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Abstract: Well-defined Zn2GeO4/g-C3N4 nanocomposites with a band alignment of type-I were pre-
pared by the ultrasound-assisted solvent method, starting from g-C3N4 nanosheets and incorporating
0, 10, 20, and 40 wt% of Zn2GeO4. In this study, we have investigated in-depth the photoluminescence
emission and photocatalytic activity of these nanocomposites. Our experimental results showed that
an increased mass ratio of Zn2GeO4 to g-C3N4 can significantly improve their photoluminescence
and photocatalytic responses. Additionally, we have noted that the broadband photoluminescence
(PL) emission for these nanocomposites reveals three electronic transitions; the first two well-defined
transitions (at ca. 450 nm and 488 nm) can be attributed to π*→ lone pair (LP) and π*→ π transitions
of g-C3N4, while the single shoulder at ca. 532 nm is due to the oxygen vacancy (Vo) as well as the
hybridization of 4s and 4p orbital states in the Zn and Ge belonging to Zn2GeO4. These experimental
findings are also supported by theoretical calculations performed under periodic conditions based on
the density functional theory (DFT) fragment. The theoretical findings for these nanocomposites sug-
gest a possible strain-induced increase in the Zn-O bond length, as well as a shortening of the Ge-O
bond of both tetrahedral [ZnO4] and [GeO4] clusters, respectively. Thus, this disordered structure
promotes local polarization and a charge gradient in the Zn2GeO4/g-C3N4 interface that enable an
efficient separation and transfer of the photoexcited charges. Finally, theoretical results show a good
correlation with our experimental data.

Keywords: g-C3N4/Zn2GeO4; optical and photocatalytic properties; band alignment; nanocomposites;
DFT calculations

1. Introduction

Of course, the persistent population growth aligned with the fast industrial expansion
also brought serious environmental problems; currently, the water pollution by synthetic
organic dyes is one of the biggest reasons for concern [1–4]. As is well-known, about
7 × 105 tons of synthetic organic dyes are annually used by the textile industry [4,5]. Even
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at low concentrations, such dyes are highly mutagenic, carcinogenic, and in addition less-
biodegradable [6]. Consequently, in this perspective, the treatment of complex organic
pollutants has been prioritized and well regulated by diverse countries. Thus, various
strategies have been employed to the treatment of effluent with complex features (e.g.,
adsorption, biological degradation, membrane separation, photocatalysis, and so on), with
more and more researchers paying attention to the development as well as application of
heterostructured semiconducting materials-based photocatalysts [5–11]. Particularly, the
photocatalysis has been considered as the most-efficient low-cost strategy to the treatment
of effluent, resulting in a fast and non-selective oxidation of diverse pollutants [6,12].
Furthermore, the use of heterostructured semiconducting materials (or composites) in such
applications can, in principle, lead to improving the efficient separation of the photoexcited
charges, resulting in more efficient treatment of complex organic pollutants [11].

Among the different semiconducting materials proposed for this purpose, in partic-
ular the combination between the graphitic carbon nitride (g-C3N4) and zinc germanate
(Zn2GeO4) in the form of nanocrystals, owing to its excellent properties, has aroused a great
deal of recent interest in this field [13–15]. In additional, it is well-known that both materi-
als are widely used in the photocatalytic decomposition of water into H2 and O2, and in
organic photosynthesis, pollutant degradation, and other applications [13–20]. In practice,
the electronic structure resulting from this combination between the g-C3N4 and Zn2GeO4
is dependent on the strategy of synthesis used, because it is extremely sensitive to changes
in size, morphology, structure, composition, as well as imperfections in these parameters,
which dictate their functional properties and desired technological applications [21–23].

