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Abstract: NO is a major environmental pollutant. MnO2 is often used as a denitrification catalyst
with poor N2 selectivity and weak SO2 resistance. Kiwi twig biochar was chosen to modify MnO2

samples by using the hydrothermal method. The NO conversion rates of the biochar-modified
samples were >90% at 125–225 ◦C. Kiwi twig biochar made the C2MnO2 sample with a larger specific
surface area, a higher number of acidic sites and Oβ/Oα molar ratio, leading to more favorable
activity at high temperatures and better SO2 resistance. Moreover, the inhibition of the NH3 oxidation
reaction and the Mn3+ → Mn4+ process played a crucial role in the redox cycle. What was more,
Brønsted acidic sites present on the C1MnO2 sample participate in the reaction more rapidly. This
study identified the role of biochar in the reaction process and provides a reference for the wide
application of biochar.

Keywords: kiwi twigs; oxygen vacancy; selective catalytic reaction; reaction process; high-value utilization

1. Introduction

The implementation of the ultralow emission policy for power plants in China has
achieved initial success, and the pollution emission standards of other NO sources have
been lowered as well [1,2]. In the Emission Standard of Air Pollutants for Iron Smelt
Industry released in 2012, the NO emission limit of the iron-making industry was set at
300 mg·m−3. In 2021, the NO emission limits of the sintering process and hot blast furnace
were set at 50 and 150 mg·m−3, respectively, in the consultation draft of the Emission
Standard of Air Pollutants for Iron and Steel Industry released by Jiangsu Province. NO
not only adversely affects cell division and genetic information, but also causes lung and
bronchial diseases [3]. Moreover, NO is a precursor of nitric and nitrous acid in acid rain
and participates in the formation of particulate matter [4,5]. Under ultraviolet light, NO
interacts with carbon and oxygen compounds in the atmosphere to generate photochemical
smog and ozone [6].

In the last decades, selective catalytic reduction (SCR) with NH3 (NH3-SCR) for NO con-
version has been regarded as a promising technology to remove NO [7–9]. V2O5–WO3/TiO2
is the most widely investigated commercial denitration (deNO) catalyst within the tem-
perature range of 300–400 ◦C, but the use of V2O5–WO3/TiO2 is limited by its thermal
deactivation and vanadium species volatilization at high temperatures [10]. In addition,
the practical application of NH3-SCR technology is limited due to the lower tempera-
ture of flue gas released from the steel industry than that released from coal-fired power
plants [11]. Therefore, a new denitrification catalyst that exhibits satisfactory activity at low
temperatures and has a wide temperature window is required.

Transition metals are widely used in various catalytic reactions because of their satis-
factory electron transport properties and availability [12–14]. Among them, the Mn series
of denitration catalysts have attracted increasing research attention because of their sat-
isfactory activity at low temperatures [15–18]. Zhang et al. synthesized MnO2 with an
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interlayer Ce3+ cation with favorable NH3-SCR catalytic activity (over 90%) at 80–200 ◦C
because of the easy supply of labile oxygen species [19]. However, with an increase in
temperature, bridged oxygen captures more H atoms on NH3, generates N atoms, and then
reacts with NO to generate N2O, resulting in the side reaction of NH3 oxidation [20–22]. To
improve the N2 selectivity, in our previous work, a FeMnO2 catalyst was obtained with
good NH3-SCR activity (over 90% at 125–225 ◦C), indicating that the surface properties
of MnO2 can be modified by adding other substances [23]. Meanwhile, many studies
have proved that biochar, a carbon-rich material, can improve catalytic activity [24,25].
Biochar materials not only possess a large specific surface area [26], which can improve the
distribution of active sites and adsorb more reactants [27]. Chen et al. reported a MnO2
composite modified with samarium and biochar that exhibited a NO conversion of 85% at
200 ◦C [28]. Furthermore, Yang et al. indicated that a certain surface area and a smaller pore
size of biochar played a significant role in the denitration process [29]. In addition, kiwi
twigs can increase the specific area of the biochar-modified catalyst and enhance catalyst
activity, because they possess abundant water transport channels and pores [30]. Therefore,
it is expected that biochar can change the surface properties of a MnO2 catalyst and increase
the specific surface area of the catalyst.

In this paper, we synthesized a kiwi twig biochar-modified MnO2 catalyst by using a
one-step hydrothermal reaction. In this study, we investigated the effect of biochar on the
MnO2 denitrification catalyst by examining the catalyst morphology, element valence state,
acid position, and reaction process. The results of this study can provide new insights into
employing biochar as a catalyst modifier in chemical reactions.

