0.5}Fe_{0.5}O_x$ reported in our previous work [27] because $Ce_{0.5}Fe_{0.5}O_x$ can only achieve about 70% NO_x conversion at 300 °C under relatively milder conditions (200 mg catalyst, [NO] = 500 ppm, flow rate = 500 mL/min) [27], whereas $Ce_{0.5}Fe_{0.5}VO_4$ can achieve 75.3% NO_x conversion at 300 °C under relatively harsher conditions (200 mg catalyst, [NO] = 500 ppm, flow rate = 1000 mL/min). For comparison, $Fe_{0.3}Ce_{0.7}VO_4$ developed by Zhang and coworkers can lead to >95% NO_x conversion at 250–300 °C under relatively milder conditions (300 mg catalyst, [NO] = 500 ppm, flow rate = 250 mL/min) [14]. In a recent work by Tang and co-workers, Ce-W/TiO₂ can leads to ~90% NO conversion at 300 °C under conditions identical to those in our current work (200 mg catalyst, [NO] = 500 ppm, flow rate = 1000 mL/min) [29].

2.2. Regular Characterization

Figure 2 gives the XRD patterns of samples. CeVO₄ shows peaks at $2\theta = 18.4$, 24.3, 32.7, 34.6, 39.3, 43.8, 48.2, and 55.9°, attributed to the (101), (200), (112), (220), (301), (103), (312), and (420) planes of tetragonal CeVO₄, respectively [30]. The other minor peaks are all consistent well with the standard pattern of CeVO₄ (JCPDS: 12-0757). The XRD patterns of FeVO₄ shows characteristic peaks at 25.2, 27.1, 27.8, 28.0, 42.1, 42.2, 49.8, 52.4, 54.8 and 59.2°, are ascribed to the (012), ($\overline{2}$ 01), ($\overline{112}$), ($\overline{2}$ 10), ($\overline{3}$ 10), ($\overline{033}$), (123), ($\overline{3}$ 12), ($\overline{4}$ 12) and ($\overline{223}$) lattice planes of triclinic FeVO₄ (JCPDS: 71-1592) [31]. The XRD patterns of Ce_{0.75}Fe_{0.25}VO₄, Ce_{0.5}Fe_{0.5}VO₄, and Ce_{0.25}Fe_{0.75}VO₄ are similar to that of CeVO₄, indicating that the former samples keep the structure of CeVO₄.

Figure 2. XRD patterns of $Ce_{1-x}Fe_xVO_4$ catalysts.

The magnified (200) peak of CeVO₄, Ce_{0.75}Fe_{0.25}VO₄, Ce_{0.5}Fe_{0.5}VO₄, and Ce_{0.35}Fe_{0.75}VO₄ are manifested in Figure S3 from Supplementary Materials. It is clear to see that the 20 value right shifts to the lager value with the increase in Fe content, because the ion radius of the doped Fe³⁺ (49 pm) is much smaller than that of Ce³⁺ (103.8 pm) [32,33]. According to the Bragg's law, $2d_{(hkl)}\sin\theta = n\lambda$, the increase of 20 value corresponds to the decrease

in the d spacing $d_{(hkl)}$ value, that is, lattice constraint. This fact implies that the Fe³⁺ ions substitute some Ce⁴⁺ sites. With the increase in Fe contents, the crystal parameter "a" gradually decreases from 0.7399 to 0.7349 nm, while the crystal parameter "c" gradually decreases from 6.496 to 6.469 nm (Table S1 in Supplementary Materials). Once the Fe³⁺ ions are doped into the crystal cell, the cell volume will shrink.

Figure 3 shows the SEM images of samples. The sizes of CeVO₄ crystals are a fewhundred nanometers, and CeVO₄ is composed of irregular particles, rods, and plates. The sizes of FeVO₄ crystals are also a few hundred nanometers, and FeVO₄ is composed of agglomerated particles. Ce_{0.75}Fe_{0.25}VO₄, Ce_{0.50}Fe_{0.50}VO₄, and Ce_{0.25}Fe_{0.75}VO₄ generally exhibit morphologies more similar to that of CeVO₄.