Ongoing studies have focused on a fundamental understanding of the electronic
structure of nanocomposites [24–26]. In such cases, it is widely known that computational
materials design methods are robust tools for this type of study and, hence, have a pivotal
role in elucidating the electronic structure of several advanced materials, i.e., contributing
to accelerating the development of better materials [21–26]. Moreover, it is important to
note that certain materials’ properties are difficult to be experimentally measured. Many of
these limitations, however, may be circumvented from a theoretical point of view. Among
the computational tools for the theoretical understanding of solid materials’ properties, in
particular, the density functional theory (DFT) method under periodic conditions is one
of the most used for obtaining a highly accurate prediction of their bandgap energy, the
density of states, Fermi energy level, dielectric constants, effective mass, binding energy,
structural, vibrational, and thermodynamic parameters, and others [21–31]. In this way, we
highlight that these computational methodologies have played a growing role in developing
sustainable next-generation advanced materials and is typically at the forefront of modern
scientific research. However, due to the novelty of the Zn2GeO4/g-C3N4 nanocomposites,
to the best of our knowledge, theoretical works on this system remain scarce in the literature.
For this reason, a better and deeper understanding of the main interface features of these
nanocomposites designed is an exciting topic of research for studying a large variety of
physical nanoscale phenomena.

Here, we prepared well-defined Zn2GeO4/g-C3N4 nanocomposites (with 10, 20, and
40 wt% Zn2GeO4), with a type-I band alignment, using an ultrasound-assisted solvent
method, and further investigated the effect of structural defects on their optical and photo-
catalytic properties. Methylene blue (MB) in solution was selected as a typical contaminant
to evaluate the photocatalytic performance of these nanocomposites. Moreover, we used
theoretical calculations, based on the periodic DFT method using the HSE06 functional,
which includes dispersion effects, with an all-electron basis set for a reliable description of
their electronic structure.

2. Results and Discussion

Figure 1a illustrates the powder X-ray diffraction (PXRD) patterns of the Zn2GeO4/g-
C3N4 nanocomposites with 10, 20, and 40 wt% Zn2GeO4. In the PXRD patterns, all diffrac-
tion peaks could be perfectly indexed to the hexagonal structure of g-C3N4 (belonging
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to space group P6m2) and the rhombohedral structure of Zn2GeO4 (belonging to space
group R3) according to the Joint Committee on Powder Diffraction Standards (JCPDS)
card numbers 87–526 and 11–687, respectively. With increasing content of Zn2GeO4, the
measured angles for the (002) diffraction peak of the g-C3N4 structure were in the sequence
of 2θ = 27.37◦, 27.33◦, 27.28◦, and 27.43◦, respectively. This variation reflects an alteration in
the interplanar distance between neighboring sheets of g-C3N4, in accordance with previous
studies [32–34]. Additionally, we also characterized the surface composition and structure
of the Zn2GeO4/g-C3N4 nanocomposites by X-ray photoelectron spectroscopy (XPS). The
XPS survey spectra in Figure 1b, comparing the 40 wt% Zn2GeO4/g-C3N4 nanocomposite
with the two pure references, Zn2GeO4 and g-C3N4, demonstrate the overall purity of the
composite. A more detailed XPS-based compositional analysis (see also the experimental
section) further presents good agreement with the expected atomic concentrations and ele-
mental oxidation states, reported in the literature [35–37]. As shown in Figure 1c, the bands
observed in Fourier transform infrared spectroscopy (FTIR) measurements for the range
1236 cm−1 to 1555 cm−1 are usually attributed to C–N bonds of the heterocycles, and the
1640 cm−1 band is characteristic of the stretching of C=N bonds in g-C3N4. The sharp peak
at 807 cm−1 is characteristic of the tri-s-triazine ring [31,38–40]. Other bands observed in
the range of 3000 cm−1 to 3500 cm−1 correspond to the O-H and N-H stretching of adsorbed
water molecules and free amino groups, respectively [31,38–40]. Moreover, small peaks that
show up only in the composites, at approximately 530 cm−1 and 750 cm−1, are attributed
to the O-Zn-O and O-Ge-O stretching vibrations, respectively, of Zn2GeO4 [41–43].

Photoluminescence (PL) emission spectra obtained at room temperature are shown
in Figure 1d. In this case, the broad PL emission profile for these nanocomposites reveals
three electronic transitions, in good agreement with the structure previously elucidated
by PXRD and FTIR. As expected, the first two well-defined transitions (at ca. 450 nm and
488 nm) can be attributed to π*→ LP and π*→π transitions of g-C3N4 [31,44], while the
single shoulder at ca. 532 nm is due to the oxygen vacancy (Vo) as well as the hybridization
of 4s and 4p orbital states in the Zn and Ge belonging to Zn2GeO4 [43,45–47]. No major
change occurred in the PL emission profile, except in terms of its intensity. This likely is
due to a band alignment of type-I (straddling gap), which will be discussed in more detail
below.

