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Abstract: Artificial photosynthesis (AP) has been extensively applied in energy conversion and
environment pollutants treatment. Considering the urgent demand for clean energy for human
society, many researchers have endeavored to develop materials for AP. Among the materials for AP,
photosensitizers play a critical role in light absorption and charge separation. Due to the fact of their
excellent tunability and performance, metal-based complexes stand out from many photocatalysis
photosensitizers. In this review, the evaluation parameters for photosensitizers are first summarized
and then the recent developments in molecular photosensitizers based on transition metal complexes
are presented. The photosensitizers in this review are divided into two categories: noble-metal-based
and noble-metal-free complexes. The subcategories for each type of photosensitizer in this review are
organized by element, focusing first on ruthenium, iridium, and rhenium and then on manganese,
iron, and copper. Various examples of recently developed photosensitizers are also presented.

Keywords: molecular photosensitizers; catalysis; metal complexes; artificial photosynthesis

1. Introduction

Over the past several decades, a large amount of fossil fuels have been exploited,
especially during the Industrial Revolution [1–3]. The overexploitation of fossil fuels not
only destroys the environment but has also led to serious global climate change and an
energy crisis, which directly threaten the survival of humanity. To resolve these prob-
lems, thousands of green power sources are in development [4–6]. The Sun provides
much more energy than current global demand; hence, it has become desirable in the
development of novel sustainable energy. Artificial photosynthesis (AP), such as pho-
tocatalytic water splitting or CO2 reduction, can achieve the conversion of solar energy
into chemical fuels, including carbon-free hydrogen as an environmentally friendly fuel,
and industrial raw materials such as methanol [7–10]. Among various photosynthetic
systems, molecular-based multi-component systems have been a research hotspot because
of their properties, which can be controlled by the reasonable design of their chemical struc-
tures [11–13]. In a multi-component system, a photosensitizer plays an important role in
light absorption and electron transfer; therefore, intense research has been devoted to pho-
tosensitizers, particularly from 2012 to 2022 as shown in Figure 1. This booming exploration
of metal-complex-based photosensitizers has resulted in improving their performance and
availability for commercial applications.
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Figure 1. Number of publications concerning ‘‘photosensitizer” subjects since 2012. Adapted from 

ISI Web of Science, dated 12 July 2022. 

1.1. Photosynthesis in Nature  

Natural photosynthesis in green plants and cyanobacteria is a critical reaction for the 

utilization of sunlight, which is crucial for providing sustainable energy on Earth. 

Photosynthesis in nature occurs through two unique photosystems, i.e., PSI and PSII, 

involving several electron transfer (ET) procedures [14]. As shown in Figure 2a, PSII is 

triggered by the photoexcitation of P680 and the release of electrons to give P680+, which 

is then involved in an oxygen-evolving reaction (OER). Simultaneously, PSI is initiated by 

the photoexcitation of P700, which then accepts electrons from the ET chain of PSII, 

resulting in the activation of the Calvin cycle, where CO2 is reduced into carbohydrates.  
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Figure 2. (a) The Z-scheme coupling PSI and PSII in natural photosynthesis; (b) the general scheme 

of the quenching pathway in photocatalytic reactions. PS: photosensitizer; A: electron acceptor; D: 

electron donor; Cat: catalyst. *: excited state. 
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Figure 1. Number of publications concerning “photosensitizer” subjects since 2012. Adapted from
ISI Web of Science, dated 12 July 2022.

1.1. Photosynthesis in Nature

Natural photosynthesis in green plants and cyanobacteria is a critical reaction for
the utilization of sunlight, which is crucial for providing sustainable energy on Earth.
Photosynthesis in nature occurs through two unique photosystems, i.e., PSI and PSII,
involving several electron transfer (ET) procedures [14]. As shown in Figure 2a, PSII is
triggered by the photoexcitation of P680 and the release of electrons to give P680+, which is
then involved in an oxygen-evolving reaction (OER). Simultaneously, PSI is initiated by the
photoexcitation of P700, which then accepts electrons from the ET chain of PSII, resulting
in the activation of the Calvin cycle, where CO2 is reduced into carbohydrates.
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Figure 2. (a) The Z-scheme coupling PSI and PSII in natural photosynthesis; (b) the general scheme
of the quenching pathway in photocatalytic reactions. PS: photosensitizer; A: electron acceptor; D:
electron donor; Cat: catalyst. *: excited state.
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1.2. The Role of Photosensitizers in Artificial Photosynthesis

