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Abstract: CuCe mixed oxide is one of the most studied catalytic systems for preferential CO oxidation
(CO-PrOx) for the purification of hydrogen-rich gas stream. In this study, a series of ceria supports
were prepared via a citrates-hydrothermal route by altering the synthesis parameters (concentration
and temperature). The resulting supports were used for the preparation of CuCe mixed-oxide cata-
lysts via wet impregnation. Various physicochemical techniques were utilized for the characterization
of the resulting materials, whereas the CuCe oxide catalysts were assessed in CO-PrOx reaction.
Through the proper modification of the hydrothermal parameters, CeO2 supports with tunable
properties can be formed, thus targeting the formation of highly active and selective catalysts. The
nature of the reduced copper species and the optimum content in oxygen vacancies seems to be the
key factors behind the remarkable catalytic performance of a CO-PrOx reaction.

Keywords: ceria; copper; catalyst; CO oxidation; PrOx; hydrogen; hydrothermal

1. Introduction

In recent decades, carbon dioxide emissions have risen tremendously, leading to
poor air quality and an increase in the global temperature by 1 ◦C [1]. Such a negative
environmental impact originates from the massive utilization of fossil fuels in industry,
electricity and transportation [2]. The Paris Agreement has set a goal to limit global
warming to below 2 ◦C, preferably 1.5 ◦C, compared to pre-industrial levels [3]. Looking
for a sustainable and decarbonized future for our planet, hydrogen may be an attractive
solution, therefore many countries worldwide have already prepared their energy strategies
and adapt hydrogen roadmaps towards 2050. Hydrogen is a non-toxic, environmentally
friendly gas with a much higher heating value compared to that of gasoline or diesel [4,5].
Hydrogen fuel cell vehicles use hydrogen and oxygen to produce electricity [6], however,
storing pure hydrogen in a mobile unit is a significant risk due to its low density and the
high pressure that is required [7]. Thus, it is preferable to provide hydrogen to the fuel
cell via a board or on-site reforming reaction of hydrogen carrier fuel. The starting fuel
could be either liquid or gas, such as gasoline or methane, respectively, but alcohols such
as methanol are more preferrable because they can be considered as greener solutions [8,9].
After the steam reforming and the water gas shift reactions taking place, the final gas
mixture consists of 45–75 vol.% H2, 15–25 vol.% CO2, 0.5–2 vol.% CO, N2 and H2O [10,11].
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However, this small amount of CO can poison the Pt anode of the fuel cell, especially in the
case of low temperature PEMFCs, so the special purification of the reformate gas mixture
is required.

The cheapest and easiest way to remove CO from hydrogen-rich mixtures is via
the preferential oxidation process (PrOx) [12,13]. The catalyst employed in the PrOx
process should be active and highly selective towards CO oxidation at low temperatures
(100–200 ◦C), minimizing the undesired loss of H2 through oxidation. Various catalysts have
been proposed in the literature. Noble metal-based catalysts (Pt, Pd, Rh, Ru) [14–18] have
been reported from several groups, showing high activity and tolerance in the presence of
excess CO2 and H2O; in the reformate gas stream, however, they cannot avoid hydrogen
losses (low CO2 selectivity). Gold-based catalysts [19–25] gained major attention after
Haruta’s work [17] who demonstrated the functionality of supported gold nanoparticles,
smaller than 5 nm, achieving extraordinary activities for CO oxidation at low temperatures,
even lower than ambient. However, these catalysts should operate at low temperatures to
avoid H2 oxidation, while they are sensitive in the presence of high concentrations of CO2
and H2O in the reaction mixture.

On the other hand, copper–cerium oxide catalysts represent an attractive non-precious
metal-based catalytic system with comparable activity with noble metals, high stability,
high tolerance in the presence of CO2 and H2O, and ideal selectivity at a temperature lower
than 120 ◦C [26–36]. Thus, the scientific interest has focused on developing CuCe oxide
catalysts, trying to tune the physicochemical characteristics responsible for their exceptional
performance in the PrOx process. Copper oxide catalysts supported on cerium dioxide
gather all the aforementioned advantages in addition to their low cost. Numerous studies
have shown that the superiority of this system is based on the synergistic effect linked to
strong copper–ceria interactions. Factors such as the redox interplay between Ce3+/Ce4+