To confirm these findings, we carried out the Rietveld refinement analysis of the
as-prepared samples. The structural parameters obtained from the Rietveld refinement
method [48] are shown in Figure 1e–g. An analysis of the refined structure parameters for
samples with 10 wt% (with lattice parameters a = 14.246 Å; c = 9.538 Å, and V = 1676.511
Å3), 20 wt% (with lattice parameters a = 14.256 Å; c = 9.547 Å, and V = 1680.285 Å3),
and 40 wt% (with lattice parameters a = 14.261 Å; c = 9.551 Å, and V = 1682.254 Å3) of
Zn2GeO4, respectively, shows that they all obey to the rhombohedral structure of Zn2GeO4
(belonging to space group R3). Moreover, theoretical calculations show that the structural
parameters of the Zn2GeO4/g-C3N4 nanocomposite, where the (001) surface was assumed
as the structure that is supported (deposited above the monolayer) by the (3 × 3) g-C3N4
supercell, composing 105 atoms, which indicates after the optimization a lattice parameter
a = b = 13.762 Å, which is only 3.4% smaller than the experimentally observed (see Figure 2a).
Furthermore, a decrease was observed in the effective theoretical band gap (Egap = 3.6eV)
for this nanocomposite, if compared to the bulk Zn2GeO4 (Egap = 4.58 eV), but it is close to
the calculated value for the bulk g-C3N4 (Egap = 3.3 eV), indicating the obtained of a band
alignment of type-I.
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bond exists. The Mülliken charge analysis indicates that compared to the Zn2GeO4 bulk 
(~229 m|e| [Ge-O] and ~141 m|e| [Zn-O]), the overlap in the nanocomposite is slightly 
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ters. Moreover, we can confirm the bonding between the layers by observing that there is 
a non-null overlap between the Zn and N atom (~ 140 m|e|), which, along with the van 
der Waals interaction between the layers, makes the heterostructure more robust; and it 
is possible to see that there is a dislocation of the density of the Zn2GeO4 towards the g-
C3N4. Consequently, these theoretical results suggest a possible strain-induced increase in 
the Zn-O bond length, as well as a shortening of the Ge-O bond of both tetrahedral [ZnO4] 
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Figure 1. Structural, vibrational, and optical characterization of Zn2GeO4/g-C3N4 nanocomposites.
(a) PXRD patterns, (b) XPS survey spectral, (c) FTIR spectral, and (d) PL spectral at room temperature
of Zn2GeO4/g-C3N4 nanocomposites. (e–g) Fitting parameters of the Rietveld refinement data (WR,
GoF, Rp and Rexp) of samples prepared with 10, 20, and 40 wt% of Zn2GeO4, respectively.

Figure 2b shows the charge density distribution, which indicates that the charges
over the g-C3N4 surface still maintain their homogeneity; however, it can be observed that
there is an increase in the negative charge concentration around the Zn atoms, and a small
dislocation of charge between the g-C3N4 and Zn2GeO4 layer where the layers coupling
bond exists. The Mülliken charge analysis indicates that compared to the Zn2GeO4 bulk
(~229 m|e| [Ge-O] and ~141 m|e| [Zn-O]), the overlap in the nanocomposite is slightly
different (~160–288 m|e| [Ge-O] and ~105–180 m|e| [Zn-O]), and the population overlap
in the C-N bonding varies from ~365 to ~460 m|e|, for both standalone and nanocomposite
conformation, which is consistent with the distortion in the [ZnO4] and [GeO4] clusters.
Moreover, we can confirm the bonding between the layers by observing that there is a
non-null overlap between the Zn and N atom (~ 140 m|e|), which, along with the van
der Waals interaction between the layers, makes the heterostructure more robust; and it is
possible to see that there is a dislocation of the density of the Zn2GeO4 towards the g-C3N4.
Consequently, these theoretical results suggest a possible strain-induced increase in the
Zn-O bond length, as well as a shortening of the Ge-O bond of both tetrahedral [ZnO4] and
[GeO4] clusters, respectively, of these nanocomposites. These results are consistent with
our XRD refinement and XPS analysis and, hence, may contribute to a deep understanding
of their optical and catalytic behavior.
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negative charge densities, respectively; (c) Projected density of states (PDOS) of the optimized g-
C3N4/ZGO nanocomposite, where the upper DOS indicates the contribution of the Zn, Ge, and O 
orbitals, and the lower DOS the C and N atoms orbitals. 
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Figure 2. Theoretical assessment of the electronic structure of g-C3N4/Zn2GeO4 nanocomposite.
(a) Representative g-C3N4/Zn2GeO4 (ZGO) nanocomposite unit cell, (b) Surface electrostatic poten-
tial [V(r)] for the heterostructure (0.05 a.u. isodensity), where blue and red colors denote positive
and negative charge densities, respectively; (c) Projected density of states (PDOS) of the optimized
g-C3N4/ZGO nanocomposite, where the upper DOS indicates the contribution of the Zn, Ge, and O
orbitals, and the lower DOS the C and N atoms orbitals.

