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Abstract: The aqueous extract of marine green macroalgae, Ulva fasciata Delile, was harnessed for the
synthesis of zinc oxide nanoparticles (ZnO-NPs). The conversion to ZnO-NPs was characterized by
color change, UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD. Data showed the formation of
spherical and crystalline ZnO-NPs with a size range of 3–33 nm. SEM-EDX revealed the presence of
Zn and O in weight percentages of 45.3 and 31.62%, respectively. The phyco-synthesized ZnO-NPs
exhibited an effective antibacterial activity against the pathogenic Gram-positive and Gram-negative
bacteria. The bacterial clear zones ranged from 21.7 ± 0.6 to 14.7 ± 0.6 mm with MIC values of
50–6.25 µg mL−1. The catalytic activity of our product was investigated in dark and visible light
conditions, using the methylene blue (MB) dye. The maximum dye removal (84.9 ± 1.2%) was
achieved after 140 min in the presence of 1.0 mg mL−1 of our nanocatalyst under the visible light
at a pH of 7 and a temperature of 35 ◦C. This percentage was decreased to 53.4 ± 0.7% under the
dark conditions. This nanocatalyst showed a high reusability with a decreasing percentage of ~5.2%
after six successive cycles. Under the optimum conditions, ZnO-NPs showed a high efficacy in
decolorizing the tanning wastewater with a percentage of 96.1 ± 1.7%. Moreover, the parameters
of the COD, BOD, TSS, and conductivity were decreased with percentages of 88.8, 88.5, 96.9, and
91.5%, respectively. Moreover, nano-ZnO had a high efficacy in decreasing the content of the tanning
wastewater Cr (VI) from 864.3 ± 5.8 to 57.3 ± 4.1 mg L−1 with a removal percentage of 93.4%.

Keywords: green synthesis; Ulva fasciata; ZnO-NPs; pathogenic bacteria; methylene blue; chromium ions

1. Introduction

Nanoparticles (NPs) are defined as particles at the nanoscale (1–100 nm) and they
are considered building blocks of nanotechnology [1]. Due to the beneficial and unique
physical, chemical, and mechanical properties of NPs, they are used in various applications
such as energy, cosmetics, medicines, catalysis, electronics, wastewater treatment, heavy
metal adsorption, food, the textile industry, and agriculture [2–5]. Therefore, the global
production of NPs has been receiving high attention and is estimated to be 260–309 metric
tons [6], whereas the global consumption was in the range of 255–585 metric tons from 2014
to 2019 [1]. The production of NPs was accomplished by chemical and physical methods
such as microwave, solvothermal, sol-gel, hydrothermal synthesis, chemical reduction,
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laser ablation, γ-ray irradiation, the evaporation–condensation method, and flame spray
pyrolysis [7]. Although these methods are widely used for the production of specific
shapes and sizes, the adverse effects of these methods on the environment, researchers, and
consumers, such as the toxic effects of the organic solvent involved in NP synthesis, the
use of extreme conditions such as high pH, high temperature, and the production of toxic
vapors and gases that have adverse effects on humans and the ecosystem, can retard their
usage [7,8]. Green chemistry or the green synthesis of nanoparticles has been concerned
with the development of an eco-friendly approach to manufacture the NPs. This approach
promises to realize the increasing demands for the production of environmentally friendly
NPs with a low cost, biocompatibility, easy scale-up, saving energy, and easy handling
methods [9,10].

Marine macroalgae are classified based on their pigmentation to brown ((phaeophytes),
green (chlorophytes), and red (rhodophytes)) and are characterized by renewable resources
and are easy to be collected from the marine environment. Algal biomass (alive or dried)
has received more attention as a “bio-nano-factory” because of its rapid growth, high
capacity for metal and metal oxide accumulation and reduction, high biomass productivity,
growth in the absence of chemicals or fertilizers, and the ability to harvest it several
times per year [11,12]. Among green macroalgae, Ulva fasciata Delile belongs to the class
Ulvophyceae and the family Ulvaceae, and it is widely distributed on the north coast of
Egypt. The aqueous extract of these green macroalgae contains various bioactive molecules
such as polysaccharides (Ulvan), amines, amides, proteins, pigments, terpenoids, alkaloids,
and phenolic compounds that have a critical role in metal and metal oxide reduction and
stabilization [13]. Therefore, the current study emphasizes the potential of U. fasciata as a
low-cost and high-active metabolites content to fabricate Zinc oxide nanoparticles (ZnO-
NPs) by a green approach. In a recent study, magnesium oxide (MgO) nanoparticles were
formed by harnessing the metabolites produced by the brown algae Cystoseira crinita [14].
Various NPs such as Ag, Au, AgCl, CuO, and Fe3O4 were successfully fabricated by marine
macroalgae [15].

The ZnO-NPs are important semiconductors due to their high bandgap, electron mobil-
ity, and visible transparency. They are also incorporated into a wide variety of applications
such as optoelectronics, optics, the rubber industry, the textile industry, cosmetic and sun-
screen products because of their high properties of UV adsorption, solar cells, concrete
production, photocatalysis, biological sensing, gene delivery, and larvicidal, antibacterial,
and antifungal agents [16–18]. Bacterial infections and the increasing antibiotic-resistant
microbes are the main challenges, and a development of new bioactive compounds to
overcome their negative effects on human and animal health is very important [19,20].
ZnO of nanoscale-size particles has significant effects as an antimicrobial agent against
Gram-positive bacteria, Gram-negative bacteria, and uni- and multicellular fungi compared
to the microscale-size particles. For instance, the ZnO-NPs synthesized by the aqueous
extract of Ulva lactuca (UL-ZnO-NPs) and Stoechospermum marginatum (sm-ZnO-NPs) ex-
hibited high antibacterial activity against Staphylococcus aureus, Escherichia coli, Salmonella
typhi, and Proteus vulgaris and antifungal activity against Aspergillus flavis, A. niger, and
Fusarium oxysporum more effectively than the metal precursor (ZnSO4) and the algal aque-
ous extract [21].This phenomenon could be attributed to the unique properties of ZnO of
nanoscale-size particles, especially because of the large surface area relative to the small
size [22]. The discharge of effluents from different industries, such as textile and leather
tanning, without treatment causes massive harmful effects on the environment [23]. This is
due to the highly toxic substances of these effluents, such as dyes and heavy metals [24,25].
Recently, the development of new semiconductors that are used as catalysts for remedia-
tion of these effluents are of global interest. The photocatalytic remediation of industrial
effluents using NPs is considered a promising tool due to its simplicity, efficiency, rapid
oxidation, cost-effectiveness, and the reduction in toxic by-products synthesis [1,26]. The
photocatalytic reaction depends on the surface area of the catalyst, crystalline structure,
size, shape, size distribution, bandgap, porosity, and the density of hydroxyl groups on
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the catalyst surface [27]. Due to the superior properties of ZnO-NPs as a semiconductor,
a plethora of studies were conducted to investigate their efficacy in the degradation and
adsorption of different pollutants and heavy metals.