2. Results and Discussion
2.1. Crystal Morphology and Structure

The crystal structure of the as-prepared samples was investigated through PXRD
(Figure 1a). A peak around 20◦ to 30◦ was related to amorphous carbon [31]. This finding
indicated that the kiwi twig biochar had amorphous carbon and was partially graphitized.
This result was further validated through Raman spectroscopy. Peaks at 1346–1350 cm−1

and 1598–1604 cm−1 were assigned to D and G peaks [32,33], as presented in Figure 1c.
The D and G peaks were associated with edge defects and highly ordered graphite, re-
spectively. The Raman ID/IG ratios of intensity were calculated to determine the degree
of disorder of samples [34]. The ID/IG ratios for the C1MnO2 and C2MnO2 samples were
1.0 and 0.97, respectively, indicating that the two samples had similar degrees of disorder
and lattice defects.

Similar diffraction peaks appearing at 37.1◦, 42.4◦, 42.5◦, and 56.1◦ (Figure 1a) were as-
signed to the (100), (101), and (102) crystal planes of ε-MnO2 (PDF#30-0820) [35], respectively,
indicating that these two samples possessed the same ε-MnO2 crystal phase. Moreover, the
peak of the C2MnO2 sample at 42.5◦ increased by 0.1◦, demonstrating that the (102) crystal
plane of the C2MnO2 sample was affected by macroscopic residual stress. The morphology
of the samples was obtained through FE-SEM (Figure 2). The two samples exhibited similar
morphology; both MnO2 nanorods and carbon materials were observed. In addition, ther-
mogravimetric analysis was performed to evaluate the thermal stability of the catalysts. The
weight loss of the samples was approximately 0.7% at a temperature of <180 ◦C because of
water desorption [36] and approximately 0.8% between 180 and 350 ◦C, indicating that the
sample was stable in the NH3-SCR reaction temperature range.

The specific surface area and pore size distribution of the catalysts were measured
through N2 adsorption and desorption isotherms (Figure 1b and Figure S1 and Table 1).
All the samples were determined to be type IV(a) according to the IUPAC classification
denitration, indicating that the products had a mesopores structure [37]. Concurrently, the
pore size distribution was mainly concentrated between 30 and 80 nm. The specific surface
areas of the C1MnO2 and C2MnO2 samples were 36.48 and 119.74 m2·g−1, and their pore
volumes were 0.18 and 0.17 cm3·g−1, respectively.
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Table 1. Specific surface area, total pore volume, pore size (BJH), Raman data and different atomic
percentage ratios of samples.

Samples SBET
(m2·g−1)

Vtotal
(cm3·g−1)

Pore Size
(nm) ID/IG Mn4+/Mn3+ Oα/(Oα + Oβ)

C1MnO2 36.48 0.17 185.47 1.01 1.77 0.43
C2MnO2 119.74 0.18 59.93 0.97 1.72 0.46

2.2. NH3-SCR Activity

NH3-SCR experiments were performed to evaluate the catalytic activity of the samples
(Figure 3). Overall, the C1MnO2 and C2MnO2 samples demonstrated similar activity at low
temperatures; their NO conversion rates were >90% at 125–225 ◦C (Figure 3a). The denitri-
fication activity of pure MnO2 was higher than 90% at 150–175 ◦C. When the temperature
reached 175 ◦C, the N2 selectivity of the MnO2 sample decreased sharply [23]. Therefore,
biochar broadened the temperature window of the catalyst. The specific reaction rate of
C1MnO2 and C2MnO2 samples at 125 ◦C were 1.65 × 10−7 and 1.70 × 10−7 mol·s−1·g−1,
respectively. Furthermore, the de-NO activity of the C2MnO2 sample at >250 ◦C was higher
than that of the C1MnO2 sample. The N2 selectivity exhibited the same trend. Therefore, the
inhibition of the NH3 oxidation reaction at high temperatures might have led to the higher
deNO activity of the C2MnO2 sample. Moreover, after the introduction of SO2 (Figure 3b),
the denitrification activity of the C2MnO2 sample decreased at a lower rate than that of
the C1MnO2 sample. After approximately 300 min, the denitrification efficiency of both
samples was approximately 70%. When SO2 was stopped, the denitrification activity of the
C2MnO2 sample recovered to approximately 77%, whereas that of the C1 sample rapidly
decreased to approximately 57% after brief recovery. Therefore, the C2MnO2 sample had a
higher SO2 resistance than the C1 catalyst, which facilitated the practical application of the
catalyst in industry.
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175 ◦C of C1MnO2 and C2MnO2 samples.