Moreover, the density of states (see Figure 2c) of the heterostructure shows that around
the band gap, the O2p and N2p orbitals are the main contributions to the valence band
(VB), and the O2p, Ge4p, and Zn4sp are the major contributions to the conduction band
(CB). Moreover, in this case, the complete d orbitals of Zn and Ge atoms have a theoretical
binding energy (BEs) for the Zn and Ge atoms in Zn2GeO4 bulk of about 6.49 and 25.03 eV,
respectively, and for the nanocomposite it shows 6.10 and 27.58 eV, respectively, which can
be compared to the experimental results found in the XPS measurements; it has a similar
value for the absolute difference of the Ge, and the Zn d-center is always around ~21 eV.

Figure 3 presents selected XPS spectral windows of elemental core levels and the VB
regime. The pure g-C3N4 sample shows the expected characteristic features, including
shake-up satellites to the C 1s and N 1s lines, which indicates the high quality of this
sample. The latter fine details are not easy to trace in the composite (40%) sample, because
of differential charging artifacts that could not be fully removed (see experimental section).
Yet, taking into account the resultant asymmetric broadening of XPS lines, an agreement
is found in both the binding energies and the line intensities expected for the composite.
Similarly, the Zn (see panel e in the Figure 3), Ge, and O lines of the composite are in good
agreement with those of the Zn2GeO4 reference sample [35,46,47,49]. Moreover, these XPS
results suggest a possible strain-induced increase in the length of the Zn-O bond as well
as a shortening of the Ge-O bond present in both tetrahedral [ZnO4] and [GeO4] clusters,
respectively, of these nanocomposites, which is consistent with our PXRD refinement.
Table 1 presents the detailed binding energies (BE) values of the three samples. Thus, the
correction terms obtained here under eFG operation are: 4.6 eV for g-C3N4, 4.4 eV for
Zn2GeO4, and 4.4 eV for 40 wt% of Zn2GeO4/g-C3N4 nanocomposite, respectively.
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Table 1. BE values (in eV) after correcting for charging by assuming the C 1s of adventitious carbon
(indicated as CH in Figure 2a) to be at 284.8 eV (with reservation that this value is not necessarily the
correct one for the present systems).

