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Abstract: Hydrogen fuel cell technology is an essential component of a green economy. However,
it is limited in practicality and affordability by the oxygen reduction reaction (ORR). Nanoscale
silver particles have been proposed as a cost-effective solution to this problem. However, previous
computational studies focused on clean and flat surfaces. High-index surfaces can be used to model
active steps presented in nanoparticles. Here, we used the stable stepped Ag(322) surface as a model
to understand the ORR performance of steps on Ag nanoparticles. Our density functional theory
(DFT) results demonstrate a small dissociation energy barrier for O2 molecules on the Ag(322) surface,
which can be ascribed to the existence of low-coordination number surface atoms. Consequently,
the adsorption of OOH* led to the associative pathway becoming ineffective. Alternatively, the
unusual dissociative mechanism is energetically favored on Ag(322) for ORR. Our findings reveal the
importance of the coordination numbers of active sites for catalytic performance, which can further
guide electrocatalysts’ design.

Keywords: oxygen reduction reaction; nanoparticles; density functional theory; dissociation;
high-Miller-index surface

1. Introduction

The looming energy crisis is inevitable unless current energy sources are replaced with
sustainable green alternatives. Energy sources have become more diverse and greener in
recent years, yet solar and wind power alone are unlikely to overcome our predicament.
The electrification of our power sector will meet the challenges of long-distance transport,
metallurgy, etc. [1]. Hydrogen is an abundant element that could address the limitations of
the current clean energy sector. It can be used for metallurgic purposes and as a source of
portable high energy density storage technology [2,3]. However, extracting the energy from
hydrogen has proved challenging. The hydrogen fuel cell is the primary technology that
converts this gas into electricity and is the pathway to a 100% renewable economy [4,5]. Un-
fortunately, this technology is held back by the kinetically poor cathodic oxygen reduction
reaction (ORR) [6–9]. Moreover, expensive Pt-based catalysts are necessary for commercial
hydrogen fuel cells. Therefore, the low energy conversion efficiency and high cost of the
electrocatalysts prevent the hydrogen fuel cell to compete with traditional alternatives.
An intuitive approach for this problem is to increase the electrocatalytic performance of
a non-expensive material [10]. However, these substitutes are difficult to mass-produce
or have poor lifetimes [11,12]. Therefore, an earth-abundant elemental catalyst would
be ideal.

Silver is a potential alternative electrocatalyst for hydrogen fuel cells. This is because
Ag has similar properties to Pt [13–15]. In addition, Ag-based catalysts are 50 times
cheaper than the industrial Pt/C standard [14]. Previous studies have revealed that Ag
nanowires, nanocubes, and nanoparticles have high catalytic performance due to their

Catalysts 2022, 12, 576. https://doi.org/10.3390/catal12060576 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12060576
https://doi.org/10.3390/catal12060576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0001-6897-4395
https://orcid.org/0000-0002-5873-0095
https://orcid.org/0000-0003-3635-3572
https://orcid.org/0000-0001-8619-0455
https://doi.org/10.3390/catal12060576
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12060576?type=check_update&version=1


Catalysts 2022, 12, 576 2 of 13

unique surface morphology [16]. Since Ag nanomaterials are rich in high-Miller-index
surfaces, their outstanding performance may be ascribed to the existence of these stepped
surfaces [15]. Ag is facet-dependent and has shown significant variation in its catalytic
properties due to the different bonding strengths with the adsorbates [13,17–22]. High-
Miller-index surfaces often show stronger catalytic activity than their flat counterparts.
Vattuone et al. found that Ag (210) showed different absorption properties of oxygen
molecules at 105 K. Additionally, when Ag (210) absorbed an oxygen molecule, it became
easier for the surface to absorb additional oxygen molecules. Jiang et al. investigated the
benzene adsorption on stepped Ag(211), (533), (322), (755), and (544) surfaces. They found
that the work function change of the surface was strongly related to the density of the
steps [23]. In addition, the adsorption energy of benzene on the Ag(322) surface was found
to be the strongest among all the considered systems, which was 9% stronger than that on
Ag(111). While the ORR mechanisms of flat, low-Miller-index surfaces are well understood,
minimal theoretical work has been conducted to investigate the mechanisms of their ORR
pathways on these rough stepped surfaces [24]. Furthermore, a better understanding
of the ORR pathways on stepped surfaces can illuminate ways to improve the overall
performance of other nanocatalysts. To this end, an atomistic investigation of the ORR
mechanisms on stepped surfaces is required.

