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Abstract: The efficient use of renewable energy sources requires development of new electrocatalytic
materials for electrochemical energy storage systems, particularly fuel cells. To increase durability of
high temperature polymer electrolyte fuel cell (HT-PEMFC), Pt/carbon black based catalysts should
be replaced by more durable ones, for example Pt/carbon nanofibers (CNF). Here, we report for the
first time the quantitative ascorbic acid assisted deposition of Pt onto electrospun polyacrylonitrile-
based CNF composite materials. The effect of their subsequent post-treatment at various temperatures
(250 and 500 ◦C) and media (vacuum or argon-hydrogen mixture) on the Pt/C catalyst morphology
is investigated. All obtained samples are thoroughly studied by high resolution electron microscopy,
and Pt electrochemically active specific surface area was evaluated by cyclic voltammetry.

Keywords: carbon nanofibers; HT-PEMFC; ascorbic acid; platinum deposition; Pt/CNF; electrospinning;
TEM; STEM; SAED; pyrolysis

1. Introduction

One of the very important tasks for the alternative energy development is the develop-
ment of new electrocatalytic materials for electrochemical power sources. Currently, there
are many known electrocatalytic systems, such as Pt-MOx (M = metal) [1–5] and alloyed
Pt-M [6–15], which can be used in the electrochemical power sources. In most cases, the
support of the electrocatalyst is carbon black. However, for example, for high temperature
polymer electrolyte fuel cell (HT-PEMFC), an application of carbon black impedes its devel-
opment and distribution due to low durability of carbon black at 150–200 ◦C in phosphoric
acid, i.e., under quite harsh conditions. As a result, Pt nanoparticles may be detached
from the surface and lost. Thus, some more durable carbon nanostructured materials,
for example carbon nanofibers (CNF) are required for better stability and durability of
HT-PEMFC operation and to reduce its cost [16–25]. The alloyed Pt–M electrocatalytic
systems, where M = Ni, are more active in oxygen reduction reaction (ORR), compared
with pure Pt [6,12,14].

Earlier [26–38] we have shown that more durable, compared with carbon black,
CNF-based materials, including Pt-Ni-ZrOx/CNF, can be used as cathodes in membrane-
electrode assembly (MEA) for HT-PEMFC.

In this work, CNF were obtained by subsequent thermal stabilization and pyrolysis
of polymer nanofiber mats [39], which, in turn, were obtained by the electrospinning [40]
method (NanospiderTM technology, where numerous jets are generated from the string
electrode). On the evaporation of solvents, the jets are converted to filaments, which
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are subjected to subsequent stabilization (350 ◦C) and pyrolysis at 900–1200 ◦C. Ni0 and
ZrOx-doped nanofibers were produced by adding nickel and zirconium salts to the elec-
trospinning solutions. The described method provides a uniform distribution of these
elements in the nanofiber. In this way, the composite CNF self-supporting mats were
produced. One of the methods to produce the oxygen reduction catalysts involves re-
duction of platinum from H2[PtCl6] aqueous solution by formic acid with simultaneous
deposition of platinum nanoparticles onto composite CNF self-supporting mats [27]. The
cathodes were obtained by formic acid-assisted reduction of platinum in H2[PtCl6] aqueous
solution and the subsequent deposition of platinum nanoparticles onto composite CNF
self-supporting mats. It was also shown that the heat treatment of the obtained catalytic
systems at different temperatures may affect the morphology and electrochemically active
platinum surface area of the obtained catalysts and, in turn, the performance of MEA in
HT-PEMFC. [29] However, the optimization of Pt-electrocatalyst deposition on a support
and catalyst post-treatment is still required.