The NO conversion rate of the C2MnO2 sample was higher than that of the C1MnO2
sample, especially SO2 resistance. The surface acidity and redox property of the catalysts
were determined to understand the difference in activity.

2.3. Surface Acidity

The adsorption of NH3 on acid sites is a prerequisite for the occurrence of the NH3-SCR
reaction. Therefore, the acid content and acidity of the catalyst are crucial. In this study,
we used NH3-TPD to characterize the acid content and acid strength and employed in
situ DRIFTS to characterize the type of acid sites in the samples. As depicted in Figure 4a,
the acid strength of the C2MnO2 sample was weaker than that of the C1MnO2 sample.
The desorption peaks of the samples at 194 and 204 ◦C were assigned to weak acid sites,
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and those at 261 and 282 ◦C were attributed to medium–strong acid sites [38]. The total
acid content of the C2MnO2 sample was 1.39 times higher than that of the C1MnO2
sample. In addition, the weak and medium–strong acid contents of the C2MnO2 sample
were 1.35 times and 1.58 times higher than those of the C1MnO2 sample, respectively
(Table 2). With an increase in temperature, the NH3 adsorbed on the catalyst was oxidized
to NO at 285 and 290 ◦C (Figure 4a). The C1MnO2 sample promoted the NH3 oxidation
reaction, which might be a reason for its weaker activity at high temperatures; this finding
is consistent with our previous conjecture. Furthermore, as presented in the results of in
situ DRIFTS (Figure 4b), the peak at 1103 cm−1 was assigned to NH3 adsorbed on Lewis
sites [28], and peaks at 1034 and 1066 cm−1 were ascribed to the deformation mode of
coordinated ammonia at Lewis acidic sites [39]. In addition, peaks at 1354 and 1359 cm−1

belonged to the oxidation/deformation species of adsorbed ammonia species [40]. Peaks
at 1541 and 1559 cm−1 belonged to the asymmetric bending vibration of the N–H bond in
the -NH3 group, which is formed by the decomposition of NH4

+ chemisorbed on Brønsted
acidic sites [41].
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Table 2. Peak area of NH3-TPD profiles.

C1MnO2 C2MnO2
Position (◦C) Area Sum Position (◦C) Area Sum

204 39.3
46.2

194 53.3
64.2282 6.9 261 10.9

Sum was the total amount of the weak acid sites and the medium–strong acid sites.

Overall, the two samples possessed both Brønsted and Lewis acidic sites, and the
C2MnO2 sample contained more acid sites. However, the intensity of the acidic sites in the
C2MnO2 sample was weaker than that in the C1MnO2 sample, indicating that the number
of acidic sites plays a crucial role in the NH3-SCR process.

2.4. Active Sites

The chemical composition and elemental state of the fabricated samples were de-
termined through XPS (Figure 5). Two inconspicuous high-resolution peaks were noted
in the C 1s XPS (Figure 5a), indicating that the C element on the surface of catalysts
mainly existed as the C–C bond. The XPS of Mn species (Figure 5b) was composed of
Mn 2p 3/2 (642.1, 643.4, and 643.5 eV) and Mn 2p 1/2 (653.9 eV) [42]. Among them, the
peak at 642.1 eV was ascribed to Mn3+ [43], and other peaks were attributed to Mn4+ [44].
Furthermore, the ratio of Mn4+ to Mn3+ in the C1MnO2 sample was 1.77, which was
slightly higher than that of the C2MnO2 sample (1.72). By contrast, peaks in the O 1s spec-
tra (Figure 5c) of the as-prepared catalysts suggested the presence of two oxygen species;
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the binding energy at 529.7 eV was assigned to lattice oxygen (denoted as Oα) [45], and the
binding energy at 531.1 eV was attributed to defect oxide or a low-coordination surface
oxygen ion (denoted as Oβ) [46]. Subsequently, the Oβ/Oα molar ratio of the biochar-
modified MnO2 catalyst was in the order of C2MnO2 (0.84) > C1MnO2 (0.77). Oβ was
beneficial for promoting the conversion of NO to NO2 and the release of the H atom from
NH3. Therefore, the higher Oβ/Oα ratio of the C2MnO2 sample was responsible for its
excellent denitrification performance.
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Figure 5. (a) C 1s, (b) Mn 2p, (c) O 1s high-resolution XPS spectra and (d) H2-TPR profiles of C1MnO2

and C2MnO2 samples.