In the current study, the efficacy of the aqueous extract of marine macroalgae,
U. fasciata Delile, in reducing zinc nitrate and forming ZnO-NPs was investigated. The
phyco-synthesized ZnO-NPs were initially noticed by the color change of the reaction
solution. Next, an extensive characterization was performed using UV–vis spectroscopy,
Fourier transform infrared (FT-IR) spectroscopy, Transmission Electron Microscopy (TEM),
Scanning Electron Microscopy–energy-dispersive X-ray (SEM-EDX), and X-ray diffrac-
tion (XRD). The activity of the developed ZnO-NPs as antibacterial agents against the
pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and the Gram-
negative bacteria (Escherichia coli and Pseudomonas aeruginosa) was studied. The catalytic
activity of phyco-synthesized ZnO-NPs to degrade the methylene blue (MB) as a model
dye was assessed in dark and visible light conditions. We determined an optimum con-
dition in which the effectiveness of ZnO-N U. fasciata Ps to improve the physicochemical
parameters of tanning wastewater for the first time as well as to adsorb the chromium ions
were investigated.

2. Results and Discussion
2.1. U. fasciata-Mediated Green Synthesis of ZnO-NPs

In the current study, the active metabolites involved in the aqueous extract of U. fasciata
act as a biocatalyst for reducing zinc acetate to zinc oxide nanoparticles (ZnO-NPs). Car-
bohydrates, fats, vitamins, fatty acids, bioactive metabolites such as polyphenols, and
pigments (carotenoids, phycobilin, and chlorophyll) are present in the aqueous extract of al-
gae and act as reducing and stabilizing agents for forming a wide range of metal and metal
oxides nanoparticles as reported previously [5,15]. Herein, the formation of a white color
after mixing the algal aqueous extract with the metal precursor of Zn(CH3COO)2·2H2O
indicates the successful fabrication of ZnO-NPs. The obtained data are in agreement with
the previous reports which indicated that the aqueous extract of U. lactuca has the efficacy
to form white precipitate after mixing with zinc acetate which indicates the formation of
ZnO-NPs [28]. Similarly, the aqueous extract of the seaweed Hypnea musciformis was used
to form a white precipitate of Zn(OH)2 after mixing with zinc nitrate that was calcinated at
450 ◦C for 2 h to form ZnO-NPs [29].

The fabrication of ZnO-NPs using an algal aqueous extract could be due to one of
two possible mechanisms. First, the potential of biomolecules and active metabolites that
exist in the aqueous extract to chelate the Zn2+ to form a complex of Zn(OH)2

, which
is collected and calcinated at 300 ◦C for 2 h to form a white powder as ZnO-NPs in
Equations (1) and (2) [18,30].

Zn(CH3COO)2 · 2H2O + seaweed aqueous extract
Stirring for 60 min at 50◦C→

incubated overnight under dark conditions
Zn(OH)2 (1)

Zn(OH)2
300◦C→

2 h
ZnO-NPs (2)

The second mechanism might be through the reduction of Zn2+ to form zinc metal
(Zn0) via the active metabolites present in the aqueous extract, followed by reacting with
the dissolved oxygen to form the nuclei of the ZnO. Next, the as-formed ZnO is capped
by some algal metabolites that may increase the stability of nanomaterials and prevent
its aggregation [31]. Due to the promising activity of ZnO-NPs in various biomedical
and biotechnological applications, it was synthesized using a green, cost-effective, and
eco-friendly approach by a variety of biological entities [32–34].
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2.2. Characterizations
2.2.1. UV–vis Spectroscopy

The intensity of the white color that formed after mixing the aqueous extract of
U. fasciata with the zinc acetate solution was monitored by UV–vis spectroscopy at a
wavelength in the range of 200–600 nm (Figure 1). It was shown that the UV–vis spectra
of the algal aqueous extract have a maximum absorption peak at 440 nm that shifted to
330 nm after the formation of the ZnO-NPs. The observed maximum peak at 330 nm was
matched with the bandgap absorption of nanocrystal ZnO as reported previously [28,32].
Similarly, the ZnO-NPs fabricated by the macroalgae Sargassum muticum showed a sharp
absorption peak at a wavelength of 334 nm and attributed this band to the transition of
electrons from the valence band (VB) to the conductance band (CB) in the ZnO sample [35].
Moreover, the maximum absorption peak of the ZnO-NPs synthesized by U. lactuca was
observed at the wavelength of 325 nm [28]. Recently, the ZnO-NPs synthesized by the two
seaweeds, Stoechospermum marginatum and U. lactuca, have a maximum absorption peak at
the wavelength of 345 and 310 nm, respectively [21].
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2.2.2. Fourier Transform Infrared (FT-IR) Spectroscopy

The functional groups related to various active compounds that are present in the
algal aqueous extract and their role in the reduction process as well as the capping and
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stabilizing of ZnO were investigated by FT-IR. As shown, the aqueous extract of U. fasciata
has five peaks at the wavenumbers 528, 1113, 1630, 2070, and 3450 cm−1 (Figure 2). The
peaks in the range of 950–1150 cm−1 have been reported for typical ulvans polysaccharides
secreted by U. fasciata [36]. The strong peak at 1630 cm−1 is attributed to the C=O of
polysaccharide moieties, whereas the broad peak at 2070 cm−1 signifies the stretching
N=C=S of isothiocyanate [37]. The strong broadness peak at 3450 cm−1 corresponds to
the stretching of O—H and N—H for amide A proteins [38]; this peak was shifted to
3430 cm−1 in the ZnO-NPs. The broadness peak was formed due to the formation of
intra- or intermolecular hydrogen bonds [39]. The FT-IR spectra of the ZnO-NPs showed
a weak peak at 2990 cm−1 which is related to the asymmetric and symmetric stretching
CH2 of carbohydrates and lipids [40] (Figure 2). The peak at 2429 cm−1 is signified to
CO2 adsorption, whereas the shifting peak to 1640 cm−1 can be related to the stretching
C=N (amides) and C=O overlapped with bending N—H amines [41,42]. The appearance
of a new, strong peak at 1380 cm−1 is corresponding to the stretching C–N group of
aromatic and aliphatic amines, whereas the medium peak at 1325 cm−1 is signified to O–H
bending [43]. Moreover, the medium peak at 835 cm−1 is signified to the bending C=O
of alkene. The successful formation of ZnO was confirmed due to the presence of peaks
at 514 and 775 cm−1 [44,45]. The previous peaks were overlapped with a band of C–S at
an absorbance of 528 cm−1 of the algal aqueous extract [14]. The FT-IR results revealed
that the organic contents of U. fasciata such as proteins, amino acids, carbohydrates, and
polysaccharides were involved in the reduction of zinc ions and the capping and stabilizing
of the phyco-synthesized ZnO-NPs.
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Figure 2. FT-IR analysis showed functional groups in aqueous extract of U. fasciata and their role in
the green synthesis of ZnO-NPs.