Most methods of platinum deposition on a support lead to platinum losses. Although
these losses can be recovered by rather complex chemical processes, a decrease in the losses
is one of the important problems for electrocatalyst development, which would decrease
the total cost of the fuel cells. Ascorbic acid was used as a mild reducer for H2[PtCl6] [41,42].
It is quite acidic due to the resonance stabilization of the ascorbate ion and contains isolated
hydroxyl groups. Therefore, one could assume that, in principle, ascorbic acid might
coordinate platinum ions and the surface of the composite CNF support leading, finally,
to Pt reduction [41,42] and better attachments of the Pt nanoparticles to the CNF surface.
A change of formic acid to ascorbic acid may allow the quantitative platinum deposition
from H2[PtCl6] solution onto CNF composite materials without any platinum losses and
lead to different catalyst morphology, which could be observed by electron microscopy.

In this study, we report for the first time the quantitative ascorbic acid-assisted depo-
sition of Pt onto polyacrylonitrile-based CNF composite materials and the effect on the
resulting catalyst morphology of possible additional post-treatment at various temperatures
(250 and 500 ◦C) and media (vacuum and argon-hydrogen mixture).

2. Results
2.1. Electron Microscopy

Composite electrospun polyacrylonitrile (PAN)-based nanofibers mats were pyrolyzed
either under vacuum or in an argon-hydrogen mixture. The resulting composite PAN-
based CNF samples were investigated by electron microscopy right after pyrolysis or after
additional post-treatment. The post-treatment was carried out either under vacuum or in
argon-hydrogen mixture both at 250 and 500 ◦C. The obtained electron microscopy results
are provided below.

BF TEM (bright field transmission electron microscopy) images of the Pt-coated CNF,
pyrolyzed at 1000 ◦C for 2 h in an argon-hydrogen mixture, sample 1, is shown in Figure 1.
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Sample 1 was formed by deposition of Pt nanoparticles on sample A (sample A was
obtained by pyrolysis in an argon-hydrogen mixture of the electrospun nanofiber mat).
CNF structure of different nanofibers is different. Some of them possess a smooth surface
(Figure 1); the others show well-pronounced crystalline structures. Platinum nanoparticles
form crystal agglomerates of random shapes up to 10 nm (Figure 1b) in size on the CNF
surface. The elemental distribution maps of platinum, nickel, zirconium and oxygen
obtained by scanning transmission electron microscopy (STEM) with a high angle annular
dark field (HAADF), and the corresponding energy dispersive X-ray spectroscopy (EDX)
spectrum are provided in Figure 2.
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corresponding elemental maps.

After additional heat treatment of sample 1 at 250 ◦C in argon-hydrogen flow (sam-
ple 2), no noticeable changes in the nanofiber structure and platinum morphology were
found. In Figure 3, BF TEM images of CNF, Pt agglomerate and selected area electron
diffraction (SAED) pattern are shown.
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Figure 4 shows element distribution in an agglomerate of nanoparticles.
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Figure 4. Elemental distribution in a platinum agglomerate: (a) STEM HAADF image of the agglom-
erate; (b–e) corresponding elemental maps for sample 2.

Considering the elemental distribution maps shown in Figure 4, it can be concluded
that nickel, zirconium and oxygen are present not only in the nanofiber body but also in
places where Pt agglomerates are located. The quantitative EDX analysis results of the
chemical content of the agglomerate from Figure 4 are shown in Table 1.

Table 1. Chemical composition of the agglomerate from Figure 4.

Element Series Norm. wt.% Norm. at.%

Zirconium K-series 2.60 2.98
Nickel K-series 4.15 7.39

Platinum L-series 86.62 46.36
Oxygen K-series 6.63 43.27

Sum 100 100

With an increase in the heat treatment temperature of the pyrolyzed sample 1 to
500 ◦C (sample 3), significant changes occur in both the nanofiber structure and in the
particle morphology and distribution. The fiber degree of crystallinity increases noticeably,
which is clearly seen from TEM and high resolution (HR) TEM images and selected area
electron diffraction (SAED) patterns: rings from CNF become sharper. As can be seen from
Figures 5 and 6, nickel is present as individual particles of dozens of nanometers in size.