Inspired by nature, artificial photosynthesis (AP) simulates the function of critical
components in a photocatalytic reaction [15]. Unlike natural photosynthesis, AP can not
only convert CO2 into biomass, but it can also produce various chemical fuels such as
hydrogen. There are three processes in a multi-component artificial photosynthesis reaction:
(i) the light harvesting process in which a photosensitizer absorbs sunlight efficiently and
then is converted into an excited state (PS*); (ii) the charge generation and separation
step in which electron-transfer occurs between the PS* and an e− acceptor/donor; (iii) a
catalytic reaction. Clearly, a photosensitizer plays an important role in the absorption
of solar photons and the injection of the photoexcited electrons into an acceptor in a
photocatalytic reaction.

1.3. A General Scheme for Photosensitizer-Involved Photocatalysis

Figure 2b illustrates a general scheme for a photosensitizer-involved AP reaction. A
ground-state photosensitizer (PS) is excited by sunlight and form PS* via a metal-to-ligand
charge transfer (MLCT), i.e., electron-transfer occurs between the metal orbital and ligand
orbital. PS* then undergoes electron transfer quenching (reductive or oxidative) in the
presence of a donor or an acceptor, i.e., sacrificial agent (SA) resulting in the formation of a
reduced photosensitizer (PS−) or oxidized photosensitizer (PS+). Finally, PS− or PS+ can be
re-oxidized or be re-reduced back to PS in a catalytic reaction for CO2 reduction, hydrogen
generation, or water oxidation [16–18]. However, it is worth noting that there are two
competing side reactions that take place: (i) the PS* decays to PS by heat or a nonradiative
pathway; (ii) back electron transfer occurs between SA− and PS+ or between SA+ and PS−.
Therefore, to improve the overall photocatalytic efficiency, the lifetime of an excited state
PS* must be long enough to overcome these side reactions. Meanwhile, it requires that
PS− or PS+ provides a suitable driving force to make catalysis occurs. In addition, because
solar irradiation (AM1.5G) consists of only ~4% ultraviolet light (λ < 400 nm) and ~43%
near-infrared light (λ > 800 nm) but also ~53% visible light (400 nm < λ < 800 nm), the
ground-state PS should absorb as much visible light as possible to obtain a strong amount
of energy from sunlight [19].

Due to the crucial role of photosensitizer(s) in AP, a comprehensive review on pho-
tosensitizers for solar hydrogen generation was published in 2017 [20]. In this review,
some criteria of evaluating molecular photosensitizers were first described, and then recent
achievements on metal-based photosensitizers and their importance in artificial photosyn-
thesis were summarized and highlighted. The photosensitizers were categorized into two
main families: noble-metal and noble-metal-free complexes. Noble-metal photosensitiz-
ers include ruthenium-, iridium-, and rhenium-based complexes, while noble-metal-free
photosensitizers contain manganese-, iron-, copper-, and other metal-based complexes.

2. Parameters for Evaluating Photosensitizers

Some desirable characteristics for a photosensitizer include: (i) strong absorption
of a distinguished range of the solar spectrum; (ii) a long excited-state lifetime (ns~µs);
(iii) chemical stability in solution; (iv) reversible redox potentials. Therefore, several
parameters are derived to evaluate the performance of photosensitizers.

2.1. UV-Vis Absorption

In metal coordinating complexes, intense absorptions may arise from the transfer
of electronic charges between ligand orbitals and metal orbitals, either ligand-to-metal
charge transfer (LMCT) or metal-to-ligand charge transfer (MLCT). Since ligands for MLCT
usually have vacant, low-lying π* orbitals, such as py, bpy, phen, and other aromatic ligands,
which are widely used in molecular metal photosensitizers, MLCT has been discussed in
previous studies more often than LMCT in photocatalytic processes; hence, herein, MLCT
was the focus. As mentioned previously, charge transfer transition is a critical process
in artificial photosynthesis. For effective utilization of solar light, a basic requirement
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for a photosensitizer is absorbing sunlight over the visible wavelength and initiating
electron transfer from or to its excited state. Using the description above, measuring UV-
Vis absorption is usually the first and one of the most important steps in estimating the
photocatalytic applications of a photosensitizer.

