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Abstract: Herein, a new Ni-based metal–organic framework (MOF, 1) bearing highly structural
stability is synthesized by the reaction of utilizing a rigid and functionalized linker, 2,6-bis(pyridin-4-
yl)-1,7-dihydrobenzo[1,2-d:4,5-d′]diimidazole (BBI4PY), in combination with Ni(NO3)2·6H2O and
dibenzo[b,d]thiophene-3,7-dicarboxylic acid 5,5-dioxide (L1) under solvothermal conditions. The
crystal structure of complex 1 is determined by single-crystal X-ray diffraction and is demonstrated
to be a two-dimensional layered structure. In addition, PXRD, IR, TGA and UV/Vis-NIR spectra
are also tested carefully to explore the solid structure of this complex. Remarkably, although no
significant accumulation effect could be observed between the two-dimensional layers, a stacking
interaction between DMF solvent molecules and ligand L1 could be found, which might promote non-
radiative transitions and trigger obvious near-infrared photothermal conversion. Under 660 nm laser
(0.6 W cm−2) illumination, the temperature of complex 1 increased rapidly from room temperature
to 45.2 ◦C, with good thermal stability and cycle durability. Its photothermal conversion efficiency
could reach 10.75%. This work provides an efficient way for assessing the promise of materials in the
field of photothermal therapy.

Keywords: metal–organic framework; near-infrared photothermal conversion; crystal structure;
accumulation effect

1. Introduction

Photothermal therapy has great potential for cancer therapy due to the effective and
highly selective killing of diseased lesions under the irradiation of light, preferably near-
infrared (NIR) light [1–3]. The photothermal agents (PTAs) for converting NIR light to heat
are either purely inorganic materials or purely organic materials exemplified by conjugated
polymers and molecular dyes [4–7]. However, the disadvantages of the poor photostability
and biodegradation of these materials hinder their further application [8–10]. As a new
type of crystalline porous inorganic−organic hybrid material, metal–organic frameworks
(MOFs) have aroused widespread concern among scientists due to their large specific
surface area, highly tunable structures, modular porosity, and structural stability [11–17].
Therefore, various MOF structures, such as MOF-5, MOF-74, ZIF-8, and UTSA-74, have been
constructed successfully through various methods; their properties, such as gas adsorption,
catalysis, sensors, photoelectric performance, and photothermal effect, have also been
explored [18–25]. Several hundred articles about the performance exploration of MOF
structures have been reported successfully [26–30]. These studies have also prompted more
chemists to design and synthesize additional MOFs with better structures and performance,
which will drive the rapid development of and offer a great leap-forward for MOF materials.
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In the process of designing functionalized MOF structures bearing photothermal ef-
fects, the selection of both metal ions and organic ligands is extremely important. The
utilization of metal ions and ligand linkers plays a vital role in the structural construction
and performance implementation of MOF structures. For example, Chen reported a ruthe-
nium metal−organic framework; after TCNQ loading, the complex exhibited an enhanced
photothermal property with a photothermal conversion efficiency of 29.1% [31]. In addition,
various MOF materials bearing near-infrared photothermal conversion performance have
been reported [32–36]. For example, a group of researchers synthesized a new Zn-MOF con-
taining an electron donor, tetrathiafulvalene (TTF), and an electron acceptor, naphthalene
diimide. Interestingly, the material exhibited wide absorption peaks in the near-infrared
region and displayed efficient near-infrared photothermal conversion performance (from
room temperature to 250 ◦C) under 808 nm laser (0.4 W cm–2) illumination [37]. From
previous reports, it can be found that the π-π stacking interaction plays an important role
in structural generation and photothermal triggering. Thus, the selection of appropriate
ligand components to construct an effective stacking interaction is critical for the resulting
photothermal effect.