Figure 3. SEM images of $Ce_{1-x}Fe_xVO_4$. (a) $CeVO_4$; (b) $Ce_{0.75}Fe_{0.25}VO_4$; (c) $Ce_{0.50}Fe_{0.50}VO_4$; (d) $Ce_{0.25}Fe_{0.75}VO_4$; (e) $FeVO_4$.

HRTEM image of CeVO₄ is illustrated in Figure 4a. The (200) interplanar spacing is 0.369 nm, equal to that of un-doped CeVO₄ (0.369 nm) [34]. The (101) interplanar spacing is 0.484 nm, identical to that of un-doped CeVO₄ (0.487 nm) [19,34]. The angle between the (101) and (200) planes (90°) further confirms that the prepared sample is CeVO₄. Figure 4b illustrates the HRTEM image of Ce_{0.50}Fe_{0.50}VO₄. The d spacing of the (101) plane is 0.482 nm, slightly smaller than that of CeVO₄ (0.484 nm). The d spacing of the (200) plane is 0.367 nm, also slightly smaller than that of CeVO₄ (0.369 nm). The reason is that the ionic radius of Fe³⁺ (49 pm) is smaller than that of Ce³⁺ (103.8 pm) [32,33]. It is noticeable that the angle between the (101) and (200) planes (101°) is obviously larger than that of CeVO₄ (90°). These results mean that some Fe³⁺ substitute the Ce⁴⁺ and slightly changes the parameters of crystal cells.

Figure 4. The HRTEM images of $CeVO_4$ (a) and $Ce_{0.50}Fe_{0.50}VO_4$ (b).

The EDX-mapping data $Ce_{0.50}Fe_{0.50}VO_4$ (Figure 5) show the even distribution of Ce, Fe, V, and O elements. XRF data show that the Ce: Fe: V molar ratio of $Ce_{0.50}Fe_{0.50}VO_4$ is 0.507:0.493:1, close to the theoretical ratio.

Figure 5. SEM image (**a**) and the corresponding EDX mapping images of O (**b**), Ce (**c**), Fe (**d**) and V (**e**) elements of $Ce_{0.50}Fe_{0.50}VO_4$. The scale bar represents 20 μ m.

2.3. XPS Data

Figure 6 gives the Ce 3d XPS spectra. The Ce $3d_{3/2}$ and Ce $3d_{5/2}$ signals are marked as "u" and "v", respectively. The v, v", v"', u, u", and u"' can be ascribed to surface Ce⁴⁺, whereas v' and u' can be attributed to surface Ce³⁺. The surface Ce³⁺/(Ce⁴⁺ + Ce³⁺) ratio of CeVO₄ is 39.1%, corresponding to an average oxidation state (AOS) of 3.61 (for Ce). For comparison, the surface Ce³⁺/(Ce⁴⁺ + Ce³⁺) ratio of Ce_{0.50}Fe_{0.50}VO₄ is 23.2%, corresponding to an AOS of 3.77.

Figure 6. Ce 3d XPS spectra of CeVO₄ and Ce_{0.50}Fe_{0.50}VO₄.

Figure 7 illustrates the Fe 2p XPS spectra. The surface $Fe^{2+}/(Fe^{2+} + Fe^{3+})$ ratio of $FeVO_4$ is 29.9%, corresponding to an AOS of 2.70 (for Fe). On the other hand, the $Fe^{2+}/(Fe^{2+} + Fe^{3+})$ ratio of $Ce_{0.50}Fe_{0.50}VO_4$ is 28.1%, corresponding to an AOS of 2.72.

Figure 7. Fe 2p XPS spectra of CeVO₄ and Ce_{0.50}Fe_{0.50}VO₄.