There are two main parameters that can be obtained by the UV-Vis spectrum:
(i) The charge transfer wavelength λ (in nm):

EMLCT

(
cm−1

)
=

107

λ (nm)
(1)

EMLCT (eV) =
EMLCT

(
cm−1)

8065
(2)

(ii) The molar extinction coefficient (or absorption), which is independent of concen-
tration, and calculated by:

ε =
Amax

cl

(
dm3 mol−1 cm−1

)
(3)

where Amax is the maximum absorbance; c is measured in mol dm−3, and the cell path
length, l, is in cm.

2.2. Ground-State Redox Potential

The ground-state redox properties of photosensitizers are important indicators for
photocatalysis. A common method of measuring ground-state redox potentials for metal
complexes is cyclic voltammetry (CV). Generally, CV can reflect the oxidation of the metal
center and the reduction of ligands in a complex. Take the [M(L1)(L2)]n complex, owing to
its MLCT character, as an example [21]. The electron transfer processes are:

(i) Oxidation:
[M(L1)(L2)]

n → [M(L1)(L2)]
n +1 + e− (4)

(ii) Reductions:

[M(L1)(L2)]
n + e− →

[
M
(
L.−

1
)
(L2)

]n −1 (5)[ [
M
(
L.−

1
)
(L2)

]n −1
+ e− → [

[
M
(
L.−

1
)(

L.−
2
)]n −2 (6)

In addition to the oxidation and reduction abilities, the stability of a photosensitizer
is another important consideration, since it must be capable of being regenerated over
multiple turnovers in a photosynthesis reaction. As a result, the reversibility of the above
redox processes, being demonstrated by cyclic voltammetry, is also important.

Since MLCT transition is accompanied by the occurrence of metal oxidation and ligand
reduction, a correlation between the energies of the charge transfer absorptions and the
electrochemical properties is established without considering the solvation and electron
correlation effects:

EMLCT =
∣∣∣E(Mn +1/Mn)

∣∣∣+ ∣∣E(L−/L−
)∣∣ (7)

Evidently, the electrochemical data deconvolve important details, but the value of
EMLCT alone is insufficient to determine whether a photosensitizer is suitable for a photo-
catalysis reaction.

2.3. Steady-State Emission

For a typical metal-based photosensitizer, the radiative quantum yield (Φ) can be
calculated from the ratio between the number of emitted photons and the number of
absorbed photons:

φ =
Iem

Iabs
(8)
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where Iem can be obtained from the steady-state emission spectrum.
According to Lakowicz’s method in Principles of Fluorescence Spectroscopy [22], the

relative quantum yield can be calculated using Equation (9):

Φp = Φref ×
Intp

Intref
×
(
1− 10−Aref

)(
1− 10−Ap

) × η2
p

η2
ref

(9)

where Int is the area under the emission peak; A is the absorbance at the excitation wave-
length; η is the refractive index of the solvent. For the same type of photosensitizers in the
same solvent, the absorbance value A is similar and η is the same, and the above equation
can be simplified as Equation (10):

Φp = Φref ×
Intp

Intref
(10)

2.4. Excited-State Redox Potential

For a multi-component photocatalytic process, the driving force of a photosensitizer
must be adequate. As a result, the value of E([M]n + 1/*[M]n), which reflects the electron-
donating ability, must be more negative than the reduction potential of the catalyst so that
electron(s) can be transferred from the excited state to the catalyst. Conversely, the value
of E([M]n/*[M]n−1), which reflects the electron-accepting ability, must be more positive
than the reduction potential of the catalyst (usually in a high oxidation state) to ensure the
electron transfer occurs to the excited state. In this way, the excited-state redox potentials
for molecular photosensitizers are calculated by the following equations:

(i) Oxidative quenching:

E
(
[M]n +1/[M]n∗

)
= E

(
[M]n +1/[M]n

)
− E0 (11)

E
(
L∗/L−

)
= E

(
L0/L−

)
+ E0 (12)

(ii) Reductive quenching:

E
(
[M]n/[M](n −1)∗

)
= E

(
[M]n/[M]n −1

)
+ E0 (13)

E
(
L−/L∗

)
= E

(
L−/L

)
− E0 (14)

where E
(
[M]n +1/[M]n

)
and E

(
[M]n/[M]n −1

)
are the ground-state potentials. E0 can be

estimated from one of the following methods: (i) the crossover point of the lowest-energy
MLCT absorption band and the corresponding emission band [23]; (ii) the crossover point
of the tangent line of the emission spectrum (left half) with a wavelength axis [24]; (iii) the
first vibronic band in the low-temperature emission spectrum [25] (see details below).