2.2.3. Transmission Electron Microscopy (TEM)

The activity of nanoparticles depends on various parameters such as size, aggrega-
tion, shape, surface charge, and stability [46,47]. Therefore, it is important to investigate
the morphological characteristics, especially the size, shape, and aggregation of phyco-
synthesized ZnO-NPs. The TEM instrument is a useful technique for assessing these
parameters. As shown, the synthesized ZnO-NPs were well-dispersed without aggrega-
tion and have a spherical shape (Figure 3A). Moreover, the size of the ZnO-NPs was in



Catalysts 2022, 12, 756 6 of 22

the range of 3–33 nm with an average size of 10.62 ± 4.9 nm (Figure 3B). The activity of
the ZnO-NPs differed according to the size and shape. For instance, the antimicrobial
activity of the cuboidal shape of the ZnO-NPs synthesized by the leaf extract of Aloe vera
was more effective against the pathogenic bacteria, Escherichia coli, Bacillus subtilis, and
Staphylococcus aureus, than the hexagonal, spherical, and cylindrical shapes. Whereas the
photocatalytic efficacy of the spherical followed by hexagonal shapes was more effective
in the removal of methyl orange dye than the cuboidal and the cylindrical shapes [48].
Interestingly, the green-synthesized nanorod ZnO exhibited a high activity against the
pathogenic Gram-positive and Gram-negative bacteria and in-vitro cytotoxicity compared
with the hexagonal shape. Moreover, after loading on cotton fabrics, the nanorod shape
was more safe than the hexagonal one [33]. Moreover, various sizes of ZnO-NPs (20, 40,
and 140 nm) showed varied antimicrobial activity against Streptococcus mutans, Enterococcus
faecalis, Lactobacillus fermentum, and Candida albicans based on their sizes [49]. As previously
reported, the activity of the ZnO-NPs increases as their size decreases [8,46]. Hence, we
predicted high activity of our ZnO-NPs product because of its relatively small size.
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2.2.4. Scanning Electron Microscopy–Energy-Dispersive X-ray (SEM-EDX)

Figure 3C shows the SEM analysis of phyco-synthesized ZnO-NPs that exhibit a state
of well dispersion with a spherical shape. The qualitative and quantitative composition
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of as-formed ZnO-NPs were assessed using EDX analysis (Figure 3D). The presence of an
absorption peak of O at 0.5 Kev and peaks of Zn at 1.0 and 8.68 KeV confirmed the presence
of ZnO in the prepared sample [45]. Data showed that the sample contains C, O, and Zn
with weight and atomic percentages of (23.08, 31.62, and 45.3) and (22.13, 39.46, and 38.41),
respectively. The EDX chart confirmed the high purity of the prepared sample due to the
absence of extra peaks, and this finding was confirmed by the XRD analysis. The presence
of C may be attributed to capping agents from an algal extract such as polysaccharides,
carbohydrates, or proteins [21]. The obtained data are in complete agreement with the
published data which reported that the main components of ZnO-NPs fabricated with the
aqueous extract of Nostoc sp. were Zn and O with weight percentages of 31.8 and 63.2%,
respectively [50]. Moreover, the ZnO-NPs fabricated by S. marginatum and U. lactuca mainly
contained Zn and O with weight percentages of (51.6 and 48.4%) and (48.3 and 51.7%),
respectively [21].

2.2.5. X-ray Diffraction (XRD)

The crystalline nature of phyco-synthesized ZnO-NPs was investigated using the
XRD analysis (Figure 4). As shown, there are seven diffraction peaks at two theta (2 θ)
values of 31.44◦, 34.32◦, 36.24◦, 47.39◦, 56.5◦, 62.8◦, and 67.12◦, which correspond to crystal
planes of (100), (002), (101), (102), (110), (103), and (201), respectively (Figure 4). The
obtained XRD results are indexed to the hexagonal wurtzite crystalline nature according
to the Joint Committee on Powder Diffraction Standards (JCPDS) card number 89-1397.
The obtained data are compatible with those recorded by Ishwarya et al. [28] and Azizi
et al. [35]. Hamouda et al. reported that the strength and sharp diffraction peaks in the
XRD indicate the high crystallinity of synthesized ZnO-NPs [51].
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The XRD analysis is used to calculate the crystallite size, which gives the possibility
to identify or calculate the smaller NPs sizes [52]. The average crystallite size of our
synthesized ZnO-NPs was calculated using Scherrer′s equation:

D =
0.89× 1.54
β cos θ

(3)
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where D is the average ZnO-NPs size, 0.89 is Scherrer′s constant, 1.54 is the wavelength of
X-ray, β is half of the maximum intensity, and θ is Bragg’s diffraction angle. The calculation
of the mean crystallite size corresponds to the maximum intense peak (101) at a 2θ value of
36.24◦ as reported previously [53]. The data analysis revealed that the mean crystallite size
of our phyco-synthesized ZnO-NPs was around 28 nm. The obtained data are compatible
with the previous reports that indicated that the average crystallite size of ZnO-NPs that
were synthesized by leaf aqueous extract of Tabernaemontana divaricata was 36.8 nm [22].

2.3. Antibacterial Activity

The antibacterial effects of the NPs that have been fabricated by numerous strains
of micro- and macroalgae receive great attention due to the huge active metabolites of
these organisms. Herein, the synthesized ZnO-NPs by the U. fasciata strain showed high
antibacterial activity against Gram-positive and Gram-negative bacteria. The data anal-
ysis showed that the antibacterial-effect intensity was dependent on the concentration
of the used dose of the ZnO-NPs (Figure 5). The highest activity was observed at the
concentration of 200 µg mL−1 against Pseudomonas aeruginosa followed by Escherichia coli,
Bacillus subtilis, and Staphylococcus aureus with inhibition zones of 21.7 ± 0.6, 18.7 ± 0.6,
14.7 ± 0.6, and 14.7 ± 1.2 mm, respectively (Figure 5). The activity was decreased by low-
ering the ZnO-NPs concentration. At 100 µg mL−1, the zone of inhibition was 20.3 ± 0.6,
16.3 ± 0.5, 11.8 ± 0.3, and 12.3 ± 0.5 mm against P. aeruginosa, E. coli, B. subtilis, and S. au-
reus, respectively. This observation is compatible with many published studies that refer
to the dose-dependent antibacterial activity of ZnO-NPs that were fabricated by various
biological entities. For instance, the maximum inhibition of the bacterial growth of S. au-
reus, Streptococcus pyogenes, and E. coli were achieved after treatment with 100 µg mL−1

ZnO-NPs, whereas the minimum inhibition percentages were obtained at 20 µg mL−1 [31].
The antimicrobial activity of ZnO-NPs that were prepared by the brown algae, Cystoseira
crinita, against Bacillus cereus, Salmonella typhi, S. aureus, E. coli, Aspergillus niger, and Candida
albicans was increased at the high concentration of (10 mg mL−1) and decreased gradually
at the concentration range of 1000 to 39.06 µg mL−1 [54].