Figure 8 shows the V 2p XPS spectra. The surface $V^{4+}/(V^{4+} + V^{5+})$ ratio of $Ce_{0.50}Fe_{0.50}VO_4$ is 24.2%, while those of CeVO₄ and FeVO₄ are 18.7% and 18.9%, respectively, which means the AOSs of V in $Ce_{0.50}Fe_{0.50}VO_4$, CeVO₄, and FeVO₄ are 4.76, 4.81, 4.81, respectively. The above results manifest that when some Fe³⁺ replace Ce⁴⁺, the oxidation states of Fe, Ce, and V are all changed.

Figure 8. V 2p XPS spectra of CeVO₄, Ce_{0.50}Fe_{0.50}VO₄, and FeVO₄.

Figure 9 shows the O 1s XPS spectra. The O 1s spectra can be divided into two peaks at 529.9, and 531.1 eV corresponding to lattice oxygen (denoted as O_{α}) as well as the surface oxygen and oxygen vacancies (denoted as O_{β}), respectively [19,35]. Owing to greater mobility, O_{β} (surface labile oxygen) is more active compared to O_{α} (bulk oxygen). As shown in Figure 9, $Ce_{0.5}Fe_{0.5}VO_4$ has the highest concentration of surface labile oxygen species among three representative catalysts.

Figure 9. O 1s XPS spectra of $CeVO_4$, $Ce_{0.50}Fe_{0.50}VO_4$, and $FeVO_4$.

2.4. H₂-TPR and NH₃-TPD Data

Figure 10 shows the H₂-TPR profiles of samples. CeVO₄ exhibits a peak at 864 °C, corresponding to the reduction of CeVO₄ to CeVO₃ [24,36]. In the H₂-TPR profile of FeVO₄, the obvious peak around 648 °C is assigned to the reduction of VO₄^{3–} [37], while the H₂ consumption at lower temperatures is ascribed to the reduction of Fe³⁺ [16,37]. The first peak of Ce_{0.50}Fe_{0.50}VO₄ at 550 °C is ascribed to the reduction of active surface oxygen. The second peak at 632 °C may be ascribed to the reduction of Fe³⁺ or Ce⁴⁺. The third peak at 740 °C is ascribed to the reduction of VO₄^{3–} [15,24]. The data show that Ce_{0.5}Fe_{0.5}VO₄ owns more surface oxygen useful for NH₃-SCR.

Figure 10. H₂-TPR profiles of the catalysts.

Figure 11 shows the baseline-corrected NH₃-TPD data obtained by subtracting the "blank" TPD profile. The four peaks in low, medium, high, and superhigh temperature regions are ascribed to weak, medium, medium strong, and strong acid sites, as divided by peakfit V4.12 software. The distribution of four kinds of acid sites can be estimated by the relative peak areas. It is observed that the $Fe_{0.50}Ce_{0.50}VO_4$ has more acid sites than $CeVO_4$ and $FeVO_4$, which may be beneficial for NH₃ adsorption and NH₃-SCR [24].

Figure 11. NH₃-TPD profiles of the catalysts.

3. Materials and Methods

3.1. Synthesis

 $Ce_{1-x}Fe_xVO_4$ catalysts were synthesized by a modified sol-gel hydrothermal method. In a typical synthesis, 5 mmol NH_4VO_3 was added in 80 mL hot water and heated at 60 °C in a water bath with constant stirring to prepare solution A. Stoichiometric $Fe(NO_3)_3 \cdot 9H_2O$ (98.5% purity, Sinopharm, Shanghai, China), Ce(NO3)3.6H2O (99.95%, Aladdin, Beijing, China), and 5 mmol citric acid were separately dissolved in 30 mL ethanol and then these three solutions (about 30 mL each) were mixed and magnetically stirred to form solution B. After 30 min of constant stirring plus heating in a water bath at 60 $^{\circ}$ C, the solution's color turned from yellowish to transparent and clean. Solution B was added into solution A drop by drop, while the whole solution was stirred vigorously. Subsequently, a moderate amount of propylene oxide was added dropwise into the mixed solution heated in a water bath at 60 °C until a duck-blood-like sol solution was formed. Finally, 2 M NH₃·H₂O or 2 M HCl solution was added slowly into the above mixture with constant stirring. The final pH value of the sol solution, monitored by a pH meter, was 7. The sol solution was transferred to two sealed autoclaves (with 100 mL volume each) and hydrothermally treated at 180 °C for 24 h. Then, the solids in the autoclaves were isolated via filtration and washed with deionized water until the pH value of the solvent became 7. The solids were collected and dried at 110 °C for 6 h. The dried solids were carefully grinded in a mortar and transferred into a porcelain bowl and heated to 750 °C (heating rate: 5 °C/min) in a muffle oven (with static air), and then heated at 750 °C for 12 h.