The redox capacity of the catalysts was analyzed through H2-TPR (Figure 5d). Peaks
below 337 ◦C might be attributable to the reduction of Mn4+ to Mn3+ [47], and peaks above
365 ◦C were assigned to the transition from Mn3+ to Mn2+ [48]. Overall, Mn4+ in the
C1MnO2 sample was more easily reduced to Mn3+, indicating that Mn4+ in the C1MnO2
sample was more likely to participate in the NH3-SCR reaction corresponding to worse
N2 selectivity. At the same time, Mn3+ in the C2MnO2 sample experienced more difficulty
reducing to Mn2+, indicating that the Mn3+ of the C2MnO2 sample was more easily ox-
idized to Mn4+ compared with that of the C1MnO2 sample to complete the redox cycle
in the NH3-SCR reaction. In addition, the NO conversion rate of the C2MnO2 sample
at >250 ◦C was higher than that of the C1 sample. Therefore, the process Mn3+→Mn4+ was
more crucial than Mn4+ →Mn3+ in the NH3-SCR reaction.

2.5. Reaction Process

In situ DRIFTS was employed to examine the reaction process of modified samples.
As presented in Figure 6a, after the introduction of NO into the reaction system for 25 min,
a band peak appeared at approximately 1313 and 1329 cm−1, and sharp peaks appeared at
1596, 1598, 1629 and 1857 cm−1. Peaks at 1596 and 1598 cm−1 were associated with bidentate
nitrate, and the peak at 1629 cm−1 was attributed to bridging bidentate nitrates [49].
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Therefore, as shown in Figure 7, NO was adsorbed to the catalyst surface to form a variety
of nitrates. In addition, the peak at 1857 cm−1 was deemed gaseous or weakly adsorbed
NO [50]. However, the band at 1313–1329 cm−1 could not be assigned to either catalyst
due to a lack of studies.
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The introduced gas was changed to NH3 (Figure 6b). In the C2MnO2 sample, NO
adsorption peaks at 1598 and 1629 cm−1 disappeared after 15 min, indicating that bidentate
nitrate and bridging bidentate nitrates were both involved in the NH3-SCR reaction of the
C2MnO2 sample. Moreover, gaseous or weakly adsorbed NO at 1857 cm−1 was involved
in the reaction. After the saturation of NH3 (Figure 6c), the introduced gas was changed
to NO + O2; both Brønsted and Lewis acidic sites (NH4

+ or NH2) on the samples were
involved in the reaction at the same time. As shown in Figure 7, both adsorbed NH3 and
adsorbed NO were reactive species to obtain N2 and H2O. Moreover, Lewis acidic sites
located on both the samples rapidly participated in the reaction, and Brønsted acidic
sites on the C1MnO2 sample were involved in the reaction more easily than those on the
C2MnO2 sample.

In summary, adsorbed NH3 could react with gaseous NO and adsorbed NO in the
NH3-SCR reaction of the C1MnO2 and C2MnO2 samples, with the difference that the
Brønsted acidic sites on the C1MnO2 sample could participate in the NH3-SCR reaction
more rapidly.

3. Materials and Methods
3.1. Synthesis of the Catalyst

All reagents used in this study were of analytical grade and purchased from the
Sinopharm Chemical Reagent Company (Shanghai, China). Kiwi twig biochar was pre-
pared using two procedures, which were denoted as C1 and C2, respectively. For C1, twigs
were treated with KOH (mtwings:mKOH = 1:1, m stood for mass) by using the impregnation
method. The mixture was then calcinated at 500 ◦C for 2 h and at 900 ◦C for 2 h under
N2 atmosphere (heating rate was 5 ◦C·min−1) with a tubular reactor. After flushing with
diluted HCl and deionized water several times, we obtained the final C1 product by drying
at 80 ◦C for 12 h. For C2, twigs were calcined at 500 ◦C for 2 h and 900 ◦C for 2 h under
N2 atmosphere. The calcined product was then treated with KOH and calcined again under
the aforementioned conditions. After washing and drying, we obtained the final C2 biochar.

The kiwi twig biochar-modified MnO2 sample was synthesized as follows: 0.316 g of
KMnO4 was dissolved in 45 mL of deionized water and stirred for 2 min. Subsequently,
0.05 g of C1 or C2 and 0.25 mL of 37.5% HCl were added into the solution. The solution
mixture was transferred into a 100 mL polytetrafluoroethylene autoclave after being stirred
for 10 min and was then heated at 140 ◦C for 12 h. The obtained product was washed several
times with deionized water and dried at 80 ◦C for 12 h. The sample was named C1MnO2 or
C2MnO2. The experiment is less dangerous, easy to perform and highly reproducible.