Clearly, the excited-state redox potential is an important indicator for evaluating
photosensitizers, but it should be noted that the calculation of the excited-state redox
potential may have some error because of the uncertainty of E0.

2.5. Lifetime

To simplify our discussion, two states for a photosensitizer after being excited are
shown in Figure 3: the singlet state 1MLCT (S1) and the triplet state 3MLCT (T1). The S1
state can decay to the ground state (S0) via a radiative way, i.e., fluorescence (kr) and/or
a nonradiative way (knr). Afterwards, the singlet-triplet transition happens through in-
tersystem crossing (ISC) with the association of energy loss as heat (kISC). Thereafter, the
T1 state’s decay to the S0 state follows a similar way as the S1 state: a radiative way, i.e.,
phosphorescence (k

′
r) and/or a nonradiative way (k

′
nr). Therefore, these decay constants

(hence, lifetime) are important criteria for evaluating a photosensitizer.
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Generally, the lifetime (τ0) of a photosensitizer is measured by excited-state transient
absorption (TA) spectra and the signal fit to single [24] or triple [26] (depends on the
mechanism of photosensitizers) exponential decay kinetics. To complete a photocatalytic
reaction, the excited-state lifetime must be long enough to overcome the decay process.

τ0 =
1

kr + knr
(15)

where kr = φ0 × k0; knr = (1−φ0)× k0.
Through measuring τ0, kr can be calculated by Equation (16):

kr =
φp

τ0
(16)

Therefore, knr can be calculated by combining Equations (9), (15) and (16) as shown below:

knr =
1−φp

τ0
(17)

2.6. Marcus Electron-Transfer Theory

Since photocatalytic reactions are essentially electron transfer (ET) processes, the
kinetics of ET is governed by Marcus theory, shown in Equation (18).

kET = (
kBT

h
) exp

[
−(λ+ ∆G0)

2

4λkBT

]
(18)

where kB refers to the Boltzmann constant; T is the temperature (K); h refers to Planck’s
constant; λ refers to the reorganization energy. ∆G0 is the driving force of the electron-
transfer reaction as shown below:

∆G0 = Eh (electron donor)− Eh (electron acceptor) (19)

Apparently, increasing the driving force can improve the rate of electron transfer, i.e.,
the rate of catalysis as indicated by the excited-state potential equations and the Marcus
relationship [27]. However, Marcus theory also demonstrates that there is a Marcus inverted
region, where a stronger driving force leads to slower ET rates, hence, there is no normal
standard criterion for photosensitizers for all photocatalytic reactions.
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2.7. Stern-Volmer Quenching

Because of the occurrence of back-electron transfer between photosensitizers and
catalysts, it is necessary to add a sacrificial reagent to most photocatalytic reactions. KSV is
calculated from the emission quenching data as a function of the concentration of persulfate,
which follows the Stern–Volmer relationship:

I0

I
= ksv

[
S2O8

2−
]
+ 1 (20)

where
ksv = τ0 × kq (21)

Using above discussions, the radiative quantum yield of a photosensitizer shows a
dependent relationship with the concentration of a quencher, i.e., [Q]:

φq =
kr

k0 + kq[Q]
(22)

φ0
φq

= 1 +
kq[Q]

k0
(23)

2.8. Turnover Frequency (TOF)

TOF is an essential parameter of a catalyst, reflecting its catalytic activity and per-
formance. A recent review by Xiujuan Wu and Licheng Sun outlined several calculation
methods for evaluating catalysts [28]. It is less common to calculate the TOF for a photo-
sensitizer than for a catalyst but, in some cases, when a standard catalyst is applied, TOF
becomes an important criterion for comparing the performances of different photosensitiz-
ers. From the perspective of a definition, TOF refers to the amount of product converted
from the reactant per mol of the effective photosensitizer per unit time.