3.2. Activity Measurement

Catalytic activity measurement was performed in a quartz tube reactor (i.d. = 8 mm). The 200 mg catalyst (40–60 mesh) was added in the reactor for each test. The feed gas contained NO (500 ppm), NH₃ (500 ppm), O₂ (3.0%), and balance N₂. The total flow rate was 1000 mL/min. The gas concentrations were measured by an NO–NO₂–NO_x analyzer (42i-HL, High Level, Thermo Electron Corporation, Waltham, MA, USA).

 NO_x conversion was calculated using the given equation:

$$X_{\text{NO}_x}(\%) = \left(\frac{[\text{NO}_x]_{\text{in}} - [\text{NO}_x]_{\text{out}}}{[\text{NO}_x]_{\text{in}}}\right) \times 100\%$$
(1)

where $[NO_x]_{in}$ and $[NO_x]_{out}$ are the concentrating of NO_x entering the reactor and exiting the reactor, respectively.

3.3. Characterization

XRD patterns were recorded on an Advanced D8 (Bruker) powder diffractometer using Cu K_{α} radiation. TEM images were obtained with a JEOL JEM-2100F field emission TEM instrument equipped with an EDAX Genesis XM4-Sys60 system (EDAX Inc., Mahwah, NJ, USA). The elemental compositions of powders were determined by XRF (Thermo-3600, Thermo Fisher Scientific Inc., Waltham, MA, USA). The specific BET surface data were measured using a Micromeritics analyzer (Tristar II 3020M, Micromeritics, Norcross, GA, USA). XPS data were obtained on a thermoESCLAB 250XI instrument using monochromatic Al K α radiation (Thermo, Waltham, MA, USA).

H₂-TPR experiments were carried out using a Micromeritics AutoChem 2920 (Micromeritics, Norcross, GA, USA) chemisorption instrument, following the procedure reported [38,39]. Firstly, the sample (40–60 mesh, 100 mg) was placed in a quartz tube reactor. Secondly, the sample was pretreated at 300 °C in 20 vol.% O₂/Ar (50 mL/min) for 0.5 h and cooled down to 30 °C followed by purging by Ar for 0.5 h. Then, a gas flow (10% H₂ in Ar, 50 mL/min) passed through the sample. Finally, the temperature was increased from 50 to 950 °C at a rate of 10 °C min⁻¹.

NH₃-TPD experiments were carried out on a Micromeritics AutoChem 2920 chemisorption instrument. A sample (40–60 mesh, 50 mg), placed in a quartz reactor, was pretreated at 300 °C in 20 vol.% O₂/Ar (50 mL/min) for 0.5 h and cooled down to 30 °C followed by Ar purging for 0.5 h. Then, 10% NH₃ in Ar (50 mL/min) flowed through the sample, and the temperature was ramped from 50 to 650 °C at a rate of 10 °C min⁻¹.