The minimum ZnO-NPs concentration that can inhibit the growth of the pathogenic
bacterial strains was defined as the minimum inhibitory concentration (MIC). It is important
to measure the MIC values of different bioactive compounds against different pathogenic
microbes. In the current study, the activity of gradual concentrations of ZnO-NPs (100,
50, 25, 12.5, 6.25, and 3.125 µg mL−1) were investigated against the pathogenic Gram-
positive and Gram-negative bacteria to identify the MIC value for each strain. The data
analysis showed that the MIC values were 6.25 and 25 µg mL−1 for P. aeruginosa and E. coli
with inhibition zones of 11.3 ± 0.5 and 10.7 ± 0.5 mm, respectively. Whereas the MIC
values for the Gram-positive bacteria B. subtilis and S. aureus were 50 and 25 µg mL−1,
respectively, with inhibition zones of 10.7 ± 0.6 and 9.3 ± 0.5 mm (Figure 5). The activity
of nanomaterials depends on different parameters such as shape, size, surface area, charge,
and Zeta potential. For instance, the antimicrobial activity of the nanorods of ZnO-NPs
against P. aeruginosa, E. coli, B. subtilis and S. aureus was more effective when compared
to that of the hexagonal shape [33]. Moreover, the nanopyramids-ZnO exhibited high
antibacterial activity against the pathogenic E. coli compared to that of nanoplates and
nanospheres [55]. The size of the nanomaterial is a critical factor affecting their activity.
There is an inverse relationship between the size of NPs and their activity, i.e., the activity
was increased as the size decreased [8]. For example, the nanorod-ZnO exhibited a strong
antibacterial activity against E. coli and S. aureus as compared to the microparticles; authors
attributed this result to the high surface area [56] due to the small size of the phyco-
synthesized ZnO-NPs.



Catalysts 2022, 12, 756 9 of 22

Catalysts 2022, 12, x FOR PEER REVIEW 10 of 23 
 

 

. 

Figure 5. Antibacterial activity of U. fasciata-mediated green synthesis of ZnO-NPs against the path-
ogenic Gram-positive (B. subtilis and S. aureus) and Gram-negative bacteria (P. aeruginosa and E. 
coli). The different letters at the same concentration refers to the statistically significant differences 
(p ≤ 0.05, n = 3, error bars are ±SD.). 

2.4. Photocatalytic Activity 
The catalytic degradation of the MB using nanocatalyst ZnO-NPs was investigated 

under dark and visible-light irradiation conditions. The degradation of the MB was as-
sessed at interval times of 20, 40, 60, 80, 100, 120, and 140 min in the presence of various 
nanocatalyst concentrations of 0.25, 0.5, 0.75, and 1.0 mg mL–1. The photocatalytic activity 
of a nanocatalyst is influenced by various factors such as surface morphology, bandgaps, 
sizes, crystallinity, shape, and concentration [65,66]. The data analysis showed that the 
degradation of the MB either in light or dark incubation conditions was dependent on the 
contact time between the catalyst and the dye as well as on the concentration of the ZnO-
NPs (Figure 6). At the concentration of 0.25 mg mL–1 in dark conditions, the decomposition 
percentages of the MB were 17.8 ± 1.8% after 20 min and increased to 43.1 ± 4.01% after 
140 min. In contrast, the decomposition percentages of the control were 4.7 ± 1.5% after 20 
min and increased to 11.8 ± 2.9% after 140 min. (Figure 6). In the presence of visible-light 
irradiation, the degradation percentages were 38.1 ± 0.7, 47.6 ± 1.1, and 49.4 ± 0.8% after 
20, 120, and 140 min, respectively, in the presence of 0.25 mg mL–1 of the catalyst as com-
pared to the control (4.9 ± 1.7, 10.4 ± 3.1, and 13.3 ± 2.9% after 20, 120, and 140 min, respec-
tively). These results could be due to the existence of more active sites on the surface of 
the catalyst when the concentration of the ZnO-NPs was increased. The latter may en-
hance the sorption of dye and increase the ability to form radicals that may improve the 
degradation efficiency [67,68]. 
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E. coli). The different letters at the same concentration refers to the statistically significant differences
(p ≤ 0.05, n = 3, error bars are ±SD).

In the current study, the ZnO-NPs exhibited stronger activity against Gram-negative
bacteria than Gram-positive bacteria. This finding can be explained by the different bio-
chemical structure of the cell wall of both bacterial types, which in Gram-positive bacteria
is composed of a thick layer of peptidoglycan followed by an internal phospholipids layer
(cytoplasmic membrane). These thick peptidoglycan layers may retard the penetration of
ZnO-NPs [57]. In contrast, the cell wall of the Gram-negative bacteria contains a thin layer
of peptidoglycan followed by high amounts of lipopolysaccharides (LPS). The inhibitory
effects of NPs might be attributed to the electrostatic attraction between the negative charge
of the LPS and the positively charged NPs [46,58].

The antimicrobial activity of ZnO-NPs can be attributed to three different mechanisms,
including interrupting the permeability of cytoplasmic membrane, the release of toxic ions
(Zn2+) inside the bacterial cell, and/or enhancing the reactive oxygen species (ROS). Due
to the direct interaction between bacterial cells and ZnO-NPs, the selective permeability of
the cytoplasmic membrane could be changed due to altering the channels and transporter
proteins that are overlapping with the cell membrane [59]. Once ZnO-NPs enter the
bacterial cell, toxic ions including Zn2+ are liberated due to the dissolution of ZnO-NPs
inside the cells. These toxic ions might negatively affect metabolism active sites of enzymes,
amino acids synthesis, and/or the proton motive force. Ultimately, the active transport
system could be stopped. All of these dysfunctions can lead to bacterial cell death [60,61].
As reported previously, the production of toxic ions is shape- and size-dependent on the
NPs. For example, the maximum productivity of Zn2+ and Cu2+ ions due to the dissolution
of the ZnO-NPs and CuO-NPs inside the bacterial cells were noticed for the spherical shape
and the small-size NPs compared to the rod-shaped and larger particles, respectively. This
could be due to the increased solubility equilibrium of smaller and spherical shapes [62].
The accumulation of these toxic ions inside the cells can enhance the oxidative stress and
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hence generate ROS. The inhibitory effect of the ROS is due to their oxidizing properties
that can damage the bacterial cellular components, i.e., DNA, lipids, proteins, amino acids,
and ribosomes [63,64].