TON =
amount of transfered electrons for product(moles)

amount of photosensitizer (moles)
(24)

TOF =
TON

time of reaction
(25)

Since the plot of TON versus time does not usually follow a linear relationship, the TOF
is taken from the pseudo-first-order rate constant, i.e., the maximum photocatalytic rate.

3. Noble-Metal-Based Photosensitizers

Noble metals, such as Ru [29], Ir [30], Pt [31–34], Os [35,36], and Re [37], have been
extensively investigated as photosensitizers for artificial photosynthesis. These complexes
have received wide attention due to the fact of their attractive photophysical electrochemical
properties such as visible-light 1MLCT, long excited-state lifetime, high photocatalytic
driving force, and high catalytic activities.

3.1. Ru-Based Photosensitizers

The ruthenium-polypyridine family is an early-developed photosensitizer [38], and
its fundamental properties and mechanisms have been well investigated [39–43]. Current
research efforts on this family of photosensitizer focus on improving its photochemical
stability, antidecomposition, extreme pH value tolerance, and driving force at various
environmental conditions.

Concepcion et al. developed a series of homoleptic Ru(II) polypyridyl complexes
(Figure 4a), which showed decent photochemical water oxidation performance at pH 1 [24].
By modifying electron-withdrawing groups (i.e., −CF3 and −PO3H2) at the 4, 4′, or 5′

positions of bpy ligands, the redox potentials increased to as high as 1.6 V (vs. NHE) at
pH 1. It is worth mentioning that unlike heteroleptic complexes, the redox potentials of
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which can be increased at the expense of decreasing the excited-state lifetimes [44], some
of these homoleptic Ru(II) polypyridyl complexes presented increased lifetimes from 580
to 731 ns at pH 1. Their studies illustrated that replacing H with electron-withdrawing
groups in homoleptic complexes provides a feasible strategy for designing and synthesizing
high-performing photosensitizers at pH 1. The kinetic isotope effects (KIEs) of the PO3H2-
containing complexes proved the concerted EPT between the photosensitizer and catalyst
for the first time.
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In addition to [Ru(bpy)3]2+-type photosensitizers, [Ru(phen)3]2+ complexes are an-
other family of Ru photosensitizers, but they are more used in CO2 reduction reactions
(CO2RR). However, the excited-state lifetime of raw [Ru(phen)3]2+ complexes is short
(360 ns in CH3CN), resulting in a weakened photocatalytic performance for CO2RR. It has
been proved that adding a conjugated group can improve the excited-state lifetime, but an
improper introduction will make the excited oxidation potentials worse. To address this
problem, Lu et al. creatively synthesized pyrene-modified [Ru(phen)2(L)]2+ photosensi-
tizers (Figure 4b) and realized the fine-tuning of PS properties for efficient CO2 reduction.
The conjugated group, pyrene, greatly improved the sensitizing ability of [Ru(phen)3]2+

complexes. Especially, [Ru(phen)2(3-pyrenylphen)]2+ (Ru-3) showed a moderate excited-
state lifetime (68.2 µs) but a 17 times larger TOF than [Ru(phen)3]2+ with a large TON
of 66,480 [45]. Their study clearly illustrated the importance of balancing lifetime and
potential in improving the overall performance of photocatalytic systems.

In recent years, multielectron accumulation has been considered an effective strategy
for improving photocatalytic performance. Several studies have shown that naphtha-
lene [46], anthraquinone [47], and dipyrido-[3,2-a:2′,3′-c]phenazine (dppz) [48] own the
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electron-storage ability and can enhance the efficiency of light-driven processes. These bent-
bridging-ligands involve ruthenium complexes; however, they usually require ingenious
design of molecular structures and smart synthesis procedures for ligands. On the founda-
tion of dppz-based complexes, Dietzek and Kerlidou et al. modified a pyridoquinolinone
subunit on dppz (Figure 4c) [49] aimed at realizing electron accumulation by extending the
π system. Various methods proved the 2e−/2H+ mechanism of this photosensitizer and
demonstrated its potential applications in producing H2O2.

3.2. Ir-Based Photosensitizers

Although Ru-based photosensitizers have shown vast potential in solar energy con-
version, their poor photostability limit their application. In responding to this problem, Ir
(III) complexes have drawn particular attention in replacing Ru (II) complexes over the
past decade. In 2018, Bernhard et al. thoroughly reviewed Ir (III)-type photosensitizers [50];
hence, this review focused only on the development of Ir photosensitizers thereafter.