3.2. Catalyst Characterization

The crystal structure of the catalysts was analyzed through powder X-ray diffrac-
tion (PXRD, Shimadzu PXRD-6100 (Shimadzu Corporate Management (China) Co., Ltd.,
Shanghai, China) from 8◦ to 80◦ of 2θ at a scanning rate of 2◦ per minute. The pore size and
distribution were measured through N2 adsorption–desorption by using ASAP 2020 Plus
HD88 (Micromeritics (shanghai) instruments Co., Ltd., Shanghai, China), and the samples
were pretreated at 250 ◦C. The morphology of the as-prepared products was observed
through field-emission scanning electron microscopy (FE-SEM, ZEISS GeminiSEM 500,
Zeiss Optical Instruments (Shanghai) International Trading Co., Ltd., Shanghai, China). The
Raman spectra were obtained using inViaQontor (Renishaw Co., Ltd., Gloucestershire, UK).
The chemical composition and elemental valence state of different catalysts were deter-
mined through X-ray photoelectron spectroscopy (XPS, Thermo Fisher ESCALAB Xi+

spectrograph, Thermo Fisher Scientific Co., Waltham, MA, USA), which was corrected by C
1s (284.6 eV), and XPS Peak 41 software was used to process the data. Moreover, the acid sites
and oxidative reducibility of the catalysts were examined through ammonia temperature-
programmed desorption (NH3-TPD, Thermo 17i NH3 analyzer, Thermo Fisher Scientific Co.,
Waltham, MA, USA) and hydrogen temperature-programmed reduction (H2-TPR,
Auto ChemTM II 2920, Micromeritics (shanghai) instruments Co., Ltd., Shanghai, China)
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with a heating rate of 10 ◦C·min−1, and the total carrier gas flow was 50 mL·min−1. In
situ diffuse reflectance Fourier transform infrared spectroscopy (in situ DRIFTS) was con-
ducted using the Nicolet iS 50 system (Thermo Fisher Scientific Co., Waltham, MA, USA)
by accumulating four scans at 150 ◦C with a resolution of 4 cm−1; the diameter of the
crucible was 5 mm.

3.3. NH3-SCR Activity

The NO removal efficiency of the C1MnO2 or C2MnO2 catalyst was investigated using
a NH3-SCR activity evaluation system equipped with the Thermo Fisher 17i NH3 detector
(Thermo Fisher Scientific Co., Waltham, MA, USA). We used 0.09 g of the composite catalyst
in the sampling stage. The original gas contained 500 parts per million by volume (ppmv)
NO, 500 ppmv NH3, and 5% O2 (N2 as the equilibrium gas), and 200 ppmv SO2 was
introduced in Poisson experiment at 175 ◦C. The flow rate was 60 mL·min−1, and space
velocity was 15,000 h−1. The NO conversion rate and N2 selectivity were calculated using
the following Equations (1) and (2).

XNO = ([NO]in − [NO]out)/[NO]in × 100% (1)

SN2 = ([NO]in + [NH3]in − [NO]out − [NO2]out − [NH3]out − 2[N2O])/([NO]in +

[NH3]in − [NO]out − [NO2]out − [NH3]out) × 100%.
(2)

4. Conclusions

The kiwi twig biochar-modified MnO2 samples were successfully synthesized using
the hydrothermal method, and the NO conversion rates of the two samples were >90%
at 125–225 ◦C. A larger specific surface area, a higher number of acidic sites, and higher
Oβ/Oα molar ratio were responsible for more favorable activity at high temperatures and
SO2 resistance in the C2MnO2 sample. Furthermore, the C2MnO2 sample inhibited the
NH3 oxidation reaction and promoted the Mn3+ →Mn4+ process, which were crucial for
better deNO activity. Moreover, the Brønsted acidic sites on the C1MnO2 sample could
participate in the NH3-SCR reaction more rapidly. Overall, this study provides new insights
into the application of biochar in the catalytic field and the basis for catalyst design by
examining the reaction process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12080870/s1, Figure S1: N2 absorption and desorption
curves of C1MnO2 and C2MnO2 composite catalysts. Figure S2: The complete scan XPS spectra of
C1MnO2 and C2MnO2 samples.
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