2.4. Photocatalytic Activity

The catalytic degradation of the MB using nanocatalyst ZnO-NPs was investigated
under dark and visible-light irradiation conditions. The degradation of the MB was as-
sessed at interval times of 20, 40, 60, 80, 100, 120, and 140 min in the presence of various
nanocatalyst concentrations of 0.25, 0.5, 0.75, and 1.0 mg mL−1. The photocatalytic activity
of a nanocatalyst is influenced by various factors such as surface morphology, bandgaps,
sizes, crystallinity, shape, and concentration [65,66]. The data analysis showed that the
degradation of the MB either in light or dark incubation conditions was dependent on
the contact time between the catalyst and the dye as well as on the concentration of the
ZnO-NPs (Figure 6). At the concentration of 0.25 mg mL−1 in dark conditions, the decom-
position percentages of the MB were 17.8± 1.8% after 20 min and increased to 43.1 ± 4.01%
after 140 min. In contrast, the decomposition percentages of the control were 4.7 ± 1.5%
after 20 min and increased to 11.8 ± 2.9% after 140 min. (Figure 6). In the presence of
visible-light irradiation, the degradation percentages were 38.1 ± 0.7, 47.6 ± 1.1, and
49.4 ± 0.8% after 20, 120, and 140 min, respectively, in the presence of 0.25 mg mL−1 of the
catalyst as compared to the control (4.9 ± 1.7, 10.4 ± 3.1, and 13.3 ± 2.9% after 20, 120, and
140 min, respectively). These results could be due to the existence of more active sites on
the surface of the catalyst when the concentration of the ZnO-NPs was increased. The latter
may enhance the sorption of dye and increase the ability to form radicals that may improve
the degradation efficiency [67,68].
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and 1.0 mg mL−1) after interval times (20, 40, 60, 80, 100, 120, and 140 h) under dark and visible light
irradiation conditions.
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In the current study, the degradation efficacy of the MB was increased at high con-
centrations of the ZnO-NPs. Therefore, the degradation percentages of the MB were
increased up to 49.5 ± 1.1% (in dark) and 61.6 ± 0.9% (in light irradiation) after 140 min
in the presence of 0.5 mg mL−1 of the nanocatalyst (Figure 6). The analysis of variance
revealed no significant differences between the decomposition values of the MB in the
presence of light irradiations and 0.5 mg mL−1 of the catalyst after 120 (61.3 ± 1.2%) and
140 min (61.6 ± 0.9%). The nanocatalyst ZnO fabricated by the marine alga, Turbinaria
ornata, showed an efficacy to decompose approximately 38% of an aqueous solution con-
taining rhodamine-B dye after 90 min in sunlight [69]. Kahsay et al. reported that the
concentration of a catalyst has a significant effect on its photocatalytic efficiency [70]. The
obtained data are compatible with this previous finding; the highest MB degradation was
achieved at a concentration of 1.0 mg mL−1. The data analysis showed that the degradation
percentage of 53.4 ± 0.7% was obtained after 140 min in the presence of 1.0 mg mL−1

of the nanocatalyst under dark conditions. This value was increased up to 84.9 ± 1.2%
under the visible-light irradiation (Figure 6). Various published studies reported that the
photodegradation efficacy of nanomaterials increases with an increase in the irradiation
time [42,69,71]. The obtained data are in agreement with those that reported that the
maximum photocatalytic degradation of methylene blue, rhodamine-B, and orange-II by
ZnO-NPs synthesized by an aqueous extract of Dolichos lablab were obtained at a catalyst
concentration of 1.0 g L−1, followed by 0.75 and 0.6 g L−1 [70].

Recently, various nanoparticles were used to decolorize and treat real wastewater
containing different dyes. For instance, Ag-NPs synthesized by the B. marisflavi strain TF-11
showed a photocatalytic degradation with percentages of 96.9% for wastewater containing
different azo dyes, including Methyl Red, Direct Blue-1, and Reactive Black-5. Moreover,
the physicochemical characteristics of wastewater including electrical conductivity, pH,
sulfates, chlorides, TDS, TSS, COD, and BOD were highly improved [72]. In our recent
study, MgO-NPs synthesized by the fungal strain, Aspergillus niger F1, exhibited high
efficacy in the treatment of real textile wastewater under light irradiation conditions. In
addition, MgO-NPs exhibited efficacy in the treatment of tanning wastewater and the
removal of various heavy metals such as Pb, Co, Cd, Cr, and Ni with percentages of
72.7 ± 1.3, 63.4 ± 1.7, 74.1 ± 1.8, 94.2 ± 1.2, and 70.8 ± 1.5%, respectively [26]. The CuO-
NPs also showed high activity in relation to removing colors and COD from the textile
wastewater. The maximum decolorization (83%) was achieved at optimum conditions
of 0.05 g/L catalyst concentration and a pH value of 6.9 for 60 min in the presence of
UV-irradiation conditions. Whereas the maximum COD reduction (99%) was achieved at
a pH of 6.8 and CuO-NPs concentration of 0.02 g/L for 60 min under the UV-irradiation
conditions [73].

In the current study, the maximum decolorization was obtained in the presence of
visible-light irradiation. This phenomenon is attributed to the photoexcitation, separation,
and hence migration of charges from the valence band (VB) to the conductance band (CB)
of the nano-ZnO catalyst, and finally the surface oxidation–reduction mechanism [69,74,75].
Under light irradiation conditions, the surface of the catalyst (ZnO) is hit by photonic
energy (hv) that is equal to or greater than the band gap of ZnO. As a result, electrons
are excited to form electron–hole pairs; one of them (h+) is transferred to the VB and the
other (e–) is transferred to the CB, Equation (4). The generated electron pairs are then
transferred to the surface of the catalyst to be involved in redox reactions. The h+ on the VB
interacts with the H2O or OH (hydroxide ions) forming •OH (hydroxyl radicals), Equation
(5). Moreover, the e– on the CB are reacting with O2 forming superoxide anion radical
(•O2

–) followed by the formation of hydrogen peroxide (H2O2), Equations (6)–(8). Finally,
the generated radical species will react with the MB dye and are converted to generate
intermediate compounds that will be hydrolyzed to green compounds (i.e., CO2 and H2O),
Equation (9) (Figure 7) [26,76]. The disappearance of the dye color in dark conditions could
be due to the sorption of the dye over the surface of the ZnO-NPs. The main feature of the
nanomaterials is the size of the surface area; the smaller sizes have a larger surface area
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and hence increase the adsorption sites. In the current study, the small size of the ZnO-NPs
(3–33 nm) indicates the successful sorption of the MB on the surface. This mechanism is
efficient to explain the removal of the MB using ZnO-NPs in dark conditions as reported
previously [4].