Based on this, a new pillar ligand, 2, 6-bis (pyridin-4-yl)-1, 7- dihydrobenzo[1,2-d:4,5-
d′]-diimidazole (BBI4PY) with a benz-bis(imidazole) moiety, is selected. Moreover, this
new linker has multiple hydrogen bonding and Lewis basic interaction sites, as shown
in Scheme 1. Importantly, BBI4PY has an obvious conjugate center, which could cause
an effective stacking interaction. The choice of this ligand is of great significance for
the synthesis of the MOF. Herein, through the solvothermal method based on two or-
ganic ligands, 2,6-bis(pyridin-4-yl)-1,7-dihydrobenzo[1,2-d:4,5-d′]diimidazole (BBI4PY)
and dibenzo[b,d]thiophene-3,7-dicarboxylic acid 5,5-dioxide (L1), a new Ni-based com-
plex is obtained and its synthesis and crystal structure are reported. Its near-infrared
photothermal conversion properties are investigated in detail.
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2. Results
2.1. The Structure of Complex 1

The crystal structure was demonstrated by single-crystal X-ray diffraction analysis,
reflecting that complex 1 crystallized in the triclinic P-1 space group (Table 1). Observing the
single-crystal structure, the asymmetric unit contained one crystallography-independent
Ni (II) metal center, 0.5 ligand L1, 0.5 ligand BBI4PY, and two coordinated water molecules
(Figure 1a). The nickel cations were coordinated by six atoms, including two carboxyl
oxygen atoms of L12− ligands, two pyridine nitrogen atoms from the neutral BBI4PY ligand,
and two oxygen atoms from two H2O molecules, respectively. In addition, each L12−

ligand could achieve coordination with two nickel cations and two carboxyl oxygen atoms.
Each BBI4PY ligand connected to two nickel cations, showing a bidentate coordination
mode. Finally, a series of rectangular windows (19.18 × 15.32 Å2) were formed from four
nickel cations, two BBI4PY ligands, and two L12− ligands (Figure 1b,c). These rectangular
windows resulted in the formation of a two-dimensional layered structure. The Ni−O
bond lengths were 2.082(5), 2.068(5), 2.083(4), and 1.987(5) Å. At the same time, the lengths
of the two Ni−N bonds were 2.109(5) and 2.124(5) Å (Table 2, Figure 1d). In addition,
the separation between the two-dimensional layered structures was 7.5 Å, which was



Catalysts 2022, 12, 777 3 of 11

long enough that no interactions between the two layered structures could be detected.
However, obvious π-π stacking interactions between free DMF molecules and ligands L1 or
BBI4PY were found, the distances between which were 3.42 and 3.56 Å, respectively. The
stacking interactions might have caused an effective photothermal effect, and the loss and
addition of DMF solvent molecules might have led to the disappearance and reappearance
of a photothermal effect.

Table 1. Crystallographic data and experimental details for complex 1.

Complex 1

Empirical formula C76H72N16Ni2O20S2
Formula weight 1711.03
Temperature/K 293(2)
Crystal system triclinic
Space group P-1
a/Å 11.6770(5)
b/Å 18.4276(15)
c/Å 21.3747(11)
Volume/Å3 4144.5(5)
Z 2
ρcalc/g cm–3 1.371
µ/mm–1 0.583
F(000)/e 1776.0
2θ range for data collection/◦ 6.708 to 50.052
Reflections collected 27223
Independent reflections 14551 [Rint = 0.0757, Rsigma = 0.1491]
Data/restraints/parameters 14551/12/980
Goodness-of-fit on F2 1.002
∆ρfin (max/min), e Å–3 1.27/–0.63
Final R indexes [I ≥ 2σ (I)] R1 = 0.0905, wR2 = 0.1580
Final R indexes [all data] R1 = 0.1581, wR2 = 0.1893

R = [Σ||F0|–|Fc||/Σ|F0|], RW = ΣW [|F0
2–Fc2|2/ΣW(|Fw|2)2]1/2.
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Figure 1. (a) Single-crystal X-ray structure of complex 1. Representation of the Ni(II) coordination
environments and ligands’ coordination modes in complex 1. (b) Side view of the stacking framework
of complex 1. (c) View of the stacking framework of complex 1. (d) View of the 2D framework of
complex 1; insert shows the π-π stacking interactions between the DMF molecule and L1 ligand.
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Table 2. Selected bond lengths (Å) for complex 1.