and Cu2+/Cu+ redox couples, the presence of oxygen vacancies improving oxygen mobility,
the superior reducibility of the mixed oxide and the nature of the active copper species
(Cu+ and/or Cu2+) are crucial for the catalytic activity [26,27,37]. The morphology and the
shape of the cerium oxide support plays a major part in these interactions. It is widely
reported that the energy formation of oxygen vacancy defects depends on the exposed
nanocrystal facets of ceria following the order {110} < {100} < {111} [38–40]. Zhou et al. [41]
have shown that the concentration of oxygen vacancies is affected by the particle size
proving that, in the case of 60 nm crystallites, the concentration of oxygen vacancies was
two orders of magnitude lower than the 4 nm ones. The exposed crystal facets can also
influence the nature of copper species formed on the ceria support. The dispersion of
copper species is of prime importance for the activity and the selectivity of these catalysts
in CO-PrOx process. Strongly interacting copper ions with ceria such as CuO clusters and
surface Cu-O-Ce species have been proposed as the active phases [26–28,32,42]. Hydrother-
mal method is considered as one of the easiest ways to synthesize CeO2 catalysts with
different physicochemical characteristics by altering the experimental parameters such as
temperature, reaction time and the concentration of the precipitating agent [43,44].

The aim of this work was to focus on the effect of ceria support on the activity
and selectivity of CuCe oxide catalysts for the preferential oxidation of CO. In order to
investigate this effect, different ceria samples were prepared using a citrates hydrothermal
method [26,27]. A systematic study of the preparation parameters, such as the temperature
of the hydrothermal route and concentration of precipitating agent, affecting the properties
of ceria, was performed. The obtained ceria supports were used to disperse active copper
species via wet impregnation, thus obtaining highly active CuCe oxide catalysts.

2. Results
2.1. Morphological Characteristics (SEM)

The samples prepared in this study are presented in Table 1. The samples are denoted
as Ce-X-Y, or CuCe-X-Y for the ceria and the CuCe oxide catalysts, respectively, where X is
the concentration of NaOH and T is the temperature applied in the hydrothermal method.
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In this work, 3 hydrothermal temperatures (120 ◦C, 150 ◦C and 180 ◦C) and 3 concentrations
of the precipitating agent NaOH (0.1 M, 1 M and 5 M), were employed.

Table 1. Specific surface area (SSA), mean pore diameter (MDP) and pore volume (PV) of ceria and
CuCe oxides. The numbers in brackets refer to the CuCe oxide catalysts.

Sample CNaOH–T (◦C) SSA (m2 g−1) MPD (nm) PV (cm3 g−1)

(Cu)Ce-0.1-120 0.1M-120 29 (20) 8.6 (8.3) 0.038 (0.030)
(Cu)Ce-0.1-150 0.1M-150 30 (23) 8.3 (9.0) 0.038 (0.035)
(Cu)Ce-0.1-180 0.1M-180 25 (22) 18.2 (14.6) 0.087 (0.083)
(Cu)Ce-1-120 1M-120 74 (69) 4.3 (4.3) 0.16 (0.15)
(Cu)Ce-1-150 1M-150 75 (70) 3.8 (3.6) 0.14 (0.13)
(Cu)Ce-1-180 1M-180 69 (63) 4.3 (4.0) 0.15 (0.13)
(Cu)Ce-5-120 5M-120 128 (100) 6.0 (6.1) 0.21 (0.18)
(Cu)Ce-5-150 5M-150 42 (38) 14.2 (16.4) 0.19 (0.18)
(Cu)Ce-5-180 5M-180 38 (36) 17.8 (16.6) 0.22 (0.18)

The variation of the preparation conditions provided nine ceria samples with different
physicochemical properties. These samples were used for the dispersion of copper ions
with wet impregnation method and loading at 7.5 wt.%. Figure 1 illustrates the mor-
phologies of the nine hydrothermally prepared ceria materials with different experimental
conditions. The concentration of NaOH was the main factor influencing the morphology of
the samples. At low NaOH concentrations (0.1 M), the final solution before hydrothermal
treatment was acidic with a pH = 2.52. When the solution was treated at low temperatures
(120 ◦C and 150 ◦C), a rod-like morphology was dominant with a mean size of 2–10 µm. Fur-
ther increase in the temperature synthesis (180 ◦C) resulted in the particles’ agglomeration,
with a non-well defined spherical morphology. In the case of higher NaOH concentrations
(1 M and 5 M) the solution before the hydrothermal treatment was highly basic with a
pH higher than 13. The hydrothermal temperature did not seem to influence the final
morphology of the samples prepared with a moderate and high concentration of NaOH,
since in all these cases, bulky aggregates with irregular size and geometry were formed.
The particle formation process is governed by two different mechanisms, in agreement
with previous reports [45–47]. On acidic solutions, Ostwald Ripening was the dominant
particle formation mechanism [45–47]. Firstly, the crystals were formed and then smaller
crystals were re-dissolved and re-deposited on the surfaces of larger particles, leading to
rod-like or spherical morphologies [45,46]. On basic solutions, the oriented attachment
mechanism took place [48] which involved the spontaneous self-organization of adjacent
crystals influenced by the excess OH- ions and the hydrothermal temperatures. This process
led to the formation of bulky agglomerates. It should be noted that the impregnation of
copper ions did not alter the morphology of pure ceria supports (Figure S1).