Previous studies have demonstrated that computational methodology plays a cru-
cial role in accurately understanding the adsorption properties of the O2 on Ag sur-
faces [21,25–27]. The adsorption of the oxygen molecule is also controversial, as it has
several adsorption states [28–30]. Studying ORR is notorious for being beyond the limits
of the generalized gradient approximation (GGA) level studies. Several limitations, such
as the self-interaction error and poor descriptions of two-body vdW forces, prevent the
broad application of DFT [31–33]. Computations with some van der Waals (vdW) correc-
tion methods, e.g., D3, still fall short of experimental expectations [34]. Only hybrid or
non-local functionals can reliably reproduce experimental values, but they suffer from
large computational costs [35,36]. However, the SCAN-rVV10 method overcomes these
limitations [37,38]. Our previous study demonstrated its excellent non-local vdW and
close-range predictions [8]. Both SCAN and rVV10 have been shown individually to work
around the self-interaction error and replicate an accurate oxygen dissociation energy bar-
rier for Ag(111) [8,39]. Therefore, this method could be useful for further studies involving
O2 adsorption.

In this study, the ORR mechanism of the Ag(322) surface was investigated using
the SCAN-rVV10 method. The Ag(322) surface was selected since it is a stable stepped
surface with high reactivity [23,40], which can be reflective of the features of nanoparticles.
The results showed that the dissociative pathway was energetically preferred for ORR on
Ag(322). Furthermore, the coordination numbers of the surface atoms are essential to their
catalytic performance.

2. Results and Discussion
2.1. Surface Properties of Ag(322)

High-Miller-index surfaces have higher catalytic activity because of the differences
in layer separation and the greater number of available bonding states [21]. However,
the main drawback of high-Miller-index nanocatalysts is their short lifetime. Most high-
Miller-index surfaces have large surface energies. For example, the (211) and (210) surfaces
studied by Jiang et al. and Vattuone et al. had surface energies of 0.87 and 0.90 J/m2, which
is 14% and 18% higher than that of the most stable Ag(111) surfaces, respectively [40]. Such
high surface energy leads to reconstruction to a thermodynamically stable configuration,
limiting the lifetime of the high-Miller-index surfaces. By comparison, the Ag(322) surface
has almost identical surface energy to that of the Ag(111) while still being a high-Miller
surface [40]. The Ag(322) surface has noticeable surface relaxation because of its stepped
edge. The interlayer distances between the first and second topmost layers (∆12) and
between the second and third layers (∆23) are reduced by 19.58% and 4.55%, respectively.
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Conversely, the interlayer relaxation in the Ag(111) surface is negligible [8]. The large
relaxation in Ag(322) is influenced by its unique morphology. The Ag(322) surface has three
different coordination numbered (CN) Ag atoms (see Figure 1a). The CN of the topmost
Ag atoms is 7. As a comparison, all the atoms in the topmost Ag(111) surface have a CN of
9. These differing CN atoms have different electronic configurations. The partial density
of states (PDOS) of the Ag 4d states is shown in Figure 1b. It can be seen that the states of
the CN7 atoms have sharper peaks, which are closer to the Fermi energy level. The PDOS
images suggest that CN7 atoms are more reactive, which means they could have stronger
adsorption capabilities in terms of the other surface atoms with larger CNs.
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Figure 1. (a) Diagram of the (322) surface from the side to visualize the step and differing coordination
numbers (CN means coordination number). (b) DOS of the 4d state in differing CN Ag atoms on the
Ag(322) surface.