4. Conclusions

A series of $Ce_{1-x}Fe_xVO_4$ catalysts were prepared by a modified hydrothermal method. It was found that that $Ce_{0.50}Fe_{0.50}VO_4$ exhibits the optimum NO_x conversion efficiency compared with other catalysts. With the incorporation of Fe^{3+} , the crystal structure of $CeVO_4$ crystal gradually distorts and the average oxidation states of Ce, Fe, and V change accordingly. The surface oxygen and oxygen vacancy contents increase, as proved by XPS and H₂-TPR data. $Ce_{0.50}Fe_{0.50}VO_4$ has more weak and medium acid sites compared with $CeVO_4$ and $FeVO_4$. These factors contribute to the enhanced catalytic performance of $Ce_{0.50}Fe_{0.50}VO_4$. The anti-SO₂ and anti-H₂O performance of NH_3 -SCR catalysts should be studied in the future for applications under realistic environments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/catal12050549/s1, Table S1. The crystallographic data of $Ce_{1-x}Fe_xVO_4$ samples, some of which were obtained using the Rietveld refinements. Figure S1. X_{NOx} over $Ce_{1-x}Fe_xVO_4$ catalysts prepared by a hydrothermal method. Reaction conditions: [NO] = 500 ppm, [NH₃] = 500 ppm, [O₂] = 3 vol.%, balance N₂; catalyst weight: 200 mg; total flow rate: 1000 mL·min⁻¹. Figure S2. X_{NOx} over $Ce_{0.5}Fe_{0.5}VO_4$ at 300 °C as a function of time on stream. Reaction conditions: [NO] = 500 ppm, [O₂] = 3 vol.%, balance N₂; catalyst weight: 200 mg; total flow rate: 1000 mL·min⁻¹. Figure S3. XRD patterns (2 θ = 22–27°) of $Ce_{1-x}Fe_xVO_4$ catalysts.

Author Contributions: Conceptualization, J.W.; Data curation, J.W. and X.Z.; Formal analysis, L.W. and H.C.; Investigation, L.W. and X.Z.; Supervision, Z.M.; Writing—original draft, L.W. and J.W.; Writing—review and editing, Z.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Natural Science Research Key Project of Anhui Provincial Department of Education (KJ2021A1036), Natural Science Foundation of Zhejiang province (Y5090310, LY19E080023), Natural Science Foundation of Anhui province (KJ2018A0406), the Open Foundation of State Key Laboratory of Precision Spectroscopy (East China Normal University), Excellent and top-notch talent cultivation funding project in Anhui universities (GXFX2017106), and Special Fund for the Construction of Innovative Provinces (2020XZX005).

Data Availability Statement: Data are available from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Jiang, Y.; Bao, C.Z.; Liu, Q.Y.; Liang, G.T.; Lu, M.Y.; Ma, S.Y. A novel CeO₂-MoO₃-WO₃/TiO₂ catalyst for selective catalytic reduction of NO with NH₃. *Catal. Commun.* 2018, 103, 96–100. [CrossRef]
- Wang, D.; Chen, Q.Z.; Zhang, X.; Gao, C.; Wang, B.; Huang, X.; Peng, Y.; Li, J.H.; Lu, C.M.; Crittenden, J. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: A critical review. *Environ. Sci. Technol.* 2021, 55, 2743–2766. [CrossRef] [PubMed]
- 3. Xu, G.Y.; Guo, X.L.; Cheng, X.X.; Yu, J.; Fang, B.Z. A review of Mn-based catalysts for low-temperature NH₃-SCR: NO_x removal and H₂O/SO₂ resistance. *Nanoscale* **2021**, *13*, 7052–7080. [CrossRef] [PubMed]
- 4. Duan, C.P.; Guo, R.T.; Wu, G.L.; Pan, W.G. Selective catalytic reduction of NO_x by NH₃ over CeVO₄-CeO₂ nanocomposite. *Environ. Sci. Pollut. Res.* **2020**, *27*, 22818–22828. [CrossRef]
- Zhang, W.D.; Qi, S.H.; Pantaleo, G.; Liotta, L.F. WO₃–V₂O₅ active oxides for NO_x SCR by NH₃: Preparation methods, catalysts' composition, and deactivation mechanism—A review. *Catalysts* 2019, 9, 527. [CrossRef]
- Gao, F.Y.; Tang, X.L.; Yi, H.H.; Li, J.Y.; Zhao, S.Z.; Wang, J.G.; Chu, C.; Li, C.L. Promotional mechanisms of activity and SO₂ tolerance of Co- or Ni-doped MnO_x-CeO₂ catalysts for SCR of NO_x with NH₃ at low temperature. *Chem. Eng. J.* 2017, 317, 20–31. [CrossRef]
- Wu, Z.H.; Zeng, Y.Q.; Song, F.J.; Zhang, S.L.; Zhong, Q. Active sites assembly effect on CeO₂-WO₃-TiO₂ catalysts for selective catalytic reduction of NO with NH₃. *Mol. Catal.* 2019, 479, 110549. [CrossRef]