2.2. Textural Characteristics (N2 Physisorption)

Figure 2 illustrates the pore volume distribution diagrams of the hydrothermally
prepared pure ceria and the copper–cerium mixed oxide catalysts. Additionally, Table 1
presents the porosimetry characteristics of the samples such as the BET-specific surface
area, the mean pore diameter and the total pore volume. Depending on the experimental
parameters, the synthesized samples exhibited different specific surface areas and porosity.
When low concentrations of NaOH (0.1 M) were applied, low SSA values were obtained at
all temperatures (Table 1). The porosity remained the same at 120 ◦C and 150 ◦C with an
extremely low total pore volume. At elevated temperatures (180 ◦C), small pores collapse
and larger ones were formed due to particle agglomeration (Figure 2). As a result, lower
values of SSA were measured for the samples prepared at 180 ◦C. Those findings are in line
with the morphological characteristics discussed for SEM measurements (Figure 1).



Catalysts 2022, 12, 674 4 of 17Catalysts 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. SEM images (scale bar at 2.0 μm) from the different hydrothermally prepared pure ceria sub-
strates. 

2.2. Textural Characteristics (N2 Physisorption) 
Figure 2 illustrates the pore volume distribution diagrams of the hydrothermally pre-

pared pure ceria and the copper–cerium mixed oxide catalysts. Additionally, Table 1 presents 
the porosimetry characteristics of the samples such as the BET-specific surface area, the mean 
pore diameter and the total pore volume. Depending on the experimental parameters, the 
synthesized samples exhibited different specific surface areas and porosity. When low con-
centrations of NaOH (0.1 M) were applied, low SSA values were obtained at all temperatures 
(Table 1). The porosity remained the same at 120 °C and 150 °C with an extremely low total 
pore volume. At elevated temperatures (180 °C), small pores collapse and larger ones were 
formed due to particle agglomeration (Figure 2). As a result, lower values of SSA were meas-
ured for the samples prepared at 180 °C. Those findings are in line with the morphological 
characteristics discussed for SEM measurements (Figure 1). 

Higher NaOH concentrations influenced the porosity of the samples increasing the 
SSA. At medium concentrations (1 M), the hydrothermal temperature did not affect the 
textural characteristics. In every case a single peak distribution was present at the meso-
porous range centered at approximately 6–7 nm (Figure 2) with SSA values between 69 
and 75 m2 g−1. The highest SSA (128 m2 g−1) was achieved when the precursor was treated 
at 120 °C with 5 M of NaOH. This sample possessed a single peak distribution at the mes-
oporous range centered at approximately 9 nm. A further temperature increase (150 °C 
and 180 °C) had a negative effect on the textural characteristics decreasing the SSA (Table 
1). The pore distribution diagram was shifted to the macroporous range with a peak at 
approximately 30 nm, as previously discussed (Figure 2). As expected, the mixed oxide 
catalysts experienced a small decrease in their SSA due to the dispersion of copper ions 
onto the ceria surface. Moreover, the pore distribution was not affected and only a small 
reduction in the total pore volume can be observed in Figure 2, implying the good disper-
sion of copper ions on the support, as confirmed via SEM/EDS mapping (Figure S2). 

Figure 1. SEM images (scale bar at 2.0 µm) from the different hydrothermally prepared pure ce-
ria substrates.