[Ir(ppy)2(bpy)]+ and its derivatives (Figure 5a) have been extensively studied as pho-
tosensitizers for energy conversion due to the fact of their decent photostability. Based on
these studies, in 2020, Dietzek et al. developed and studied a series of iridium complex–
polyoxometalate (POM) dyads, Ir-POMM, which have shown high efficiency in photocat-
alytic hydrogen evolution reactions [51,52]. By changing the central metal of POM from
Mn3+ to Fe3+ to Co3+, the yields of charge-separated state Ir+-POMM

− (i.e., the rate-limiting
intermediate) decreased, while the lifetime increased from 290 to 540 ps. A photoinduced
electron transfer dynamics study illustrated that the catalytic capacity decreased in the
order Ir-POMMn > Ir-POMCo > Ir-POMFe, which was in the same order of the yields of
Ir+-POMM

−, demonstrating the high impact of yield on the catalytic capacity.
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In 2021, Teets et al. prepared a series of β-diketiminate-modified (NacNac) iridium
complexes as demonstrated in Figure 5b. The electron-rich NacNac ligands dramatically
improved the photoinduced electron transfer rate, as indicated by the decreased excited
redox potential from −2.1 to −2.5 V (vs. Fc+/Fc), making various challenging photoredox
reactions occur under moderate conditions with high yield [53,54]. Later, they further
improved the photocatalytic performance by replacing ppy with ptz and pmb, all of which
presented significant excited redox potentials in the range of −2.4 to −2.8 V [55]. Their
studies put forward practical proposals for designing novel photosensitizers with high
efficiency and feasible photostability.
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3.3. Re-Based Photosensitizers

Rhenium photosensitizers are usually found in the family of [Re(bpy)(CO)3Cl] com-
plexes. Ishitani et al. developed a series of highly efficient rhenium(I) trinuclear photosen-
sitizers (Figure 6a) for photocatalytic CO2 reduction [56]. As a consequence of the efficient
reductive quenching of the Re-ring by triethanolamine and fast electron transfer, the CO2
reduction process showed high photocatalytic efficiencies. A summary of the characteristics
and properties of Re(I) diimine complexes weree published by Ishitani et al. in 2017 [57].
In 2020, by modifying the [Re(bpy)(CO)3Cl] complex with an anchoring group, -PO3H2
(Figure 6b), Hamm et al. successfully loaded it with a cobalt catalyst, [Co(DMTPy-O-benzyl-
3,5-bis(MePO3H)], on ZrO2, demonstrating the possibility of constructing heterogeneous
photocatalytic systems using Re photosensitizers [58].
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Recently, Fernandez-Terán et al. reported the feasibility of tuning the properties of
rhenium(I) tricarbonyl complexes through changing the substituent with various groups
(i.e., CN, CF3, Br, H, OMe, and NMe2) as shown in Figure 6c. It was found that the complex
with the most electron-donating group, NMe2, showed a notable lifetime of 380 ns and a
TON of over 2100 [59]. This is the first example of applying the 3ILCT state of a rhenium(I)
tricarbonyl complex as a stable photosensitizer.

These studies implied that Re-based complexes are good candidates for replacing
ruthenium as photosensitizers for stable photocatalytic reactions.

Table 1 summarized the properties of noble-metal-based photosensitizers in this
review, as shown below.

Table 1. Summary of the properties of the partial noble-metal-based photosensitizers in this review.

Photosensitizer Solvent * E1/2
(V)

λabs
(nm)

λem
(nm) τavg Φ TON h TOF h Reference

[Ru(bpy)3]2+ 0.10 M HClO4 1.26 a 454 611 580 ns 0.042 / / [24]
[Ru(4-CF3-4′-PO3H2-bpy)3]2+ 0.10 M HClO4 1.60 a 461 624 667 ns 0.0334 75 0.24/s [24]
[Ru(4-CF3-5′-PO3H2-bpy)3]2+ 0.10 M HClO4 1.60 a 468 640 222 ns 0.0123 90 0.19/s [24]