- Song, Z.X.; Yin, L.T.; Zhang, Q.L.; Ning, P.; Duan, Y.K.; Wang, J.; Liu, X.; Long, K.X.; Huang, Z.Z. Relationship between the WO₃ states and reaction pathway over CeO₂-ZrO₂-WO₃ catalysts for selective catalytic reduction of NO with NH₃. *Mol. Catal.* 2017, 437, 95–104. [CrossRef]
- Shen, B.X.; Zhang, X.P.; Ma, H.Q.; Yao, Y.; Liu, T. A comparative study of Mn/CeO₂, Mn/ZrO₂ and Mn/Ce-ZrO₂ for low temperature selective catalytic reduction of NO with NH₃ in the presence of SO₂ and H₂O. *J. Environ. Sci.* 2013, 25, 791–800. [CrossRef]
- 10. Liu, C.; Gao, G.; Shi, J.W.; He, C.; Li, G.D.; Bai, N.; Niu, C. MnO_x-CeO₂ shell-in-shell microspheres for NH₃-SCR de-NO_x at low temperature. *Catal. Commun.* **2016**, *86*, 36–40. [CrossRef]
- Chang, H.Z.; Chen, X.Y.; Li, J.H.; Ma, L.; Wang, C.Z.; Liu, C.X.; Schwank, J.W.; Hao, J.M. Improvement of activity and SO₂ tolerance of Sn-modified MnO_x-CeO₂ catalysts for NH₃-SCR at low temperatures. *Environ. Sci. Technol.* **2013**, 47, 5294–5301. [CrossRef] [PubMed]
- 12. Jiang, H.X.; Zhao, J.; Jiang, D.Y.; Zhang, M.H. Hollow MnO_x-CeO₂ nanospheres prepared by a green route: A novel low-temperature NH₃-SCR catalyst. *Catal. Lett.* **2014**, 144, 325–332. [CrossRef]
- Peng, Y.; Li, J.H.; Huang, X.; Li, X.; Su, W.K.; Sun, X.X.; Wang, D.Z.; Hao, J.M. Deactivation mechanism of potassium on the V₂O₅/CeO₂ catalysts for SCR reaction: Acidity, reducibility and adsorbed-NO_x. *Environ. Sci. Technol.* 2014, 48, 4515–4520. [CrossRef] [PubMed]
- 14. Kang, L.; Han, L.P.; Wang, P.L.; Feng, C.; Zhang, J.P.; Yan, T.T.; Deng, J.; Shi, L.Y.; Zhang, D.S. SO₂-tolerant NO_x reduction by marvelously suppressing SO₂ adsorption over Fe_δCe_{1-δ}VO₄ catalysts. *Environ. Sci. Technol.* **2020**, *54*, 14066–14075. [CrossRef]
- 15. Wu, G.X.; Li, J.; Fang, Z.T.; Lan, L.; Wang, R.; Gong, M.C.; Chen, Y.Q. FeVO₄ nanorods supported TiO₂ as a superior catalyst for NH₃–SCR reaction in a broad temperature range. *Catal. Commun.* **2015**, *64*, 75–79. [CrossRef]
- 16. Wu, G.X.; Feng, X.; Zhang, H.L.; Zhang, Y.H.; Wang, J.L.; Chen, Y.Q.; Dan, Y. The promotional role of Ni in FeVO₄/TiO₂ monolith catalyst for selective catalytic reduction of NO with NH₃. *Appl. Surf. Sci.* **2018**, *427*, 24–36. [CrossRef]
- Casanova, M.; Llorca, J.; Sagar, A.; Schermanz, K.; Trovarelli, A. Mixed iron–erbium vanadate NH₃-SCR catalysts. *Catal. Today* 2015, 241, 159–168. [CrossRef]
- Huang, X.S.; Zhang, G.D.; Dong, F.; Tang, Z.C. The remarkable promotional effect of Sn on CeVO₄ catalyst for wide temperature NH₃-SCR process by citric acid-assisted solvothermal synthesis and post-hydrothermal treatment. *Catal. Sci. Technol.* 2018, *8*, 5604–5615. [CrossRef]
- 19. Wu, G.L.; Guo, R.T.; Liu, Y.Z.; Duan, C.P.; Miao, Y.F.; Gu, J.W.; Pan, W.G. Promoting effect of Sb on the selective catalytic reduction of NO with NH₃ over CeVO₄ catalyst. *J. Energy Inst.* **2021**, *95*, 77–86. [CrossRef]