ZnO hv→ h+
VB + e−CB (4)

h+ + H2O or OH− → •OH + H+ (5)

e− + O2 → •O2
− (6)

•O2
−+H+ → HO2

• (7)

HO2
• + HO2

• → H2O2 + O2 (8)

MB + generated reactive species → intermediate compounds → CO2 + H2O (9)
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Figure 7. Prospective model for the photocatalytic mechanism of ZnO-NPs-mediated degradation of
MB dye.

The reusability of a catalyst for several cycles with almost the same efficacy is receiving
great attention in catalytic studies. Therefore, the reusability potential of ZnO-NPs for
the degradation of the MB dye has been investigated for six consecutive cycles under the
optimum conditions (in the presence of 1.0 mg mL−1 under the visible-light irradiations,
and the degradation percentages were assessed after 140 min). The catalyst was collected
from the first cycle by centrifugation, washed thrice with distilled H2O, and dried before
being reused in the second cycle. The obtained data showed that the activity of the
ZnO-NPs decreased by a percentage of 5.2% after six consecutive cycles. The dye color
removal percentages were 83.3 ± 3.7, 82.5 ± 1.3, 81.3 ± 1.9, 80 ± 2.7, 79.9 ± 2.2, and
79 ± 0.9% for first, second, third, fourth, fifth, and sixth cycle, respectively (Figure 8).
This modest decrease in the decolorization potential might be attributed to the gradual
overload or saturation of the adsorption sites on the ZnO-NPs’ surface by some intermediate
compounds of the initial MB dye decomposition event. [77]. Moreover, the minimal
decrease in the photocatalytic activity can be related to the unavoidable losses of the
catalyst during the consecutive cycles [78]. In a recent study, the catalytic efficacy of
ZnO-NPs that were formulated by the Penicillium corylophilum strain As-1 to degrade
the MB dye was decreased from 98 to 94% with a reduction percentage of 4% after ten
consecutive batches [74]. Moreover, the efficacy of ZnO-NPs synthesized by the peeling
aqueous extract of the Passifora foetida to decompose the MB dye was decreased from 93.3



Catalysts 2022, 12, 756 13 of 22

to 86.6% after four cycles with a reduction percentage of 7.2% [79]. The slight reduction in
the capacity of ZNO-NPs as a catalyst after several successive cycles, in the current study, is
confirming the stability of the ZnO-NPs. Hence, it is possible to use our product in different
biotechnological applications.
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The qualitative and quantitative elementary mapping of the nanocatalyst-ZnO was
analyzed for the sample that was collected from the sixth cycle to confirm the successful
adsorption of the MB dye and confirm the activity of the catalyst. The appearance of new
peaks, as well as the decrease in the intensity of the main peaks, indicates the adsorption of
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the MB dye. As shown in Figure 8B, the appearance of peaks of N, S, and Cl with weight
and atomic percentages of (0.16, 3.08, and 9.4%) and (0.07, 1,36, and 6.82%), respectively,
can be related to the adsorption of the MB dye on the catalyst surface. Moreover, there
is an increase in the weight and atomic percentages of the C peak from 23.08 and 22.13%,
respectively, in the original sample to 38.13 and 50.48% due to the decomposition of the
MB dye. The decrease in the weight and atomic percentages of Zn in the sample from 45.3
and 38.41%, respectively, to 22.3 and 20.32% might be attributed to the gradual loss of the
catalyst during the consecutive cycles.

2.5. Treatment of Tanning Wastewater

The activity of phyco-synthesized ZnO-NPs in the treatment of tanning wastew-
ater was investigated at the optimum conditions of the catalytic activity which were
1.0 mg mL−1 of the catalyst in the presence of visible-light irradiations for 140 min. The
greenish-blue color of tanning wastewater is due to the use of chromium at high con-
centrations [80]. In the current study, the results of the physicochemical parameters of
tanning wastewater after treatment indicate the efficacy of phyco-synthesized ZnO-NPs
in significantly reducing all parameters (p < 0.01) when compared to the untreated efflu-
ent. At the end of the photocatalytic reaction, the synthesized ZnO-NPs exhibited high
efficacy in removing tanning effluent color with a percentage of 96.1 ± 1.7% (Table 1).
The physicochemical parameters, including salinity, chemical oxygen demand (COD), bio-
logical oxygen demand (BOD), total dissolved solids (TDS), total suspended solids (TSS),
conductivity, and heavy metals, are represented at high values in tanning wastewater and
cannot be discharged without treatment [81,82]. These high values are due to the random
usage of multi-component chemicals, such as bicarbonates, sulfates, chlorides, calcium,
phosphates, nitrates, potassium, and sodium, in the tanning industry [83]. Fortunately, the
phyco-synthesized ZnO-NPs can reduce these parameters with percentages of 89, 89, 97,
and 92% for the COD, BOD, TSS, and conductivity, respectively (Table 1). These high re-
moval percentages might be attributed to the use of a high dose of ZnO-NPs (1.0 mg mL−1)
in the presence of light which led to an increase in the amount of adsorption active sites
and enhancement of the generation of active radical species.

Table 1. Physicochemical characterization of tanning wastewater before and after ZnO-NPs treatment
to investigate their efficacy to remove Cr (VI) ions.

Parameter Unit Control After Treatment
with ZnO-NPs

Removal
Percentages (%)

pH 6.3 ± 1.1 8.1 ± 0.2 -
Decolorization % 3 ± 0.3 96 ± 2

COD mg L−1 1017 ± 5 114 ± 4 89
BOD mg L−1 2305 ± 7 264 ± 6 89
TSS mg L−1 8847 ± 7 268 ± 7 97

Conductivity S·m−1 27,363 ± 6 2337 ± 5 92
Cr (VI) mg L−1 864± 6 57± 4 93

Although the leather industry has an economic value in many countries, tanneries
are considered one of the most significant sources of heavy metals accumulation in the
ecosystem. Chromium (Cr), as chromium sulfate, is the main heavy metal in tanning
processes that may cause severe damage to the soil and the underground water if discharged
without proper treatment [84]. In addition, chromium may be accumulated in food chains,
causing animal and human disorders, such as lung cancer and skin allergies [24]. ZnO-NPs
have a high efficacy to adsorb various heavy metal ions from the wastewater as reported
previously [85]. In the current study, the chromium ion in tanning effluent was decreased
from 867 ± 6 mg L−1 (control) to 57 ± 4 mg L−1 with removal percentages of 93% after the
treatment with ZnO-NPs under the determined optimum conditions (Table 1). These high
removal percentages might be attributed to the small size of ZnO-NPs that led to an increase
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in the surface area and, hence, an increase in the adsorption sites on the surface of the
adsorbent. The high removal percentages could be attributed to the reduction/oxidation of
metal ions by electron pairs (e–

CB and h+
VB) that are generated due to exposure to light. The

metal ion reduction was achieved when the redox potential of metal is more positive than
the e–

CB of the ZnO particle, whereas the metal oxidation was achieved when its oxidation
potential is less positive than h+

VB [86]. Similarly, green-synthesized ZnO-NPs had the
efficacy to remove Pb(II) from an aqueous solution with a percentage of 93% [87]. Pandey
et al. reported that approximately 26.7 mg g−1 of Cr (VI) was removed using ZnO-NPs
from an aqueous solution with an initial chromium concentration of 30 mg L−1 [88].