Ni1 O1 1 2.082(5) Ni1 O10 3 2.083(4)
Ni1 O4 2 2.068(5) Ni1 O16 4 1.987(5)
Ni1 N8 2.124(5)
Ni1 N9 2.109(5)

1 2−x,2−y,1−z; 2 1/2+x,7/4−y,5/4−z; 3 7/4−x,1/2+y,5/4−z; 4 9/4−x,7/4−y,−1/2+z.

2.2. The PXRD and TGA Exploration of Complex 1

To determine the phase purity of synthesized powder complex 1, PXRD measurements
were performed carefully. The simulated and experimental PXRD patterns of complex 1
(the latter obtained at room temperature) are shown in Figure 2a. All main diffractive peaks
of the powder sample were nearly consistent with the simulated pattern produced from the
single-crystal diffraction data, reflecting the good phase purity of the solid-state complex.
Moreover, the discrepancy in reflection intensities between the simulated and experimental
patterns might be attributed to variations in the preferred orientation of the solid samples.
Both the shift between two-dimensional layered structures, due to weak interaction, and
the loss of solvent molecules might result in the discrepancy between Yexperimental and
Ysimulate. Nevertheless, the good match between the main peaks (X = 6.9, 8.3, 11.6, 14.5,
21.0 and 21.7) proved the stability of the major structure.
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Figure 2. (a) PXRD patterns of simulated (black) and the as-synthesized samples (red) of complex 1.
(b) Thermogravimetric analysis curve of complex 1. Weight losses were 15.09% for complex 1 in the
range of 0–100 ◦C, which corresponded to the loss of 2.0 free water and DMF molecules (calcd 6.12%
for complex 1).

The TG analysis curve of complex 1 is displayed in Figure 2b; the weight loss was
15.09% for complex 1 in the range of 0–100 ◦C, which corresponded to the loss of 2.0 free
water and DMF molecules (calcd 6.12% for complex 1). From 100 to 180 ◦C, no losses
were observed. Then, a weight loss of 10.22% was observed in the range of 100–288 ◦C,
corresponding to the loss of two coordinated water molecules (calcd 10.40% for complex 1).
After that, the successive losses from 258 to 500 ◦C corresponded to the collapse of the
skeleton and the decomposition of the organic ligand.

2.3. The IR and UV/Vis-NIR Spectra of Complex 1

In addition, the IR spectrum of complex 1, BBI4PY, and L1 are clearly shown in
Figure 3. The IR spectrum of complex 1 exhibited a strong band at 1174 cm−1, owing to
the S=O stretching vibrations, similar to the peak position in the infrared spectrum of L1.
Strong absorptions at 1663 cm−1 and 1248 cm−1 occurred due to the stretching of the C=O
and C-O bonds from the carboxylate group of L12−, and they all moved to lower wave
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numbers in different degrees, as compared to L1, possibly due to the coordination of the
metal center and the π- π stacking interactions. The C-H deformation vibration absorption
peaks on the pyridine group were 1451 cm−1. Furthermore, the characteristic absorption
peak of pyridine in the IR spectrum of BBI4PY was 1440 cm−1. Moreover, the analysis
of the IR spectrum also showed strong bands at 1615 cm−1 and 3175 cm−1, attributed
to the stretching vibration of the C=N and N-H bonds of the imidazole group. We can
unambiguously see that the strong peaks at 1618 cm−1 and 3373 cm−1 are assigned to the
C=N and N-H bonds of the imidazole group on the IR spectrum of BBI4PY [38–44].
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Figure 3. (a) The IR spectrum of complex 1. (b) The IR spectrum of BBI4PY. (c) The IR spectrum of
L1. (d) The absorption of complex 1 in the near-infrared region of the topology at 660 nm.

Moreover, the solid-state UV/Vis-NIR spectra of ligands L1, BBI4PY, and complex 1
were studied at room temperature. As shown in Figure 3b, there was a broad absorption
peak from 600 to 800 nm for complex 1 (Abs: 1.152 at 660 nm), displaying strong absorption
in the NIR region. This illustrates the existence of strong stacking interactions in complex 1,
which is consistent with the analysis of the crystal structure. However, for the free ligands
L1 and BBI4PY, the adsorption peaks were very weak and the Abs values were 0.536 and
0.157 at 660 nm.