Higher NaOH concentrations influenced the porosity of the samples increasing the
SSA. At medium concentrations (1 M), the hydrothermal temperature did not affect the
textural characteristics. In every case a single peak distribution was present at the meso-
porous range centered at approximately 6–7 nm (Figure 2) with SSA values between
69 and 75 m2 g−1. The highest SSA (128 m2 g−1) was achieved when the precursor was
treated at 120 ◦C with 5 M of NaOH. This sample possessed a single peak distribution at
the mesoporous range centered at approximately 9 nm. A further temperature increase
(150 ◦C and 180 ◦C) had a negative effect on the textural characteristics decreasing the
SSA (Table 1). The pore distribution diagram was shifted to the macroporous range with a
peak at approximately 30 nm, as previously discussed (Figure 2). As expected, the mixed
oxide catalysts experienced a small decrease in their SSA due to the dispersion of copper
ions onto the ceria surface. Moreover, the pore distribution was not affected and only a
small reduction in the total pore volume can be observed in Figure 2, implying the good
dispersion of copper ions on the support, as confirmed via SEM/EDS mapping (Figure S2).

2.3. Structural Characteristics (XRD)

Figure 3 depicts the XRD patterns of all prepared materials. In the case of pure ceria
samples, it is evident that all peaks can be attributed to the (111), (200), (220), (331), (222),
(400), (331), (420), and (422) crystal planes of face-centered cubic fluorite phase of CeO2
[JCPDS: 00-043-1002] with an Fm3m space group and a lattice constant α = 0.54113 nm [49].
No other diffraction peaks were detected, suggesting the high purity of the prepared cerium
oxides at any synthesis conditions employed. The peaks observed in Figure 3 are sharp,
implying the high crystallinity of the prepared samples. Their intensity varies, where high
intensity peaks imply particle agglomeration at high hydrothermal temperatures leading
to the formation of bigger nanoparticles (see Table 2). The average crystallite size lay
between 8.38 nm and 28.78 nm. The sample prepared at 120 ◦C with 5 M NaOH possessed
the lowest average crystallite size which is in line with the specific surface areas results
discussed above. Moreover, no peak shifts were observed, suggesting that there was no
serious deformation of the crystal lattice neither solid solution formation. This is also
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depicted in the slight changes of the value of the calculated lattice parameter a shown in
Table 2. It is widely reported in the literature that higher crystal lattice values, a, in pure
ceria can be attributed to the expansion of the crystal lattice due to the presence of Ce3+

ions which have a larger atomic radius than the Ce4+ [41,50,51]. It should be noted that, in
this work, the lower temperature synthesized samples have higher values for α. Therefore,
though it is weak evidence, the temperature can play a significant role in the tuning of
surface vacancies. For nanocrystalline powders, the lattice parameter varied depending
on the particle size which can be attributed to the grain surface relaxation [52]. Higher
crystal lattice values, compared to that of bulk ceria, were reported for exceedingly small
nanoparticles up to 4 nm [53,54]. On the other hand, the concentration of NaOH was also
important for the presence of Ce3+ species. The hydroxy groups present at hydrothermal
synthesis may stabilize small nanoparticles leading to smaller crystal lattice values [55]. It
has been also reported that the powder’s color change from white (bulk ceria) to yellow
(CeO2−x) might be an indication of the replacement of Ce4+ from Ce3+ ions [55]. In our case
most of the samples have yellow powder color. Thus, we cannot draw a safe conclusion
about the population of Ce3+ ions only from the crystal lattice parameters.
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Figure 2. Pore size distribution of pure ceria supports (a) and CuCe oxide catalysts (b).
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Figure 3. XRD patterns of hydrothermally prepared pure ceria (a) and CuCe oxide (b) samples.

Table 2. Average crystallite size (d111) and lattice parameters (a) of pure ceria samples based on the
crystal plane of (111) of CeO2.

Sample d111 (nm) 1 α (nm) 2

Ce-0.1-120 11.5 0.5406
Ce-0.1-150 11.1 0.5404
Ce-0.1-180 28.8 0.5408
Ce-1-120 14.0 0.5412
Ce-1-150 12.0 0.5410
Ce-1-180 12.7 0.5410
Ce-5-120 8.38 0.5410
Ce-5-150 21.4 0.5407
Ce-5-180 21.8 0.5407

1 Calculated using Scherrer equation. 2 Calculated from d111 spacing.

Concerning the CuCe oxide samples (Figure 2b), two extra peaks with very low in-
tensity identified at 35.5◦ and 38.7◦ were attributed to the CuO crystal phase [JCPDS:
01-089-5896]. Excessively low intensity or/and broad peaks or even the absence of corre-
sponding peaks suggest the good dispersion of Cu species onto the surface of ceria. The
peaks assigned to CeO2 did not shift while the crystal lattice parameters and the average
crystal size of the CeO2 remained more or less the same (values not shown), implying that
copper ions were not incorporated into the crystal lattice. The average crystallite size of
CuO could not be calculated via the Scherrer equation due to the hardly observed small
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intensity of the corresponding peaks. Overall, it can be commented that crystalline CuO
nanoparticles of small size were formed and dispersed on the ceria surface.