At the same time, nickel is still distributed over the nanofiber surface. Platinum
conglomerates acquire a more rounded shape (Figure 5a or Figure 6a). In the area of
platinum conglomerates, some elemental redistribution occurs. Platinum, zirconium,
oxygen and, partially, nickel, are localized in the same places; however, nickel is also
localized as individual nanoparticles of dozens of nanometers in size. The morphology of
the large Ni-containing nanoparticles can be different: faceted nanoparticles and rounded
nanoparticles (Figure 6).
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Figure 6. Elemental distribution on the CNF surface: (a) STEM HAADF image of particles; (b–e) cor-
responding elemental maps for sample 3.

For additional heat treatment of sample 1 under vacuum at 250 ◦C (sample 4) or
500 ◦C (sample 5), in contrast to the heat treatment in argon-hydrogen flow, a uniform
zirconium and nickel distribution over the CNF body was found. The effect is observed
not only for 250 ◦C heat treatment but also for 500 ◦C. A significant part of the nanofibers
possesses a smooth surface, while there are no large pores. In the obtained SAED patterns,
characteristic “arcs” are observed (Figure 7). It signifies that pyrographite layers are
oriented along the nanofibers, and graphene layer sets are absent. For 500 ◦C (sample 5),
crystal Pt agglomerates acquire smoother borderlines (Figure 8), compared with sample 4,
as in the previous case for sample 3.
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Tables 2 and 3 present the quantitative EDX analysis results of chemical composition
of Pt agglomerates from Figure 8a (sample 4) and b (sample 5).

Table 2. Chemical composition of Pt agglomerate from Figure 8a (sample 4).

Element Series Norm. wt.% Norm. at.%

Nickel K-series 0.65 1.96
Platinum L-series 97.31 88.48

Zirconium K-series 1.43 2.78
Oxygen K-series 0.61 6.77

Sum 100 100
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Table 3. Chemical composition of Pt agglomerate from Figure 8b (sample 5).

Element Series Norm. wt.% Norm. at.%

Nickel K-series 0.46 1.37
Platinum L-series 97.63 86.76

Zirconium K-series 0.99 1.88
Oxygen K-series 0.92 9.99

Sum 100 100

As can be seen from Tables 2 and 3, the content of nickel and zirconium is lower,
compared with sample 2. The nickel and zirconium content values decrease even more
with an increase in the heat treatment temperature to 500 ◦C (sample 5).

A very different nanofiber structure was obtained in the case of vacuum pyrolysis
of the composite polyacrylonitrile-based nanofibers. Platinum deposition on sample B
(obtained by vacuum pyrolysis of the electrospun nanofiber mat) results in sample 6. TEM
and STEM images of a CNF fragment (Figures 9 and 10) show that the nanofiber structure
is fully crystalline.
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The nanofiber consists of graphene layer sets which form loops and pores in the
nanofiber body with a size up to 100 nm. The formation of such a nanofiber structure is
described in more detail in our previous studies [27]. A distinctive feature of the structural
state of the samples is the most uniform distribution of platinum nanoparticles over the
nanofiber surface.

At the same time, nickel forms large individual particles in many places of the
nanofiber body (Figure 10b,c). For example, an individual large Ni-containing nanoparticle
of ~50 nm in size is shown in the elemental map (Figure 10c). The maximum particle size
may reach 150–200 nm. Thus, here, Ni is not uniformly distributed everywhere over the
nanofiber surface. Zirconium forms nanoparticles of a much smaller size (up to 15 nm)
compared with nickel, but larger than in the samples pyrolyzed in argon-hydrogen flow.
Their location partially correlates with platinum location. Some of them are located on the
nanofiber surface. As for platinum, its agglomerates are usually distributed more evenly
over the surface of the nanofibers and consist of rounded particles or crystal petals of
elongated shape growing from the nanofiber surface.