2.2. Adsorption of Atomic and Molecular Oxygen on Ag(322)

Several adsorption sites, including the fcc and hcp sites on the terrace, the bridge
site at the step, and the hollow sites next to the step, were investigated in this study. The
stable configurations for oxygen and molecular oxygen adsorption on Ag(322) are shown
in Figure 2. For atomic O, the step-hollow (SH) and hollow (H) sites were optimal for
adsorption (see Figure 2a,b). After the adsorption of the atomic oxygen, the average Ag-O
bond length at the SH site was about 5% longer than that at the H site. A structural
distortion adjacent to the H site was seen, as shown in Figure 2b. This is because the strong
adsorption of the oxygen with stepped Ag atoms weakened the interaction between the
CN7 atom and the neighboring CN9 atoms. Consequently, considerable surface relaxation
was observed. Furthermore, the adsorbed oxygen atom bonded with two CN7 and two
CN9 surface Ag atoms at the SH site. At the H site, the oxygen atom was only associated
with two CN7 and one CN10 atom. As such, while a shortened Ag-O bond length was
found at the H site, the overall adsorption energy of atomic oxygen at the SH site was
lower (see Table 1). For the same reason, the adsorption energy of the atomic oxygen at the
SH site on Ag(322) was about 10% lower than that on Ag(111) since the oxygen atom only
interacted with three CN9 atoms on the (111) surface.

Molecular oxygen could stably adsorb at the fcc step-hollow (fSH) and bridge step-
hollow (bSH) sites (see Figure 2c,d). The SH, fSH, and bSH sites were all between the
two terraces and bonded to the step atoms. The difference between fSH and bSH is the
orientation of the O-O bond. In bSH, the O-O bond is parallel to the step edge, while that in
fSH is almost perpendicular. At the bSH site, two O atoms only interact with one CN7 and
one CN10 Ag atom. Meanwhile, at the fSH site, an O2 molecule bonds to two CN7 atoms,
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two CN10 atoms, and one CN9 Ag atom. The different coordination geometries of adsorbed
O2 lead to various adsorption strengths. The adsorption energy of the O2 molecules at the
fSH site was 150% stronger than that at the bSH site (see Table 1). Figure 3a,b show the
PDOS of the O 2p states and the 4d states of the Ag atoms associated with O2. It can be
seen that the O2 2p and Ag 4d states were closer to the Fermi energy level in the energy
range of −1 to 0 eV when O2 adsorbed at the bSH site. Additionally, the O2 2p states in the
energy range of −4 to −3 eV were sharper at the bSH site in comparison with that at the
fSH sites. The subtle difference supports the weaker adsorption strength of O2 at the bSH
site. The O-O bonding strength was further analyzed by using the partial crystal orbital
Hamilton population (−pCOPH), as shown in Figure 3c,d. Within this range between
−6 to −8 eV, the fSH site had a smaller bonding contribution than bSH. The fSH site
anti-bonding contribution was larger and more jagged than that of bSH. Quantitatively, the
−IpCOHP valued the average O-O interaction of the fSH site as −3.35 eV/bond, which is
0.10 eV/bond smaller than that of bSH. Therefore, both the qualitative and quantitative
analyses confirmed the weakened O-O bond when O2 adsorbs at the fSH site, which
supports the stronger adsorption strength at this site.
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Figure 2. Top and side view of the preferred adsorption sites of molecular and atomic oxygen
on the Ag(322) surface. (a,b) The atomic adsorption at the step-hollow (SH) and hollow (H) sites,
respectively. (c,d) The molecular adsorption at the bridge step-hollow (bSH) and fcc step-hollow
(fSH) sites, respectively. Color code: silver; Ag, red; O. The red dashed line represents the location of
the steps in the top view.

Table 1. Comparison of O* and O2* adsorption properties on different silver surfaces. Ads stands for
adsorption, Eads is adsorption energy, dO-Ag is the average O-Ag bond length, vO-O is the vibrational
frequency of the O-O bond, and m is the magnetic moment.

Absorbate Ads Site Eads (eV) dO-Ag (Å) vO-O (cm−1) m (µB) REF

322
O

SH −4.40 2.24 n/a 0

This work
H −3.02 2.13 n/a 0

O2
fSH −0.70 2.37 668 0
bSH −0.27 2.36 762 0

111
O fcc −4.05 2.10 n/a 0

[8]
O2 fH −0.38 2.22 827 0
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Figure 3. PDOS of O2 adsorption on the Ag(322) surface at the fSH site (a) and bSH site (b). -pCOHP
of O-O at fSH (c) and bSH (d) site.

The magnetic moments of all systems were zero, suggesting that only the peroxo
species was present (see Table 1). The peroxo species is ideal, as it contributes two e- to
the Ag-O bond. The Ag(322) fSH site had the largest O-Ag bond length but the shortest
vibrational frequency, thus indicating a weak O-O bond and strong Ag-O interaction.
Interestingly, the adsorption properties of O2 on the Ag(322) surface were similar to those
on Pt(111). The adsorption energy on Pt(111) is−0.68 eV with an O-O vibrational frequency
of 743 cm−1, similar to Ag(322) [34]. This suggests that the Ag(322) surface may have
outstanding ORR performance, similar to Pt(111).