- 20. Kim, J.; Kim, D.H.; Kwon, D.W.; Lee, K.Y.; Ha, H.P. Unveiling the traits of rare earth metal (RM)-substituted bimetallic Ce_{0.5}RM_{0.5}V₁O₄ phases to activate selective NH₃ oxidation and NO_X reduction. *Appl. Surf. Sci.* **2020**, *518*, 146238. [CrossRef]
- 21. Casanova, M.; Schermanz, K.; Llorca, J.; Trovarelli, A. Improved high temperature stability of NH₃-SCR catalysts based on rare earth vanadates supported on TiO₂-WO₃-SiO₂. *Catal. Today* **2012**, *184*, 227–236. [CrossRef]
- 22. Gillot, S.; Tricot, G.; Vezin, H.; Dacquin, J.P.; Dujardin, C.; Granger, P. Induced effect of tungsten incorporation on the catalytic properties of CeVO₄ systems for the selective reduction of NO_x by ammonia. *Appl. Catal. B Environ.* **2018**, 234, 318–328. [CrossRef]
- Zhao, X.; Huang, L.; Namuangruk, S.; Hu, H.; Hu, X.N.; Shi, L.Y.; Zhang, D.S. Morphology-dependent performance of Zr-CeVO₄/TiO₂ for selective catalytic reduction of NO with NH₃. *Catal. Sci. Technol.* 2016, *6*, 5543–5553. [CrossRef]
- 24. Zhao, X.; Huang, L.; Li, H.R.; Hu, H.; Hu, X.N.; Shi, L.Y.; Zhang, D.S. Promotional effects of zirconium doped CeVO₄ for the low-temperature selective catalytic reduction of NO_x with NH₃. *Appl. Catal. B Environ.* **2016**, *183*, 269–281. [CrossRef]
- Si, Z.P.; Shen, Y.J.; He, J.B.; Yan, T.T.; Zhang, J.P.; Deng, J.; Zhang, D.S. SO₂-induced alkali resistance of FeVO₄/TiO₂ catalysts for NO_x reduction. *Environ. Sci. Technol.* 2022, 56, 605–613. [CrossRef] [PubMed]
- Damma, D.; Ettireddy, P.R.; Reddy, B.M.; Smirniotis, P.G. A review of low temperature NH₃-SCR for removal of NO_x. *Catalysts* 2019, *9*, 349. [CrossRef]
- Wang, L.; Wang, J.B.; Liu, X.N.; Chen, Y.X.; Cheng, H.P.; Wu, Y.B.; Peng, H.; Ma, Z. FeCeO_x with improved activity for catalytic reduction of NO with NH₃. J. Phys. Chem. Solids 2020, 142, 109472. [CrossRef]
- Guan, J.; Li, J.; Ye, Z.; Wu, D.; Liu, C.; Wang, H.; Ma, C.; Huo, P.; Yan, Y. La₂O₃ media enhanced electrons transfer for improved CeVO₄@halloysite nanotubes photocatalytic activity for removing tetracycline. *J. Taiwan Inst. Chem. Eng.* 2019, 96, 281–298. [CrossRef]
- 29. Hu, X.L.; Qu, W.Y.; Chen, J.X.; Xu, D.R.; Liu, J.; Dong, Y.Y.; Liu, R.; Ma, Z.; Tang, X.F. Speeding up low-temperature SCR with reactants-coupling dual catalytic sites. *Chem. Eng. J.* 2022, 440, 135832. [CrossRef]
- Lu, G.; Song, B.; Li, Z.; Liang, H.Y.; Zou, X.J. Photocatalytic degradation of naphthalene on CeVO₄ nanoparticles under visible light. *Chem. Eng. J.* 2020, 402, 125645. [CrossRef]
- Lopez-Moreno, S.; Errandonea, D.; Pellicer-Porres, J.; Martinez-Garcia, D.; Patwe, S.J.; Achary, S.N.; Tyagi, A.K.; Rodriguez-Hernandez, P.; Munoz, A.; Popescu, C. Stability of FeVO₄ under pressure: An X-ray diffraction and first-principles study. *Inorg. Chem.* 2018, 57, 7860–7876. [CrossRef] [PubMed]
- Anjaneya, K.C.; Nayaka, G.P.; Manjanna, J.; Govindaraj, G.; Ganesha, K.N. Studies on structural, morphological and electrical properties of Ce_{0.8}Ln_{0.2}O_{2-x} (Ln = Y³⁺, Gd³⁺, Sm³⁺, Nd³⁺ and La³⁺) solid solutions prepared by citrate complexation method. *J. Alloy. Compd.* **2014**, 585, 594–601. [CrossRef]