An additional post treatment in argon-hydrogen flow at 250 and 500 ◦C (samples 7
and 8, respectively) does not result in any significantly different nickel and zirconium
distribution (Figures 11 and 12). Pt agglomerates acquire a more rounded shape after heat
treatment at 500 ◦C (Figure 12, sample 8), as it was shown for the previous case.
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Additional heat treatment under vacuum at 250 ◦C (sample 9) does not result in
noticeable changes in the composite structure. It should be noted that Pt nanocrystals retain
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their most uniform distribution over the CNF surface (Figure 13), which has already been
achieved for vacuum pyrolysis.
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The agglomerates consist of more dispersed particles of rounded and elongated shape.
In the case of heat treatment at 250 ◦C, the particle size is no more than 10 nm. If the
heat-treatment temperature is increased up to 500 ◦C (sample 10), Pt nanoparticles become
larger in size and lose shape anisotropy (Figures 14 and 15).
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The results of the quantitative EDX analysis of the agglomerate chemical content after
vacuum heat treatment at 250 ◦C (sample 9) are provided in Table 4.

Table 4. Chemical composition of Pt agglomerate (sample 9).

Element Series Norm. wt.% Norm. at.%

Nickel K-series 0.61 1.64
Platinum L-series 96.39 78.30

Zirconium K-series 1.19 2.06
Oxygen K-series 1.82 17.99

Sum 100 100

In some areas of the nanofibers, after additional heat treatment at 250 ◦C (sample 9),
nickel still remains uniformly distributed over the nanofiber. Another part forms crystals
up to 150 nm in size. After additional heat treatment at 500 ◦C (sample 10), the areas
with uniformly distributed nickel disappear (Figure 15). Zirconium distribution remains
uniform, as it was observed in all previous cases, at any heat-treatment temperature
(Figures 14 and 15).

2.2. Cyclyc Voltammetry

Electrochemically active specific surface area (ECSA) of platinum was obtained from
cyclic voltammetry (CV) experiments for platinized samples (samples 1–10).

The voltammograms of samples 1–10 are shown in Figures S1–S10. As it is seen from
Table 5, the Pt ECSA values are higher in the case of vacuum pyrolysis. The possibility of
HT-PEM fuel cell MEA operation, polarization curve and power density data are shown in
Figure S11.

Table 5. ECSA of platinum for samples 1–10.

Sample Pt ECSA, m2·gPt−1

1 5.5
2 6.1
3 0.4
4 3.1
5 1.7
6 18.0
7 12.4
8 6.6
9 26.8
10 7.7
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3. Discussion

One of the serious problems of platinum deposition on carbon supports is non-
quantitative Pt deposition when some parts of platinum are lost. As a result, the necessity
to control final Pt content appears as a part of platinum deposition process. A decrease in
the losses is one of the important problems for electrocatalyst development because it may
decrease the fuel cell total cost. Ascorbic acid (Figure 16) contains isolated hydroxyl groups.
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It was found that the Pt deposition process proceeds quantitatively when composite
polyacrylonitrile-based CNF mats are used as support. It may happen because ascorbic acid
is quite acidic due to the ascorbate ion resonance stabilization, therefore, ascorbic acid can
coordinate platinum ions and the surface of the composite CNF, leading finally to the better
attachment of the Pt nanoparticles to the CNF surface. In our previous studies [26,28], it was
shown that Zr and Ni are mostly in forms of ZrOx and Ni0 in pyrolyzed polyacrylonitrile-
based composite CNF. The coincidence of Zr and Pt in addition to Ni on elemental maps
may suggest the mentioned mechanism of Pt attachment. It should be noted that the
coincidence of Pt and Ni was already observed in our previous studies when Ni0 played
a role of “seeds” for platinum deposition (reduction) with formic acid. However, the
coincidence of Pt and Zr was never observed before, since Zr was in a form of ZrOx and
was not able to play a role of “seeds” for platinum deposition. In the given study, the
coincidence of these three elements on elemental maps and confirmed by the EDX data
allows the suggestion that an additional mechanism of platinum deposition when ascorbic
acid coordinates both platinum ion and ZrOx nanoparticles. As a result, Pt and Zr become
close on elemental maps, however, electrical conductivity between Pt and CNF is not
disturbed, as it is seen from the microscopy data where Pt nanoparticles are placed on CNF
in contact with carbon material.