2.6. Comparative Study

Due to the unique properties of ZnO-NPs, they are synthesized using various micro-
and macroalgae to be incorporated into various applications (Table 2). These activities are
shape- and size-dependent. For instance, an aqueous extract of U. lactuca and S. margina-
tum was used to form a round and spherical shape with sizes of 12–17 and 6–11 nm,
respectively, that display varied antimicrobial and anticancer activity [21]. Whereas the
sponge-asymmetrical shape of ZnO-NPs with a size range of 10–50 nm was fabricated
using the aqueous extract of U. lactuca and showed high activity in removing the MB dye in
the presence of sunlight. In addition, it exhibits a high antibacterial activity against Gram-
positive and Gram-negative bacteria as well as larvicidal activity against Aedes aegypti [28].
In the current study, the synthesized ZnO-NPs exhibited high activity due to their small
size (3–33 nm). It also showed a high efficacy to inhibit the growth of the pathogenic
bacteria S. aureus, B. subtilis, E. coli, and P aeruginosa at low concentrations. In addition, it
showed a high potential to remove the MB dye, improve the physicochemical properties of
tanning wastewater, and demonstrate high adsorption of Cr (VI).

Table 2. Comparing size, shape, and activities of ZnO-NPs synthesized by various micro- and
macroalgal species.

ZnO-NPs Synthesized by Shape Size Applications Reference

Ulva lactuca Round shape and spherical 12–17 nm Antimicrobial and in vitro
cytotoxicity [21]Stoechospermum marginatum 6–11 nm

Cystoseira crinita multilayered rectangular
shape 23–200 nm Antimicrobial and antioxidant

activity [54]

Chlorella sp. Spherical 20–50 nm Photocatalytic activity [39]

Arthrospira platensis Spherical 30–55 nm Antimicrobial and in vitro
cytotoxicity [18]

Sargassum muticum Hexagonal 30–57 nm - [35]

Anabaena cylindrica Rod shape 40–60 nm Antimicrobial and in vitro
cytotoxicity [89]

Hypnea musciformis Spherical 29–35 nm Antibacterial activity and
ecotoxicity against Artemia salina [29]

Nostoc sp. EA03 Star shape 50–80 nm Antibacterial and in vitro
cutotoxicity [50]

Ulva lactuca Sponge-asymmetrical
shape 10–50 nm Photocatalysis, antibiofilm, and

larvicidal activity [28]

Sargassum wightii Spherical shape 40–50 nm Antibiofilm and larvicidal activity [32]

Ulva fasciata Spherical 3–33 nm

Antibacterial, photocatalytic
efficacy, tanning wastewater

treatment, and heavy metal (Cr
(VI)) removal

Current study

3. Materials and Methods
3.1. Algae Collection

The marine green macroalgae, Ulva fasciata Delile, Ulvophyceae, Chlorophyta, was
collected from the beach of Ras at Tin, Qasim Al Gomrok, Alexandria Governorate, Egypt
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(GPS: N31◦12′37.4976′ ′, E29◦52′54.2856′ ′). The collected algae were transferred directly to
the Phycology Laboratory, Al-Azhar University, Cairo, Egypt, and underwent identification
based on the standard key of Taylor [90]

3.2. Preparation of the Algal Aqueous Extract

The collected marine seaweed, U. fasciata Delile, was rinsed thrice with distilled H2O
and cut into small pieces before being left to air dry. After complete dryness, the algal
pieces were grinded into a fine powder. Approximately 10 g of seaweed powder was mixed
with 100 mL of dis. H2O and subjected to boiling for 30 min under stirring conditions. After
that, the boiling extract was centrifuged at 10,000 rpm to collect the supernatant which was
then used as a reducing agent for Zn(CH3COO)2·2H2O [28].

3.3. Seaweed Aqueous Extract-Mediated Green Synthesis of ZnO-NPs

Approximately 10 mL of the seaweed aqueous extract was added to 90 mL of zinc
acetate solution (44 mg was dissolved in 90 mL dis H2O) under stirring conditions for
60 min at 50 ◦C to obtain a final concentration of 2 mM. After that, the previous mixture was
left at room temperature for 24 h in dark. The obtained white precipitate was collected and
washed thrice with dist. H2O and subjected to oven-dry at 300 ◦C for 2 h before using [18].

3.4. Characterizations

The color of algal aqueous extract and the as-formed ZnO-NPs was monitored by mea-
suring the absorbance at a wavelength range of 200–600 nm to detect the maximum surface
plasmon resonance (SPR) of ZnO-NPs. Approximately 2 mL of overnight ZnO-NPs solution
was added to the cuvette and measured their absorbance using the spectrophotometer (JEN-
WAY 6305, Staffordshire, UK). The functional groups assigned to different algal metabolites
in aqueous extract and their ability to be used as a reducing and capping agent for ZnO-NPs
were investigated using Fourier transform infrared (FT-IR) spectroscopy. Approximately
10 mg of ZnO-NPs powder was mixed well with KBr to form a disk before scanning at a
range of 400–4000 cm−1 (Agilent system Cary 660 FT-IR model, Tokyo, Japan) [91]. The size
and shape of algal-mediated green-synthesized ZnO-NPs were assessed using Transmission
Electron Microscopy (TEM) (JEOL 1010, Tokyo, Japan, 200 kV). A few drops of ZnO-NPs
colloidal solution were deposited over the TEM grid and underwent vacuum desiccation
overnight before being analyzed. The surface morphology and elemental composition
of the sample were analyzed by Scanning Electron Microscopy connected with energy-
dispersive X-ray (SEM-EDX) (JEOL, JSM-6360LA, Tokyo, Japan) [14]. X-ray diffraction
(XRD) (Malvern Panalytical X’PERT PRO MPD, Philips, Eindhoven, Netherlands) was used
to analyze the crystallinity nature of ZnO-NPs. The XRD analysis was achieved at two
theta scales of 10◦–80◦. The analysis conditions were voltage, 40 KV; current, 30 mA; and
Cu Ka was used as an X-ray radiation source.