2.3. Dissociation of O2 on Ag(322)

The oxygen dissociation at both the fSH and bSH sites was considered here using
the climbing image nudged elastic band (CI-NEB) method with eight images between the
initial and final states (see Figure 4). Starting from the adsorbed O2 at the fSH site, one
oxygen atom can shift to the hollow site of the terrace with another oxygen atom next to the
step. The energy barrier of this pathway is 0.66 eV. When O2 adsorbs at the bSH site, both
oxygen atoms can shift to the SH site. This pathway has a lower energy barrier of 0.47 eV.
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The dissociation barriers of both pathways are much lower than on the flat Ag(111) surface,
which is 1.22 eV [8]. The significantly lower energy barriers on the stepped Ag(322) surface
demonstrated that the surface morphology played a crucial role with its larger reactive
surface area and varying CN.
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2.4. Electrocatalytic ORR Performance on Ag(322)

The Gibbs free energy changes of the adsorbed oxygen intermediates were used as
the descriptor to evaluate the electrocatalytic ORR performance of Ag(322), which were
calculated on the basis of the computational hydrogen electrode (CHE) method developed
by Norskov and colleagues [41,42]. Under standard conditions, ORR may follow two
pathways: the associative mechanism (see Equation (1)) or the dissociative mechanism (see
Equations (2)–(3)) [7,8,13,41]. For the associative mechanism, the O2 adsorbs to the catalytic
site (*) and then becomes protonated multiple times.

O2∗ + 4(H + e−)→ OOH∗+ 3(H + e−)→ O∗+ 2(H + e−) + H2O(l)
→ OH∗+ (H + e−) + H2O(l) → 2H2O(l)

(1)

The dissociative mechanism starts with the dissociation of adsorbed O2*.

O2∗ + 4(H + e−)→ O∗ + O∗+ 4(H + e−)→ O∗+ OH∗+ 3(H + e−)
→ 2OH∗+ 2(H + e−) → 2H2O(l)

(2)

or
O2∗ + 4(H + e−)→ O∗ + O∗+ 4(H + e−)→ O∗+ OH∗+ 3(H + e−)

→ O∗+ 2(H + e−) + H2O(l)
→ OH∗+ (H + e−) + H2O(l) → 2H2O(l)

(3)

In this study, the Gibbs free energy changes were investigated with the consideration
of both the associative and dissociative mechanisms (see Figures 5 and 6). The associative
overpotential for Ag(111) was large compared with the Pt(111) overpotential of 0.441
V [8,21,27,28,41]. The Ag(322) surface performed significantly worse, with a value ~85%
larger than that of Pt(111). The dissociative overpotential for Pt(111) is 0.457 eV, which



Catalysts 2022, 12, 576 7 of 13

is smaller than that found in our Ag(111) results [8,21,27,28,41]. The Ag(322) surface was
comparable to that of Pt, with a difference between the dissociative overpotentials of ~20%.
This was supported by nanoparticle studies, as silver nanoparticles significantly improve
the catalytic performance compared with the (111) surface crystal [43]. The large adsorption
energy of the OH* and OOH* species caused large associative overpotentials and differences
between computational studies. In comparison with the reported values, our adsorption
energies for OH* and OOH* species were larger. This discrepancy could be caused by the
different XC functionals. The GGA functional, such as PBE, has been widely used in most
previous studies without the correct consideration of vdW forces [13,21,24,27,28,31,41].
Montemore et al. mentioned this drawback in their work and pointed out the trend
of current ORR studies relying on outdated methodologies [28]. Methods with vdW
correction, e.g., SCAN-rVV10, can predict better the adsorption properties of the OOH*
and OH* species [31].
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Figure 6. Gibbs free energy diagrams of ORR activity on the Ag(322) and Ag(111) surface. (a,b) show
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(322) and (111), respectively. η is the overpotential for the respective pathway. Blue is where U = 0 V
and red is where U = 1.23 V.