A comparison of samples 1 and 6 with different pyrolysis reveals much more crys-
talline CNF in the case of vacuum pyrolysis. It can be explained that the graphitization
process in vacuum proceeds faster compared with argon-hydrogen (7 vol.%) flow, where
hydrogen may reduce carbon atoms preventing or impeding the graphitization.

According to cyclic voltammetry, Pt nanoparticles deposited on more crystalline
CNF samples (6–10) possess higher electrochemically active surface areas, which may
be related to better accessibility of Pt nanoparticles in more crystalline CNF with higher
graphitization degree. These values may be appropriate for HT-PEMFC applications, since
the CV measurements are performed at room temperature in a sulfuric acid solution, but
HT-PEMFC operates at 150–200 ◦C in phosphoric acid environment. Heat treatment at
250 ◦C activates the Pt nanoparticle electrocatalyst in three out of four described cases,
resulting in higher Pt ECSA; however, further increases in temperature (heat treatment at
500 ◦C) results in a decrease in ECSA. The effect can be related to the enlargement of Pt
nanoparticles, which is clearly observed in microscopy data. The nanoparticles of small size
are more stable to coagulation during heat treatment if they are placed on a more developed
crystalline carbon composite surface. The cyclic voltammetry and microscopy data may
suggest that better performance in electrochemical power sources might be reached for
sample 9 with a more crystalline CNF after vacuum pyrolysis, higher Pt ECSA and smaller
Pt nanoparticles distributed on a more accessible surface.
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4. Materials and Methods
4.1. Electrocatalyst Preparation
4.1.1. Electrospinning

Zirconium (IV) chloride, nickel (II) acetate and DMF (Merck KGaA, Darmstadt, Ger-
many) were used as received. The composite polyacrylonitrile-based nanofibers were
obtained by the needle-free electrospinning method from a free surface, according to
NanospiderTM technology in which several jets are generated from the string, from an
electrospinning polymer solution, which contained 3.25 g of PAN with Mw 150 × 103 Da,
0.1 g of Vulcan® XC72 (Cabot Corporation, Boston, MA, USA) carbon black (~3 wt.%
relative to PAN), 0.03 g of zirconium (IV) chloride and 0.37 g of nickel (II) acetate well
dispersed in 50 mL of DMF during 3 h in ultrasonic bath. The electrospinning was carried
out on a NS Lab NanospiderTM setup from Elmarco (Liberec, Czech Republic) at relative
humidity of 8 % at the voltage of 69 kV and the distance between electrodes of 190 mm.
As a result, PAN/Vulcan/Zr/Ni composite nanofibers in a form of a mat were obtained.
PAN/Zr/Ni nanofibers were also obtained according to the same procedure but without
carbon black addition.

4.1.2. Stabilization and Pyrolysis

PAN/Zr/Ni nanofiber mat was stabilized (oxidized) at 350 ◦C in air for 2 h a Binder
MDL 115 heating chamber (Tuttlingen, Germany) to make the material suitable for further
pyrolysis. Then, the sample was pyrolyzed at 1000 ◦C for 2 h in an argon-hydrogen (7 vol.%
of H2) flow at a heating rate of 3 ◦C·min−1 using a Rusuniversal PT-1200 tubular furnace
(Chelyabinsk, Russia). As a result, the shape of CNF mat was saved (sample A).

PAN/Vulcan/Zr/Ni nanofiber mat was stabilized (oxidized) at 350 ◦C in air for 2 h a
Binder MDL 115 heating chamber (Tuttlingen, Germany) to make the material suitable for
further pyrolysis. Then, the sample was pyrolyzed at 1000 ◦C for 2 h under vacuum at a
heating rate of 3 ◦C·min−1 using a Carbolite (CTF 12/80/700) vacuum oven (Hope Valley,
United Kingdom) equipped with a Eurotherm 3216 series controller. As a result, the shape
of CNF mat was saved (sample B).