2.4. Redox Properties (H2-TPR)

The reducibility profiles of the CuCe oxide catalysts are illustrated at Figure 4. The
TPR measurements may provide useful insight on the redox properties affected by different
hydrothermal parameters, and as a consequence on the impact on the catalytic activity and
selectivity. It was reported in the literature that the reduction in pure ceria exhibits two
characteristic peaks, one that starts at temperatures higher than 300 ◦C with a maximum of
approximately 500 ◦C, and one that starts at approximately 600 ◦C with a peak centered
at 800 ◦C. The first peak is attributed to the reduction in surface oxygen species, whereas
the second one is attributed to the reduction in bulk ceria oxygen and the Ce4+ into
Ce3+ [56–58]. In this work, the latter peak was present in all samples. Pure CuO usually
exhibits one major peak at ca. 300 ◦C with a shoulder at ca. 244 ◦C corresponding to
the CuO→ Cu2O and Cu2O→ Cu transitions [59]. In our case, the complete reduction
concerning copper species and the surface oxygen species of ceria, which lay within 195–225
◦C, started at lower temperatures, even lower than 100 ◦C, depending on the sample. These
temperatures are far lower compared to those of pure oxides. This superior reducibility
of mixed oxides compared to the individual counterparts has been reviewed by Dong
et al. [37] and attributed to the electronic metal–support interactions and the H2 spillover
from copper sites to the ceria support.

In this work, the synthesized mixed oxide materials exhibited four different reduction
peaks correlated with the reduction in copper species with varying size and interaction with
the support. These peaks are presented on the inset images of Figure 4 and summarized in
Table 3 along with the corresponding peak temperatures. In the low temperature region,
two reduction peaks are observed: peak (α’) and peak (α). Peak α’ is related with the
reduction in ultrasmall CuOx species, while peak α is attributed to the reduction in highly
dispersed CuOx clusters, strongly interacting with the ceria support [28,56,60–63]. Peak α’
is only present at three samples (CuCe-1-120, CuCe-5-120 and CuCe-1-150) whereas peak α

is present at every sample except CuCe-0.1-120. Concerning the high temperature reduction
peaks, peak β is correlated with the reduction in the strongly bound surface Cu-[Ox]-Ce
solid solution [64–66] and peak γ is attributed to the reduction in segregated larger copper
entities weakly interacting with the ceria support [28,56,63]. Peak β is present in all sample
profiles, whereas peak γ is present in the case of samples CuCe-0.1-120, CuCe-0.1-150,
CuCe-0.1-180, CuCe-5-150 and CuCe-5-180. The total hydrogen consumption of these
peaks is summarized in Table 3. It can be seen that although the samples were impregnated
with the same amount of copper, the total hydrogen consumption slightly differs. As
discussed earlier, the surface oxygen species of mixed copper ceria oxides were reduced at
lower temperatures compared to pure ceria. Thus, the exhibited hydrogen consumption
can be an indication of the population of the surface loosely bound oxygen of each ceria
support. Low hydrothermal synthesis (120 ◦C) favored the formation of more surface
oxygen species. The reduction peaks of these species coincide with peaks β and γ. As it
will be discussed later, the nature of the copper species formed and the temperature where
their reduction took place can play a crucial role on the catalytic activity.
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Figure 4. H2-TPR profiles of the CuCe oxide catalysts obtained after hydrothermal treatment at
120 ◦C (a), 150 ◦C (b) and 180 ◦C (c). Magnification of the low temperature region is shown in the
inset profiles.
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Table 3. Redox properties of CuOCeO2 catalysts.