In comparison to Ag(111), the (322) surface showed better dissociative overpotentials
but a worse associative overpotential. The associative overpotential of Ag(322) suffered
from unideal OH and OOH adsorption energies. Previous studies have demonstrated that
low CN atoms decrease the Gibbs free energy via strong interactions with intermediate
species [44–46]. However, this was not the case for OOH*. The adsorption energies
of OH and OOH on Ag(322) were −3.48 eV and −1.07 eV, respectively (see Figure 5).
Comparatively, Ag(111) had OH and OOH adsorption energies of −3.12 eV and −1.23 eV,
respectively (see Figure 5). The rate-limiting step for Ag(322) was the formation of OOH*
species. The adsorption energy of OOH was too weak and required substantial energy to
break the O-OH bond. Consequently, the ∆GOOH∗ of the reaction increased (see Figure 6).
This is because the orientation of the OOH* species was not ideal, as it was difficult for it
to fit in the fSH site. Additionally, the dissociative pathway of Ag(322) is promising, as it
showed a low dissociation energy barrier and bypassed the energy traps of the associative
method, such as H2O2 production [28].

The dissociative Gibbs energy profile of Ag(322) showed a minimal preference for
H2O(l) or OH* formation (see Figure 6), which can increase the removal of OH* species [47].
OH* removal is a unique challenge for Ag. The characteristically strong OH* adsorption
on Ag surfaces is often the potential-limiting step. Since ∆GOH∗ is larger on Ag(322),
the performance improves and prevents an energy well from forming. Compared with
Pt(111), the ∆GOH∗ and ∆GO∗ of Ag(322) were similar [41]. The potential-limiting step
for the dissociation mechanism was the protonation of O*. The adsorption energy of O*
was greater than that of OH*, which makes the process uphill under a potential of 1.23 V.
However, the availability of low-CN Ag atoms played a crucial role in matching Pt(111)
performance. The varying CN atoms not only weakened the O-O but also increased the
ORR activity.

Some recent experimental studies on Ag nanoparticles have also suggested the exis-
tence of the dissociative pathway for ORR [18,43,48]. Since the 4e-associated mechanism
for ORR has been experimentally and theoretically demonstrated on Ag(111) [43,48], the
existence of steps in Ag nanoparticles may lead to the dissociative pathway, which closely
matches our theoretical prediction in this study. However, while our DFT results can
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provide the insights to show the specific role of steps in the Ag nanoparticles for electro-
catalytic ORR applications, it is worth noting that the theoretical data, e.g., the predicted
ORR overpotential, may be different from experimental data. This is because the oversim-
plified models employed here without consideration of the impact of the water solvent,
electrolyte, and applied bias potential cannot model the electrocatalysts under the work-
ing conditions [24,49–51]. Unfortunately, the consideration of working conditions is still
computationally unaffordable and deserves further investigation using more advanced
simulation methodologies in the future.

3. Computational Method

All DFT computations were performed using the Vienna Ab initio Simulation Package
(VASP) [52] and based on the projected augmented wave (PAW) method [53]. It is known
that the O2 molecule is in a triplet state in its ground state. As such, spin-polarization was
considered in all the computations for O2 adsorption and dissociation. The electron–ion
interaction was described using the PAW potentials, with 5s14d10, 1s1, and 2s22p4 treated
as valence electrons of Ag, H, and O, respectively. The smooth part of the wave function
was expanded by a kinetic energy cut-off value of 520 eV. During geometric optimization,
atoms could relax until the Hellmann–Feynman forces were smaller than 1 × 10−3 eV/Å.
The convergence criterion for the electronic self-consistent loop was set to 1 × 10−5 eV. The
gamma-centered k-point meshes utilized a reciprocal space resolution of 2π× 0.02 Å−1. For
the electron exchange and correlation interactions, the SCAN functional at the meta-GGA
level was used [37]. To better consider the vdW interactions, -rVV10 was coupled with
SCAN [38]. Both were proven to be effective for this system in our previous work on
Ag(111) [8].

The Ag(322) surface was modeled by a (2 × 1) unit cell with a vacuum layer of 15 Å to
avoid interaction between the surfaces of neighboring slabs in the z-direction. A four-layer
slab was used, in which the bottom two layers were fixed at the bulk position, and the other
two were relaxed during structural optimization. The Ag(111) surface was constructed in
the same way but used a (2

√
3×3) supercell [8].