4.1.3. Platinum Deposition

Platinum deposition on the CNF mats with mass of 12.1 mg (samples A and B) and
with a surface area of 6.76 cm2 was carried out separately for each mat in 10 mL of water,
containing the calculated amount of H2[PtCl6]·6H2O (Merck KGaA, Darmstadt, Germany),
21.5 mg per mat, as a source of platinum in order to obtain Pt/CNF electrocatalysts with
Pt concentration of 1.2 mgPt·cm−2 (8.1 mg of Pt per mat) and 1.0 g of ascorbic acid as a
reducing agent for 1 day. The resulting electrocatalysts were thoroughly washed with
distilled water and dried at 100 ◦C for 2 h under vacuum.

4.1.4. Additional Heat Treatment

Sample A was platinized resulting sample 1 and additionally heat-treated in argon-
hydrogen flow for 2 h at 250 ◦C (sample 2) or 500 ◦C (sample 3). Moreover, sample 1 was
heat treated under vacuum for 2 h at 250 ◦C (sample 4) or 500 ◦C (sample 5). Sample B
was platinized resulting sample 6 and additionally heat treated in argon-hydrogen flow for
2 h at 250 ◦C (sample 7) or 500 ◦C (sample 8). Moreover, sample 6 was heat treated under
vacuum for 2 h at 250 ◦C (sample 9) or 500 ◦C (sample 10).

4.1.5. Elemental Analysis and Electrical Conductivity

The elemental analysis was performed using an Elementar vario MICRO cube C,H,N-
analyzer (Langenselbold, Germany) equipped with a thermal desorption column.

The in-plane electrical conductivities of the CNF samples A and B were found with a
RLC E7-8 setup (Minsk, Belarus) equipped with a four-point probe. The sample thickness,
necessary for the electrical conductivity measurements, was determined with an Elektro-
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Physik eXacto thickness gage (Cologne, Germany). The elemental analysis and electrical
conductivity of samples A and B are shown in Table 6.

Table 6. Elemental analysis and electrical conductivity of samples A and B.

Sample σ, S cm−1 %C %N %H %Ni %Zr

A 22.2 74.6 4.0 1.3 7.0 0.8
B 17.0 87.4 2.3 0.6 7.1 0.5

4.2. Electron Microscopy

The structure of the composite electrospun polyacrylonitrile-based carbon nanofibers
was performed by transmission electron microscopy (TEM), scanning transmission electron
microscopy (STEM) and EDX elemental mapping in a Thermo Fisher Scientific Osiris
(Waltham, MA, USA) equipped with a high angle annular dark field (HAADF) detector
and Super-X EDX detection system, based on silicon drift detector (SDD) technology. For
electron microscopy investigations, the samples of CNF mats were dispersed in acetone
using ultrasonic bath for 20–30 min to separate fibers. The obtained suspension was
dropped onto Cu lacey carbon TEM grids.