g-C3N4 Zn2GeO4 40% Zn2GeO4

C (main) 283.3 - 288.35
N (main) 398.6 - 398.92
Zn 2p 3/2 - 1022.15 10.22

Zn 3d - 10.83 10.95
Ge 3d - 32.25 32.5

O - 531.25 531.3
XPS VB (top) 2.53 3.83 (3.15) 2.9–3.03

A notable result regards the XPS VB spectrum. The top of the VB of pure g-C3N4
appears at binding energy significantly lower than that of the pure Zn2GeO4. Therefore, a
physical mixture of two non-interacting constituents would be expected to integrally have
its top of VB at a value that aligns with that of the pure g-C3N4. As shown in Figure 3f,
the experimental result is very different: As such, the composite top of VB is at binding
energy significantly higher, about 0.5 eV, than that of pure g-C3N4. This result indicates
the emergence of charge transfer between the two constituents. Further details on the
charge transfer are probably hidden in the line shapes of the elemental lines, to which our
access is limited due to the inhomogeneous charging discussed above. Yet, the evidence
provided by the XPS VB spectra is easily resolved and, thus, provides an efficient indicator
of the interaction between the composite constituents [14,35–37]. Besides, the analysis of
the VB position in the XPS spectrum of the Zn2GeO4 and g-C3N4 samples and theoretical
calculations confirm, thereby, a type-I band alignment for these nanocomposites is obtained.
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Figure 3. Representative XPS spectral windows of the reference materials and the 40 wt% of
Zn2GeO4/g-C3N4 nanocomposite, showing the (a) C 1s, (b) N 1s, (c) O 1s, (d) Zn 2p, and (e) Ge 3d
lines. The valence bands window of both g-C3N4 and Zn2GeO4 samples (f), as indicated. Note that
the composite lines are subject to differential charging, due to which asymmetric broadening tails are
encountered.
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We also find that these nanocomposites show high chemical reactivity in photocatalysis.
Figure 4a–d shows the results of a photocatalysis test: the degradation of MB solution by
well-defined Zn2GeO4/g-C3N4 nanocomposites (designated as Zn2GeO4 together with
the wt% of Zn2GeO4). Table 2 lists the corresponding catalytic degradation reaction rate
constant. The kinetic constant (k) shows a considerable variation, from 6.5 × 10−3 min−1

for ZGO (40 wt%) to 3.4 × 10−3 min−1 for ZGO (0%), suggesting that the presence of
Zn2GeO4 nanocrystals significantly accelerates the photocatalytic degradation of MB in
solution. In addition, the correlation coefficient (R2) values are consistent with the following
pseudo-first-order kinetic model [47].

Table 2. Photocatalysis parameters of Zn2GeO4/g-C3N4 nanocomposite.

Sample k
[10−3 min−1]

R2

[%]
Adsorption

[%]
Degradation

[%]

0% ZGO 3.44 96.77 35.53 46.73
10% ZGO 2.64 99.57 7.42 38.26
20% ZGO 4.25 98.28 6.51 56.12
40% ZGO 6.54 99.35 6.05 70.52

Generally, with the adjustment of process parameters, the resulting materials can be
modified to contain varying numbers of defect states in the interior of the bandgap [49–53].
From an electronic perspective, the disorder is characterized by energy states above the
VB and below the CB; it decreases the bandgap by the optically measured gap [20]. It
is reported that H2O and O2 molecules are dissociated in the resulting oxygen vacancy,
producing the active species •OH and •O2− [47]. Hence, such complex defects a priori can
act as sites more effective for promoting adsorption, leading to improved photocatalytic
response [47,49–53]. Therefore, the high photocatalytic activity of the compounds with
20 wt% and 40 wt% Zn2GeO4, compared to those with 0 wt% and 10 wt% Zn2GeO4, can be
related to the high density of the oxygen vacancies, and a synergistic effect between the
Zn2GeO4 and g-C3N4. It also reflects an effective charge separation efficiency and high
capacity for utilizing visible light by these nanocomposites [14].

Additionally, the degradation rate obtained in this study was also compared to other
heterostructure-based photocatalysts reported in the literature. These results are sum-
marized in Table 3. We can observe that the Zn2GeO4/g-C3N4 nanocomposites have a
satisfactory photocatalytic activity and, hence, can be considered promising for the treat-
ment of effluents with complex characteristics.

Table 3. Comparison with other photocatalysts for the degradation of MB solution.

Material k (10−3 min−1) Ref.

This work 6.54 -
NiO/Cd/g-C3N4 2.4 [54]

Fe2O3/g-C3N4 9.2 [55]
ZnO/g–C3N4 14 [56]

Mo-doped NiTiO3/g-C3N4 0.88 [57]

Figure 5a shows SEM images of the sample with 40 wt% of Zn2GeO4, and a proposed
photocatalytic degradation mechanism. The SEM images demonstrate the formation of
interfacial contact between g-C3N4 and Zn2GeO4 components. Because g-C3N4 has a
higher work function than Zn2GeO4, of course, electrons move from the Zn2GeO4 structure
to the g-C3N4 structure until they reach Fermi level equilibrium, thereby generating an
internal electric field at the interface of the two phases [11,13,14,31,45]. Thus, with visible
light excitation, g-C3N4 is much easier to excite and generate charge carriers as well. Our
results revealed a band alignment of type-I for Zn2GeO4/g-C3N4 interface (Figure 4f), in
agreement with the literature [14,31,45]. As a consequence, •O2− and •OH are the active
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species for the MB photocatalysis process, which is consistent with the experimental results
shown in Figure 5. This synergistic effect resulting from type-I band alignment between
g-C3N4 and Zn2GeO4 compounds can, in principle, accelerate the effective separation of
the photoexcited charges at the interface, both, thus, improving the optical and catalytic
performance of well-defined Zn2GeO4/g-C3N4 nanocomposites [11,13,14,31,45].
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3. Materials and Methods
3.1. Synthesis of Zn2GeO4 Nanorods

The Zn2GeO4 nanorods were synthesized by the microwave-assisted hydrothermal at
140 ◦C for 10 min according to the method as described in our previous works [46,47].