Sample Peak α’
(◦C)

Peak α

(◦C)
Peak β

(◦C)
Peak γ

(◦C)
H2 Consumption
(µmol H2 g−1)

CuCe-0.1-120 150 184 918.7
CuCe-0.1-150 134 159 176 880.8
CuCe-0.1-180 130 173 188 842.1
CuCe-1-120 105 132 157 838.2
CuCe-1-150 89 128 151 851.6
CuCe-1-180 126 150 838.5
CuCe-5-120 99 130 160 1073.0
CuCe-5-150 136 158 181 737.8
CuCe-5-180 131 151 163 724.7

2.5. Raman Analysis

In order to further examine the structural characteristics of CuCe catalysts, Raman
spectroscopy measurements were performed. In Figure 5, the Raman spectra of the hy-
drothermally prepared pure ceria supports are illustrated for 1 M NaOH. All samples
presented the characteristic F2g vibration band at ~464 cm−1 of the fluorite phase of ceria.
Additionally, the Raman band related to oxygen vacancies (D band) and the 2TA band
were present at ~595 cm−1 and ~265 cm−1, respectively [67,68]. The linewidth of the F2g
vibration band was the same in all cases, showing that under a moderate concentration of
NaOH, the variation of hydrothermal temperature did not influence the structure of the
support. This feature is in line with the previous physicochemical measurements.
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Figure 5. Raman spectra of pure ceria samples.

The addition of a copper oxide phase onto the hydrothermally prepared supports
selected case of 1 M NaOH triggered a shift of the main peak towards lower wavenumbers
and an increase in the content of lattice defects, as pointed out by the intensity ratio between
the D and F2g band (ID/IF2g ratio) (see Table 4). Therefore, it has been suggested that more
oxygen vacancies were formed due to copper incorporation into the ceria phase [69,70].
Such a conclusion could not have been exclusively extracted from XRD measurements.
However, it should be mentioned that the ID/IF2g ratio gives a rough estimation of oxygen
vacancies, as CuO-related Raman band emerged in the same wavenumber range of the D
band. In addition to the CeO2-related Raman bands, Raman peaks related with the CuO
phase were present. More specifically, the peaks at ~292 cm−1, ~343 cm−1, and 629 cm−1

were assigned to the Ag, B1g, and B2g modes, respectively [71]. Despite the fact that all
the mixed oxides had the same copper loading, the intensity of CuO peaks was different
depending on the employed ceria support (see Figure 6). For instance, for the CuCe-0.1
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catalysts, the signal of the CuO peaks was almost absent. CuO attributed peaks were
clearly evident in the CuCe-1M samples, and the same case was present in the CuCe-5M
materials. These observations show that the surface of the resulting materials is quite
inhomogeneous, a characteristic that is a common phenomenon when the impregnation
method is applied [72].

2.6. Preferential Oxidation of CO in Excess H2 (PrOx)

Figure 7 presents the catalytic activity tests, along with the selectivity of the CuCe
materials, for the preferential oxidation reaction of CO. It is obvious that low concentrations
of NaOH (0.1 M) led to poor catalytic activities. Between these three samples, higher
hydrothermal treatment temperatures improved the catalytic activity. Samples prepared
at medium concentrations (1 M NaOH) experienced the best catalytic results. Higher
hydrothermal temperatures (150 ◦C and 180 ◦C) favored the catalytic activity of these
samples. The catalyst with a ceria support hydrothermally prepared at 1 M NaOH and
150 ◦C exhibited the best catalytic performance with a complete CO conversion at 130 ◦C
combined with a selectivity of 90.2% towards CO2. High NaOH concentrations (5 M) led to
lower catalytic activities compared to 1 M concentrations. In this case, high hydrothermal
temperatures had a negative influence on the catalytic activity, in contrast with the other
two NaOH concentrations (0.1 M and 1 M).

Table 4. Peak position of the F2g vibration band and the relative amount of oxygen vacancies (ID/IF2g)
of CuOCeO2 catalysts.

Samples F2g Peak Position (cm−1) ID/IF2g

CeO2 supports
Ce-1M-120 463.4 0.039
Ce-1M-150 462.6 0.023
Ce-1M-180 462.6 0.029
CuOCeO2 catalysts
CuCe-0.1-120 460.7 0.036
CuCe-0.1-150 460.7 0.041
CuCe-0.1-180 459.6 0.034
CuCe-1-120 460.9 0.107
CuCe-1-150 462.1 0.070
CuCe-1-180 459.6 0.080
CuCe-5-120 454.5 0.243
CuCe-5-150 457.0 0.067
CuCe-5-180 452.6 0.087
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Figure 6. Raman spectra of the CuOCeO2 samples.