2.4. The Near-Infrared Photothermal Conversion Studies

Previous reports have displayed that π-π stacking interactions could induce active
nonradiative pathways and the inhibition of the radiative transition process, causing
photothermal (PT) conversion [45–49]. Meanwhile, based on the strong absorption of
complex 1 in the NIR region, the dark color in the solid state (Figure 4a), and the TGA
tests of crystal 1, it has already been demonstrated that the structural stability of complex 1
could be maintained up to 200 ◦C. Therefore, this tells us that the temperature change from
the photothermal effect could not cause structural changes (Figure 2b). Therefore, the near-
infrared photothermal conversion properties of complex 1 were explored in detail under
the infrared light irradiation of 660 nm. As a comparison, the near-infrared photothermal
conversion experiments of the two ligands, L1 and BBI4PY, were carried out under the
same conditions.
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Therefore, the crystalline complex 1 was irradiated under 0.6 W/cm2 laser irradiation
at 660 nm in a solid state. The temperature change in crystalline complex 1 reached 19.1 ◦C
(from 26.3 to 45.4 ◦C) (Figure 4b). This is a viable temperature change. When the laser
irradiation of 660 nm was removed, a rapid cooling process was observed clearly by the
infrared imaging camera. Based on the reduced temperature data, the near-infrared pho-
tothermal efficiency of complex 1 was calculated to be 10.75%, according to the calculation
method described below (Equations (1)–(4)), showing good near-infrared photothermal
performance of this Ni−MOF, 1. Meanwhile, the temperature changes of ligands L1 and
BBI4PY under laser irradiation at 660 nm for 3 h were also tested. The results showed
that although the temperature change of L1 was very weak and could be ignored, the
temperature increase in ligand BBI4PY was 5.3 ◦C (from 22.0 to 27.3 ◦C), possibly due to
the formation of self-accumulation between two BBI4PY ligands (Figure 5a). In addition,
the cycle performance of photothermal efficiency for complex 1 was explored by continuous
0.6 W/cm2 laser irradiation at 660 nm four times, as well as the addition of DMF solvents
(Figure 5b). The temperature change in solid crystalline 1 could still reach 45.2 ◦C every
time, clearly reflecting high stability and photothermal efficiency in the cycle performance.
The absence of fluorescence in the crystal indicates that the photothermal conversion effect
was realized by non-radiative transition. It also reflects that stacking interactions play an
important role in the stability and photothermal properties of crystal 1. According to the
above experimental data, we can infer a rule of experience: the photothermal conversion
efficiency is relevant to π-π stacking interactions.

η = hS (∆Tsample-∆Tsolvent)/I(1−10−A) (1)

hS =∑mCp/τs (2)

τs = −t/lnθ (3)

θ = (Tamb − T)/(Tamb − Tmax) (4)
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In Equations (1)–(4) above, h is the heat transfer coefficient, S is the surface area of the
container, τs is the sample system time constant, m is the mass of the products, Cp is the
specific heat capacity of the solvent, and the value of τs was obtained from the fitting linear
of these solutions (Figure 6).
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3. Experiment
3.1. Materials and Methods

The selected reagents were analytic-grade and acquired through commercial sources.
They were utilized without further purification. Elemental analyses for C and H were
carried out on a Perkin-Elmer 240 elemental analyzer. The FT-IR spectra were tested
from KBr pellets in a particular range from 4000 to 400 cm−1 on a Bruker VECTOR 22
spectrometer. The UV/Vis-NIR spectra were tested in a particular range from 600 to 800 nm
on a UV-3100 spectrophotometer. Thermal analysis measurements were executed on an
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SDT 2960 thermal analyzer from 25 ◦C to 800 ◦C, based on a heating rate of 20 K min–1

under nitrogen flow. Powder X-ray diffraction (PXRD) data were collected smoothly on
a Rigaku D/Max-2500PC diffractometer with Cu Kα radiation (λ = 1.5406 Å) over the 2θ
range of 5−50◦ with a scan speed of 5◦/min at 25 ◦C.