3.2. Synthesis of g-C3N4

The g-C3N4 sample was carried out by the thermal polymerization of urea according
to the method as described in our previous work [31].

3.3. Preparation of Zn2GeO4/g-C3N4 Nanocomposite

Here, the Zn2GeO4/g-C3N4 nanocomposite was prepared by the ultrasound-assisted
solvent method. It was used 10, 20, and 40 wt% of Zn2GeO4 relative to the amount of
g-C3N4 (ca. 0.3 g). Then, the g-C3N4 and Zn2GeO4 was mixed in 30.0 mL of ethanol and
placed in an ultrasonic bath (Ya-Xun 3060, 42 kHz, 50 W) at 80 ◦C, until all the ethanol
evaporates. A summary of the whole process of preparation can be observed by the process
outlined in Figure 5b.

3.4. Materials Characterization

The powder X-ray diffraction (PXRD) patterns of as-prepared samples were obtained
using Bruker/D2Phaser with Cu Kα radiation (λ = 1.5406 Å). The 2θ range was 5–80◦, and
the scanning rate was 0.01◦s−1. Next, the obtained PXRD patterns of as-prepared samples
were also analyzed by the Rietveld refinement method [48] using the GSAS II [58]. FTIR
spectroscopy was carried out in the 500–4000 cm−1 range using a PerkinElmer spectropho-
tometer in the attenuated total reflectance mode. Morphologies of the samples were then
observed from a field emission gun scanning electron microscopy (JEOL 7001F, Tokyo,
Japan).

Excitation pulses were generated by a frequency tripled Nd:YAG Q-switched laser
oscillator pumping an optical parametric oscillator (OPO) (model: NT342/C/3/UVE,
EKSPLA) with pulse durations of ∼5 ns at a repetition rate of 10 Hz. Excitation pulses at
420 nm were obtained from the OPO. The emitted signals from the samples were spectrally
filtered and passed through a 435 long-pass filter and focused into a 10× 10 mm rectangular
quartz cuvette (Starna Cells), containing a solution of a low concentration of the samples
dispersed in isopropanol, and stirred continuously with a magnetic stirrer. Here, Zn2GeO4,
g-C3N4 were used as the reference samples and varied concentrations of (10, 20, and 40 wt%
of Zn2GeO4)-g-C3N4 were compared with them. XPS measurements were performed on a
Kratos AXIS-Ultra DLD spectrometer, using a monochromatic Al kα source at relatively low
power, in the range of 15–75 W and detection pass energies of 20–80 eV. The base pressure
in the analysis chamber was kept below 1·10−9 torr. Due to strong effects of differential
charging encountered in part of the samples, small area scans (with analysis spots 110 µm
in diameter) were also included, such as to better differentiate the artifact distortions from
relevant chemical information. Repeated scans on a given spot were further used for the
evaluation of beam-induced effects, starting with short, low flux scans, and gradually
increasing both flux and dwell time such as to gain statistics.