The values for T50 and T95, i.e., the temperatures where the 50% and 95% conversion
of CO was achieved, respectively, are summarized at the bar graph of Figure 8. It can be
commented that the combination of the hydrothermal temperature and the concentration of
the precipitating agent (NaOH) employed in the synthesis of the ceria support significantly
influenced the PrOx performance of the mixed oxide catalysts.
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Figure 7. CO conversion and selectivity curves for the CuCe oxide catalysts.
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2.7. Correlation of Physicochemical Properties with Catalytic Performance

The achievement of high activity and selectivity for CO-PrOx reaction over CuCe oxide
catalysts is closely related with the reduced copper species and the optimum concentration
of oxygen vacancies. H2-TPR measurements suggested that the role of the highly dispersed
CuOx clusters, and the strongly bound surface solid solution of Cu-[Ox]-Ce (peak α and β,
respectively), along with the surface oxygen species of ceria, is crucial for catalytic activity.
These species play a dominant role in the Mars–van Krevelen redox type mechanism pro-
posed in the literature [28,73–75], which facilitates the formation of active Cu+ ions through
the redox equilibrium Ce4+ + Cu+ ↔ Ce3+ + Cu2+. Furthermore, according to previous
studies [58,66], the existence of Cu-[Ox]-Ce species promotes the catalytic performance
of CuCe catalysts. For example, Du et al. [66] found that strongly bound Cu-[Ox]-Ce
species can act as a reservoir for Cu+ species during CO-PrOx reaction. Additionally, Guo
and Zhou [58] found that Cu-[Ox]-Ce species promote the catalytic behavior of catalysts
through the enhanced copper–ceria interaction. On the other hand, catalysts containing
larger copper entities weakly interacting with ceria support (peak γ) exhibit poor catalytic
activity. This is due to their larger size, responsible for their poor reducibility on relative
reaction temperatures. Moreover, these entities affect CO2 selectivity [76]. Considering
the aforementioned findings, it can be commented that a capable concentration of CuOx
and Cu-[Ox]-Ce species that are reduced at low temperatures (see Table 3) is crucial for
high activity and selectivity. The Raman spectroscopy measurements indicated that an
optimum concentration of oxygen vacancies is also required in order to obtain high catalytic
activity. The CuCe-1M series and especially the CuCe-1M-150 sample, despite presenting
a moderate concentration of oxygen vacancies (see Table 4), outperformed the catalyst
with the highest concentration of oxygen vacancies (CuCe-5M-120). These results are in
agreement with previous studies [27,77] which concluded that a highly defective structure
does not guarantee high catalytic activity.

3. Materials and Methods
3.1. Catalysts Preparation

Various pure ceria materials were synthesized via a hydrothermal method where
citric acid (C6H8O7) was employed as the chelating agent. The role of citric acid was
discussed in detail in our previous work [27]. Moreover, cerium nitrate (Ce(NO3)3·6H2O)
was chosen as the ceria precursor and sodium hydroxide solution (NaOH), in three different
concentrations (0.1 M, 1 M and 5 M), as the precipitating agent. All the reagents used were
of analytical grade. Firstly, the reagents were diluted in specific amounts of triply distilled
water and then mixed in a total volume of 180 cm3. The solution remained under stirring
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for 30 min. The molar ratio of citric acid/Ce was equal to 1. Then, the solution was
transferred in a Teflon beaker of 230 cm3 and hydrothermally treated in a stainless-steel
autoclave (chamber volume of ca. 250 cm3) for 24 h at three different temperatures (120 ◦C,
150 ◦C and 180 ◦C). After the hydrothermal treatment, the formed pastes were filtrated
and washed with several amounts of warm triply distilled water to remove excess Na+.
Finally, the samples were dried at 75 ◦C for 12 h and calcined in static air at 400 ◦C for 2 h
with a heating ramp of 2 ◦C min−1. Nine different oxides were synthesized following the
example encoding of CeO2 0.1 M 120 ◦C, where 0.1 M indicates the concentration of NaOH
employed and 120 ◦C the hydrothermal treatment temperature.