- Qu, W.Y.; Chen, Y.X.; Huang, Z.W.; Gao, J.Y.; Zhou, M.J.; Chen, J.X.; Li, C.; Ma, Z.; Chen, J.M.; Tang, X.F. Active tetrahedral iron sites of γ-Fe₂O₃ catalyzing NO reduction by NH₃. *Environ. Sci. Technol. Lett.* 2017, *4*, 246–250. [CrossRef]
- Yao, L.; Li, X.; Liu, H.; Li, Z.; Lu, Q. One-dimensional hierarchical CeVO₄/TiO₂ heterostructures with enhanced photocatalytic performance. *J. Nanopart. Res.* 2019, 21, 140. [CrossRef]
- 35. Wang, Y.; Liu, H.; Hu, P.P.; Huang, Z.W.; Gao, J.Y.; Xu, F.; Ma, Z.; Tang, X.F. Enhancing the catalytic activity of hollandite manganese oxide by supporting sub-10 nm ceria particles. *Catal. Lett.* **2015**, *145*, 1880–1884. [CrossRef]
- 36. Gillot, S.; Tricot, G.; Vezin, H.; Dacquin, J.P.; Dujardin, C.; Granger, P. Development of stable and efficient CeVO₄ systems for the selective reduction of NO_x by ammonia: Structure-activity relationship. *Appl. Catal. B Environ.* **2017**, *218*, 338–348. [CrossRef]
- Wu, G.; Li, J.; Fang, Z.; Lan, L.; Wang, R.; Lin, T.; Gong, M.; Chen, Y. Effectively enhance catalytic performance by adjusting pH during the synthesis of active components over FeVO₄/TiO₂–WO₃–SiO₂ monolith catalysts. *Chem. Eng. J.* 2015, 271, 1–13. [CrossRef]
- Lian, Z.H.; Liu, F.D.; He, H. Enhanced activity of Ti-modified V₂O₅/CeO₂ catalyst for the selective catalytic reduction of NO_x with NH₃. *Ind. Eng. Chem. Res.* 2014, *53*, 19506–19511. [CrossRef]
- Chen, Y.X.; Huang, Z.W.; Hu, P.P.; Chen, J.M.; Tang, X.F. Improved performance of supported single-atom catalysts via increased surface active sites. *Catal. Commun.* 2016, 75, 74–77. [CrossRef]