4.3. Cyclic Voltammetry

Measurements of the ECSA of platinum of the obtained platinated materials were
described in detail in our previous study [26]. Briefly, the ECSA values in the synthe-
sized electrocatalysts were evaluated by electrochemical hydrogen adsorption/desorption
measurements [43,44]. Hydrogen atoms on Pt surface were produced by electrochemical
reduction of H+ from aqueous 0.5 M H2SO4 electrolyte. The number of surface atoms
at polycrystalline Pt was evaluated from the charge related to oxidation of adsorbed hy-
drogen in the potential range 0–0.4 V versus standard hydrogen electrode (SHE), using a
stoichiometry of one adsorbed H atom per single surface Pt atom. The measurements were
performed at room temperature in a three-electrode cell with separated compartments.
Platinum wire and Hg/Hg2SO4 saturated K2SO4 (0.64 V vs. SHE) were used as the counter
and reference electrodes, respectively. The working electrode was a polished graphite disk
(diameter of 1.6 cm2) in a polytetrafluoroethylene (PTFE) holder. A thin layer of the catalyst
was coated the surface of the disk electrode by placing 100 µL aliquot of the catalyst ink.
Catalyst inks were prepared by ultrasonically dispersing 2 mg of a catalyst in 1 mL of
isopropanol containing 0.01 mL of 10 wt.% Nafion solution. Fifty cycles of voltammetry
at 50 mV s−1 were applied and the last cycle was examined. The ECSA values was evalu-
ated by integration of the hydrogen desorption areas of the cyclic voltammograms (CV)
assuming 0.21 mC (cmPt)−2. The voltammograms are shown in Supplementary Materials.
In Figure S1, the area that was used for ECSA evaluation is dashed.

4.4. Ascorbic Acid Assisted Pt Deposition and Losses

Platinum deposition on the CNF mats (12.1 mg, with area of 6.76 cm2) was carried out
in aqueous solution (10 mL) with 21.5 mg of H2[PtCl6]·6H2O and 1.0 g of ascorbic acid.
The final loading of platinum was 1.2 mgPt·cm−2 per mat (8.1 mg of Pt). The deposition
was repeated 4 times for sample A and 4 times for sample B. Total Pt loading was 8.1 mg
for each mat with <1% error.

4.5. HT-PEM Fuel Cell Operation

Standard Arbin Instruments (College Station, TX, USA) were used for Pt/CNF cathode
testing at 180 ◦C. The MEA included the PBI-OPhT membrane cross-linked with zirco-
nium acetylacetonate and doped with phosphoric acid (350–400%, up to 25 molecules
of o-phosphoric acid per polymer unit), which was developed earlier in our group [45];
commercial Celtec®-P Series 1000 MEA anode with Pt deposited on carbon black Vulcan®

XC-72 with the total platinum loading of 1 mg cm–2 [46], and Pt/CNF (sample 6) cathode.
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The resulting MEA with the MEA working surface area of 5 cm2 was placed between
graphite plates. From the anode side, hydrogen obtained by electrolysis in a GVCh-6 hy-
drogen generator (Khimelektronika, Moscow, Russia) was supplied; from the cathode side,
atmospheric air was supplied; the gases were supplied at atmospheric pressure without
additional humidification.

5. Conclusions

CNF mats were obtained by the NanospiderTM technology electrospinning with
following pyrolysis. After ascorbic acid-assisted Pt deposition, thermal post-treatment of
Pt/CNF was carried out to find ways to tailor Pt/CNF properties. Pt nanoparticles are of
<10 nm in size, however, they may agglomerate depending on treatment and post-treatment
conditions. The quantitative ascorbic acid-assisted deposition of Pt onto electrospun
polyacrylonitrile-based CNF composite materials is shown for the first time. Using the
presented approach, it is possible to minimize the loss of platinum through the platinum
deposition process, which becomes essentially important in the electrode production for
various electrochemical power sources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12080891/s1, Figure S1: Cyclic voltammogram of sample 1.
Dashed area was used for evaluation of Pt ECSA by electrochemical hydrogen adsorption/desorption
method; Figure S2: Cyclic voltammogram of sample 2; Figure S3: Cyclic voltammogram of sample 3;
Figure S4: Cyclic voltammogram of sample 4; Figure S5: Cyclic voltammogram of sample 5; Figure S6:
Cyclic voltammogram of sample 6; Figure S7: Cyclic voltammogram of sample 7; Figure S8: Cyclic
voltammogram of sample 8; Figure S9: Cyclic voltammogram of sample 9; Figure S10: Cyclic
voltammogram of sample 10; Figure S11: Polarization curve and power density data for the HT-PEM
fuel cell with Pt/CNF cathode obtained by ascorbic acid assisted Pt deposition.
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