Solid-state UV-Vis-NIR spectra were measured on a UV-3100 spectrophotometer.
BaSO4 was used as the reference. Spectra are reported as the Kubelka–Munk transform,
where F(R) = (1 − R) 2/2R (R is the diffuse reflectance of the sample as compared to BaSO4).

The single-crystal X-ray diffraction analysis of complex 1 was carried out on a Rigaku
Saturn 724 CCD diffractomer (Mo-Kα, λ = 0.71073 Å) at room temperature. The structure
was solved by Direct Methods with SHELXS-97 and refined by the full-matrix least-squares
method on F2 with anisotropic displacement parameters for all non-H atoms (SHELXL-
97). An empirical absorption correction was applied by the SADABS program [50,51].
The hydrogen atoms were assigned with common isotropic displacement factors and
included in the final refinement by the use of geometrical restrains. The crystallographic
data and selected bond lengths and angles for complex 1 are listed in Tables 1 and 2.
Crystallographic data for the structural analysis have been deposited with the Cambridge
Crystallographic Data Center, and CCDC No. for compound 1 contains the supplementary
crystallographic data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/Community/
Requestastructure (accessed on 16 June 2022).

3.2. Synthesis of Complex 1

A mixture of Ni(NO3)2·6H2O (0.2 mmol, 0.058 g), 2,6-bis(pyridin-4-yl)-1,7- dihydrobe-
nzo[1,2-d:4,5-d′]diimidazole (BBI4PY) (0.2 mmol, 0.0624 g), dibenzo[b, d]thiophene-3,7-
dicarboxylic acid 5,5-dioxide (L1) (0.2 mmol, 0.061 g) and 4 mL of DMF and 2 mL of H2O
was stirred for 10 min. The mixture was then transferred and sealed into a Teflon reactor
(23 mL) and heated at 115 ◦C for 48 h. After that, the mixture was cooled to room tempera-
ture. Blue block crystals of complex 1 were washed by ethanol (3 × 10 mL) and dried in
air at room temperature (yield: 65% based on Ni). Anal. Calc. (%) for C76H72N16Ni2O20S2:
C 53.35, H 4.24, N 13.10; found (%): C 53.31, H 4.26, N 13.12. IR (KBr, cm−1): 3175.10(w),
1663.20(w), 1615.60(s), 1451.44(s), 1375.92(m), 1296.31(m), 1174.01(m), 1019.70(w), 963.06(w),
840.77(s), 780.33(s), 699.59(s), 599.85(s), 578.11(s)

3.3. X-ray Crystallography

Single-crystal X-ray diffraction data for complex 1 were acquired at 298 K on an Oxford
Diffraction SuperNova area-detector diffractometer by utilizing mirror optics monochro-
mated MoK α radiation (λ = 0.71073 Å). CrysAlisPro [50] was utilized for the crystal data
collection, general data reduction, and further empirical absorption correction. The crystal
structure of complex 1 was solved by SHELXS-2014 and least-squares refined with SHELXL-
2014 [51]. The crystal refinement parameters are provided in Table 1. A solvent mask was
calculated and 188 electrons were found in a volume of 1026\%Aˆ3ˆ in 1 void per unit cell.
This is consistent with the presence of 2[C3H7NO] per asymmetric unit, which accounts
for 160 electrons per unit cell.

4. Conclusions

In summary, we synthesized a new Ni-based MOF complex by a solvothermal method
based on a decarboxylic acid ligand and a bidentate pyridine ligand. Single-crystal X-ray
diffraction analysis determined the compound to be a two-dimensional layered struc-
ture. A series of structural characterization from PXRD, IR, TGA and UV-vis-NIR spectra
showed good structural stability and a wide range of near infrared absorption. In addi-
tion, obvious π-π stacking interactions could be found, which promoted non-radiative
transitions and triggered the effective photothermal conversion effect. The near-infrared
photothermal exploration showed a temperature variation of 19.1 ◦C and the near-infrared
photothermal efficiency reached 10.75%, demonstrating good near-infrared photothermal

http://www.ccdc.cam.ac.uk/Community/Requestastructure
http://www.ccdc.cam.ac.uk/Community/Requestastructure
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performance. This research encourages us to synthesize and explore more photothermal
conversion materials.
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