In addition, the Zn2GeO4, g-C3N4, and Zn2GeO4/g-C3N4 structures were also in-
vestigated based on density functional theory (DFT) calculations, as implemented in the
CRYSTAL17 software [59]. All periodic DFT calculations were performed at the HSE06
functional level [60] with the Zn, Ge, and O atomic centers being described by 86-411d31G,
9-7631(511d)G, and 8-411d1 basis set, and the C and N being described using the Triple-
zetta Plus Polarization (TZVP) basis set [61]. The simulations show that the optimized
structural parameters of the Zn2GeO4 bulk are a = b = 14.317 Å (~0.6%) and c = 9.571 Å
(~0.4%); and for the g-C3N4 bulk with a = b = 4.749 Å (~0.5%), where the percentage in
the parenthesis is the deviation compared to our experimental data. In this study, the
Zn2GeO4/g-C3N4 nanocomposite was modeled using the (001) and (010) surfaces of the
Zn2GeO4, where at first a slab in the respective direction was done and then fully optimized.
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After that, it was verified that the (001) surface has the same hexagonal conformation as
the g-C3N4, making it possible to deposit this thin film of Zn2GeO4 on the surface of the
g-C3N4. For that purpose, a (3 × 3) supercell of g-C3N4 was built and the structures were
merged into one, with a distance between the layers of 4Å. In addition, the theoretical BE
values were estimated in this study according to our previous works [62,63]. Here, the
SCF convergence criteria were controlled by a set of five thresholds (10−8, 10−8, 10−8, 10−8,
10−16), in which these parameters correspond, respectively, to the overlap and penetration
for Coulomb integrals, the overlap for HF exchange integrals, and the last two thresholds
for the pseudo-overlap in HF exchange series; and for both Pack–Monkhorst and Gilat
shrinking factor of 8, for both bulk Zn2GeO4 and g-C3N4 [59,64]. However, in the case of
the Zn2GeO4/g-C3N4 nanocomposite, due to the increase of the computational costs, since
the symmetry is fully broken, using the respective values of thresholds (10−7, 10−7, 10−7,
10−7, 10−14) and for both Pack–Monkhorst and Gilat shrinking factor of 2. Furthermore,
the geometric tolerances adopted during the optimization procedure were set to 0.0001 and
0.0004 Ha/bohr, respectively [59]. The projected DOS was analyzed with the same k-point
in the sampling employed by the optimization procedure for the diagonalization of the
Fock/Kohn-Sham matrix and, thus, plotted using the XCrysden software [65].

3.5. Measurement of Photocatalytic Activity

Briefly, 50 mg of the as-prepared catalyst was dispersed in 80 mL of MB (10 mgL−1)
aqueous solution and was mixed at a stirring rate of 300 rpm in the dark for 20 min [53].
For carrying out the photocatalytic experiment, the mixture was placed in a self-made
ultraviolet (UV) reactor with three UVC lamps 254 nm (15W, G15T8/OF, OSRAM) at the
same stirring rate. An aliquot of 1 mL solution was collected every 20 min. Then, the
UV-Vis absorption spectra of the collected supernatant liquid were diluted in 1 mL of water
and recorded using a Libra biochrom S60 spectrophotometer in the range of 400 nm to
700 nm. All the procedures were performed at room temperature.

4. Conclusions

We have investigated the effect of Zn2GeO4 concentration on the structural, opti-
cal, and photocatalytic properties of Zn2GeO4/g-C3N4 nanocomposites prepared using
the ultrasound-assisted solvent method. In this work, PXRD, FTIR, XPS, SEM, PL, and
photocatalytic techniques, together with theoretical calculations based on periodic mod-
els, were employed to establish the structure–property relationship for Zn2GeO4/g-C3N4
nanocomposites. These results show that these nanocomposites are basically formed by the
interaction of Zn2GeO4 nanorods (belonging to space group R3) and g-C3N4 nanosheets
(belonging to space group P6m2). The results showed that an increased mass ratio of
Zn2GeO4 to g-C3N4 can significantly improve their optical and photocatalytic responses.

By the combination of theoretical and experimental approaches, we have noted a
possible strain-induced increase in the Zn-O bond length, as well as a shortening of the
Ge-O bond of both tetrahedral [ZnO4] and [GeO4] clusters, respectively, in Zn2GeO4 lattice
of these nanocomposites. These results suggest that the disordered structure promotes local
polarization and a charge gradient in the interfacial contact, which has a band alignment
of type-I (as confirmed by analysis of the XPS VB spectrum and DFT calculations), i.e.,
resulting in significantly improving the optical and visible-light-induced photodegradation
performance of well-defined Zn2GeO4/g-C3N4 nanocomposites and, thus, helping in
the interpretation of these results. Therefore, in this perspective, we believe that such
studies may provide further chemical insight into the new advanced materials designed.
In short, these nanocomposites are environmentally significant because their degradation
effectiveness means that they can be widely used in the treatment of dangerous chemical
residues as well as in emerging optoelectronic technologies.
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