3.5. Antibacterial Activity

The activity of ZnO-NPs to inhibit the growth of the pathogenic bacteria Staphylococ-
cus aureus ATCC6538, Bacillus subtilis ATCC6633 (Gram-positive bacteria), Escherichia coli
ATCC8739, and Pseudomonas aeruginosa ATCC9022 (Gram-negative bacteria) was assessed
by the agar-well diffusion method [92]. Each bacterial strain was inoculated in nutrient
broth media and incubated overnight at 37 ± 2 ◦C. At the end of the incubation period,
the optical density (O.D.) for each strain was adjusted at 1.0. A 50 µL from each bacteria
solution was pipetted onto the center of the sterilized petri dish and mixed well with
cooled sterile Muller Hinton agar media. Upon media solidification, wells (0.6 cm in di-
ameter) were made in each plate and filled with 100 µL of the prepared ZnO-NPs solution
(200 µg mL−1) and transferred to the refrigerator for one hour before being incubated at
37 ± 2 ◦C for 24 h. The diameter of the clear zone around each well (mm) was measured.
The experiment was performed in triplicate.
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3.6. Determination of the MIC Value

The highest concentration (200 µg mL−1) of the synthesized ZnO-NPs exhibited an-
timicrobial activity against all tested microbes. Therefore, various concentrations (100, 50,
25, 12.5, 6.25, and 3.125 µg mL−1) were prepared to detect the MIC (minimum inhibitory
concentration) value using the agar-well diffusion method as mentioned above. Approx-
imately 50 µL from each bacterial-strain solution was pipetted on a sterilized petri dish
followed by a cooled Muller Hinton agar media over inoculum and mixed well. After
that, 100 µL of each prepared concentration was added to wells (0.6 mm) prepared in the
solidified plate before being kept in the refrigerator for one hour. The loaded plates were
incubated for 24 h at 37 ± 2 ◦C. The MIC value was recorded as the lowest concentration
that has the efficacy to inhibit microbial growth [93].

3.7. Photocatalytic Activity

The efficacy of algal-mediated green synthesis ZnO-NPs in the degradation of methy-
lene blue (MB) as a model dye was investigated. The catalytic experiment was conducted
in both dark and visible-light (100-Watt, Halogen tungsten lamp with λ > 420 nm and a
light intensity of 2.87 W m−2, the distance between the light source and MB solution was
30 cm) irradiation using 10 mg L−1 of MB dye solution. The pH value and temperature
of the MB solution were adjusted at 7 and 35 ◦C, respectively. The concentrations of the
used ZnO-NPs were 0.25, 0.5, 0.75, and 1.0 mg mL−1. Before the experiment, the MB
dye solution containing the nanocatalyst was subjected to stirring for 30 min to confirm
the absorption/desorption equilibrium of the dye on the nanocatalyst surface [28]. After
that, the MB dye solution containing the nanocatalyst was incubated either in dark or
light at 35 ◦C and pH 7 under aeration condition. During the experiment, 2 mL of the
treatment was withdrawn at regular interval times (20, 40, 60, 80, 100, 120, and 140 min)
and subjected to centrifugation at 5000 rpm for 10 min. The control was running with
the experiment under the same conditions (stirring in the presence or absence of light
irradiation) in absence of nanocatalyst. The optical density of the clear supernatant was
measured using the M-ETCAL spectrophotometer at maximum MB λmax (664 nm). The
degradation percentages were calculated using the following equation [42].

Degradation percentages (%) =
Absorbance at zero time − absorbance at interval time

Absorbance at zero time × 100
(10)

The reusability of the nanocatalyst was investigated for six successive cycles. The
catalyst was collected from the first cycle by centrifugation and rinsed thrice with dis. H2O
to remove any adhering particles followed by drying in the oven at 50 ◦C before being used
in the next cycle.

3.8. Treatment of Tanning Wastewater

The green-synthesized ZnO-NPs were used to investigate their efficacy in the treat-
ment of tanning wastewater under the determined optimum conditions of the catalytic
experiment. The experiment was carried out in 250 mL conical flasks containing 100 mL
tanning wastewater mixed with the optimum concentration of ZnO-NPs under light irradi-
ation conditions. The mixture was stirred for 30 min to confirm the absorption/desorption
equilibrium. The color removal of tanning wastewater due to treatment with ZnO-NPs was
measured using the above-mentioned equation.

At the end of the experiment, the biological oxygen demand (BOD), chemical oxygen
demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and conduc-
tivity as indicators for the successful treatment were assessed according to the standard
protocols [94].

Because chromium (Cr) is the most common heavy metal in tanning wastewater, it
was quantified before and after the ZnO-NPs treatment by using the atomic adsorption
spectroscopy (A PerkinElmer Analyst 800 atomic spectrometer).
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3.9. Statistical Analysis

Data represented in the current study are the means of three independent replicates.
Data were analyzed using the statistical package SPSS v17. The mean difference comparison
between the treatments was analyzed by the t-test or the analysis of variance (ANOVA)
and subsequently by the Tukey HSD test at p < 0.05.

4. Conclusions

The metabolites of the aqueous extract of the macroalgae U. fasciata have the ability to
mediate the biosynthesis of ZnO-NPs. The physicochemical characterization of the phyco-
synthesized ZnO-NPs was performed by UV–vis spectroscopy, FT-IR, TEM, SEM-EDX, and
XRD. Data showed that the color of the algal aqueous extract was changed to white after
mixing with the metal precursor, indicating the formation of ZnO-NPs that exhibited a
maximum surface plasmon resonance at 330 nm. Moreover, FT-IR revealed the role of the
algal metabolites in the aqueous extract in capping and stabilizing the newly formed NPs.
TEM and XRD indicated the formation of spherical-shape NPs with a size range of 3–33 nm
with a crystalline nature. The SEM-EDX chart confirms the presence of Zn and O in the
sample with weights of 45.3 and 31.62%, respectively. The activity of these NPs has been
proven through its significant antibacterial and catalytic activity. The antibacterial activity
was dose-dependent and had the efficacy to inhibit the growth of the pathogenic bacterial
strains at different concentrations with varied clear zones. The catalytic activity to remove
the MB dye was better in the presence of visible light at a concentration of 1.0 mg mL−1

after 140 min at pH 7 and 35 ◦C. The maximum dye removal was 84.9 ± 1.2% compared
to 53.4 ± 0.7% of the dark conditions. The phyco-synthesized ZnO-NPs showed high
activity to decrease the chemical parameters of tanning effluent with percentages of 88.8,
88.5, 96.9, and 91.5% for the COD, BOD, TSS, and conductivity, respectively. Moreover,
the maximum Cr (VI) removal was achieved after the treatment of the tanning effluent
with ZnO-NPs with a percentage of 93.4%. We proudly can recommend the usage of our
product to potentially control the growth of pathogenic bacteria and prevent the possible
environmental pollution with the dyes and heavy metals.
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