The adsorption energy of O*, OH*, and OOH* species (see Equation (4)) is:

∆Ead =
1
N
(
Ead/surf − Esurf − NEad

)
(4)

where N is the number of adsorbates per unit cell, Ead/surf , Esurf, and Ead are the energies of
the Ag(111) surface with the adsorbate, the clean silver surface, and the isolated adsorbate,
respectively. For the calculations of the isolated atoms and molecules, a (20 × 20 × 20) Å3

unit cell and a Gamma-only k-point grid were used. Multiple adsorption sites were
identified and are discussed within the paper. The strength of the O-O bond when adsorbed
was also studied through the partial density of states (PDOS) and crystal orbital Hamilton
population (COPH) analysis [54], vibrational frequency, and magnetic moments [52]. The
O2 dissociation energy barrier was investigated using the climbing image nudged elastic
band (CI-NEB) method with eight images between the initial and final states [55].

The theoretical catalytic performance can be visualized via the Gibbs free energy. The
Gibbs free energy is given by the standard definition as:

∆G = ∆E + ∆ZPE− T∆S + ∆GpH + neU (5)

where ∆E, ∆ZPE, T∆S, and neU are the DFT-calculated total binding energy, the zero-point
energy change, the entropic contributions, and the shift in ∆G caused by a change in relative
potential with respect to the hydrogen electrode, respectively. Herein the ∆ZPE− T∆S was
obtained by Nørskov et al. (2005) [56]. ∆GpH = −kbT ln 10× pH is the pH contribution to
the ∆GORR. For our study, pH was set to 0 to negate the effect of ∆GpH and simplify the
model. The Gibbs free energy of each adsorbate was found through:

∆GOH∗ = ∆E + ∆ZPE− T∆S = EOH∗ − E∗ + EH2O +
1
2

EH2 − 2× EH2O + 0.35 eV (6)
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∆GO∗ = ∆E + ∆ZPE− T∆S = EO∗ − E∗ + EH2O + EH2 − 2× EH2O + 0.05 eV (7)

∆GOOH∗ = ∆E + ∆ZPE− T∆S = EOOH∗ − E∗ +
3
2

EH2 − 2× EH2O + 0.40 eV (8)

where, E*, EOH*, EO* and EOOH* are the total energies of the bare surface, the surface
with adsorbed OH, the surface with adsorbed O, and the surface with the adsorbed OOH,
respectively. EH2O and EH2 are the total energy of the isolated H2O and H2, respectively. The
associative free energy diagrams were constructed using Equations (6)–(8) and following
the chemical Equation (1). Then, the Gibbs free energy of each elementary step based on
the associative mechanism could be calculated through Equations (9)–(12):

∆G1 = ∆GOH∗ (9)

∆G2 = ∆GO∗ − ∆GOH∗ (10)

∆G3 = ∆GOOH∗ − ∆GO∗ (11)

∆G4 = 4.92− ∆GOOH∗ (12)
The Gibbs free energy of each elementary step of the dissociative mechanism (see

Equations (13)–(15)) is:
∆G1 = ∆GOH∗ (13)

∆G2 = ∆GO∗ − ∆GOH∗ (14)

∆G3 = 4.92− 2× ∆GO∗ (15)

The ORR overpotential was found following:

ηORR = 1.23 V− min(∆Gn)

e
, (n = 1 to 4 or 1 to 3) (16)

where 1.23 V is the thermodynamic potential and ∆Gn
e is the theoretical onset potential.

The ∆Gn is the smallest value from Equations (9)–(12) or (13)–(15) for the associative or
dissociative ORR overpotential, respectively [41,57].

4. Conclusions

Hydrogen fuel cells are held back by their inflated cost from using Pt-based catalysts.
Ag nanoparticles are an affordable and potential replacement for the industrial standard.
In this study, we used SCAN-rVV10 to reveal the ORR performance of Ag(322), which is
considered to be a substitute for silver nanoparticles. This stepped surface outperformed
Ag(111) in adsorption energy, dissociation energy barrier, and theoretical overpotential.
Specifically, we modeled a novel dissociation pathway on Ag(322) with an energy barrier
of 0.471 eV. This pathway was supported by low-CN step atoms and weakened the O-O
bond, thus allowing for a dissociation energy barrier comparable to that of Pt(111). The
associative pathway was not preferred due to an overpowering OOH* adsorption, which
increased the respective overpotential. Our results, therefore, highlight the importance of
the effect of surface morphology and CN numbers for catalyst designs.
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