The CuCe mixed oxide catalysts were prepared via the wet impregnation method using
a rotary evaporator. Copper nitrate (Cu(NO3)2·2.5H2O) was dissolved in 25 cm3 of triply
distilled water and mixed with an appropriate amount of the previously hydrothermally
prepared ceria. All catalysts were loaded with 7.5 wt.%. After mixing, the solution remained
under mild stirring for 1 h. Subsequently, excess water was removed under vacuum using
the rotary evaporator (45 ◦C water bath and 60 rpm). Finally, the obtained paste was
collected, dried for 12 h at 75 ◦C and calcined in static air for 2 h. Similar encoding was
followed as above.

3.2. Catalysts Characterization

The morphology of the samples was investigated via an Zeiss EVO MA 10 scanning
electron microscope (SEM).

Textural characteristics were determined by N2 physisorption at −196 ◦C using a
NOVAtouch LX gas sorption system. The specific surface area was calculated via the
Brunauer–Emmett–Teller (BET) equation and the pore size distribution was determined
by the BJH method. Prior to analysis, the samples were outgassed for 1 h at 120 ◦C
under vacuum.

The crystallite structure was determined using an X-ray powder diffractometer (Bruker
D8 Advance, Bruker, Birmingham, UK) using CuKa radiation (λ = 0.15418 nm) at 40 kV
and 40 mA.

Temperature-programmed reduction studies of the CuCe oxide catalysts were carried
out using an Autochem II 2920 (Micromeritics Instrument Corp., Norcross, GA, USA),
equipped with a TCD detector. The catalysts were initially heated up to 300 ◦C in a
gas flow of 5% O2/He mixture. After cooling down to room temperature, they were
treated in the flow of a gas mixture consisting of 5% H2 in Ar. The total gas flow rate was
30 cm3 min−1 with a temperature increase rate of 10 ◦C min−1. The formed water was
removed in a cold trap maintained in liquid nitrogen (LN2)–isopropyl alcohol mixture at
ca. −90 ◦C.

Raman spectra were accumulated with the 441.6 nm laser line as the excitation source
emerging from a He-Cd laser (Kimon). The scattered light was analyzed by the Lab-Ram
HR800 (Jobin-Yvon, Edison, NJ, USA) micro-Raman spectrometer at a spectral resolution of
approximately 2.0 cm−1. A microscope objective with magnification 50x was used to focus
the light onto a spot of ~3 µm in diameter. Low laser intensities were used (~0.37 mW on
the sample) to avoid spectral changes due to heat-induced effects. The Raman shift was
calibrated using the 520 cm−1 Raman band of crystalline Si.

3.3. Catalytic Activity Tests

The catalysts were evaluated in the preferential oxidation of CO in excess H2. The
activity and selectivity tests were conducted at atmospheric pressure, in the temperature
range of 20–200 ◦C, in a conventional fixed-bed reactor system described elsewhere [78].
120 mg of catalyst in powder form were placed in a quartz reactor with a quartz wool
catalytic bed. The feed stream consisted of 1 vol.% CO, 1.25 vol.% O2, 50 vol.% H2
and He as carrier gas with a total flow rate of 50 cm3/min, yielding a contact time of
W/F = 0.144 g s cm−3. The product and reactant analysis were carried out by a gas
chromatograph (Shimadzu GC-14A) equipped with a TCD detector. The CO conversion
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calculation was based on the CO consumption or CO2 formation. The selectivity towards
CO2 production was calculated from the oxygen mass balance.

4. Conclusions

In this study, the effect of ceria on the performance of CuCe oxide catalysts for CO-
PrOx reaction was examined. Various pure ceria supports were prepared by tuning the
hydrothermal parameters (concentration of NaOH and temperature of hydrothermal treat-
ment) while the wet-impregnation method was utilized for the dispersion of copper oxide
species on the ceria surface. The physicochemical characterization indicated that the appro-
priate combination of hydrothermal parameters can provide ceria supports with desirable
properties and subsequently result in the formation of highly active CuCe oxide catalysts.
The CuCe-1M series and especially the CuCe-1M-150 sample exhibited a high catalytic
activity and selectivity for CO-PrOx reaction, achieving complete CO conversion at 130 ◦C
accompanied with a selectivity of 90.2% towards CO2. Overall, it can be suggested that
the nature of reduced copper species and the optimum content in oxygen vacancies play a
critical role in achieving high catalytic performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12060674/s1. Figure S1: Representative SEM images of the
CuCe oxide catalysts. The scale bar is adjusted to 2.0 µm; Figure S2: SEM/EDX images of the CuCe
oxide catalysts. Scale bar is adjusted to 10 µm. The white dots illustrate the dispersion of Cu species
onto the ceria support.
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