[Ru(4-PO3H2-bpy)3]2+ 0.10 M HClO4 1.34 a 458 628 534 ns 0.0379 70 0.21/s [24]
[Ru(5-PO3H2-bpy)3]2+ 0.10 M HClO4 1.34 a 467 640 147 ns 0.0128 55 0.21/s [24]

[Ru(4-CF3-bpy)3]2+ 0.10 M HClO4 1.51 a 455 617 731 ns 0.0141 85 0.21/s [24]
[Ru(5-CF3-bpy)3]2+ 0.10 M HClO4 1.53 a 464 630 258 ns 0.0238 140 0.24/s [24]

[Ru(phen)3]2+ CH3CN 1.29 b 447 595 0.4 µs / 66 5.5/10 h [45]
[Ru(phen)2(5-pyrenylphen)3]2+ CH3CN 1.36 b 447 595 32 µs / 452 37.6/10 h [45]
[Ru(phen)2(3-pyrenylphen)3]2+ CH3CN 1.36 b 391 632 68.2 µs / 1120 93.3/10 h [45]

[Ru(phen)2(3-pyrenyl
ethynylenephen)3]2+ CH3CN 1.40 b 415 668 118.7 µs / 120 10/10 h [45]

[Ru(bpy)2(dppz)]2+ CH3CN 0.84 c,e 450 / / / / / [49]
[Ru(bpy)2(oxo-dppqp)]2+ CH3CN 0.86 c,e 417 / / / / / [49]

[Ir(ppy)2(bpy)]+ CH3CN 1.25 d / 585 / / 275 / [50]
[Ir(ppy)2(phen)]+ CH3CN 1.24 d / 579 / / 195 / [50]

[Ir(ppy)2(dphphen)]+ CH3CN 1.23 d / 587 / / / / [50]



Catalysts 2022, 12, 919 11 of 21

Table 1. Cont.

Photosensitizer Solvent * E1/2
(V)

λabs
(nm)

λem
(nm) τavg Φ TON h TOF h Reference

[Ir(ppy)2(NacNacCy)]+ CH3CN −0.39 c / / / / / / [54]
[Ir(ppy)2(NacNac NMe2)]+ CH3CN −0.26 c 511 f 634 0.75 µs 0.16 / / [53]

[Ir(ppy)2(NacNacMe)]+ CH3CN −0.07 c 460 f 595 0.2 µs 0.053 / / [53]
[Ir(ppy)2(NacNacOEt)]+ CH3CN 0.03 c 456 f 571 2 µs 0.23 / / [53]
[Ir(ptz)2(NacNacNMe2)]+ CH3CN −0.22 c 380 576 0.13 µs 0.025 / / [55]

[Ir(ptz)2(NacNacCy)]+ CH3CN −0.41 c 375 642 0.068 µs 0.0032 / / [55]
[Ir(pmb)2(NacNacNMe2)]+ CH3CN −0.26 c 430 591 0.85 µs 0.039 / / [55]

[Ir(pmb)2(NacNaccy)]+ CH3CN −0.43 c 439 675 0.12 µs 0.0027 / / [55]
[{Re(4-dmbpy)(CO)2(η2-

dppe)}s3]3+ DMF −1.73 g 398 598 1.57 µs 0.12 19.68 / [56]

[{Re(5-dmbpy)(CO)2(η2-dppe)}3]3+ DMF −1.82 g 390 561 2.32 µs 0.36 14.2 / [56]
[{Re(4,5-dmbpy)(CO)2(η2-

dppe)}3]3+ DMF −1.91 g 384 545 3.58 µs 0.60 6.31 / [56]

[{Re(4-OMebpy)(CO)2(η2-
dppe)}3]3+ DMF −1.89 g 380 543 7.77 µs 0.66 2.13 / [56]

Re(CN-Phtpy)(CO)3Cl DMF −1.61 c 389 667 0.582 ns / / / [59]
Re(CF3-Phtpy)(CO)3Cl DMF −1.66 c 387 666 0.79 ns / / / [59]
Re(Br-Phtpy)(CO)3Cl DMF −1.70 c 382 663 1.35 ns / / / [59]
Re(H-Phtpy)(CO)3Cl DMF −1.73 c 380 652 1.53 ns / 580 ~2.5/s [59]

Re(OMe-Phtpy)(CO)3Cl DMF −1.77 c 378 647 2.26 ns / / / [59]
Re(NMe2-Phtpy)(CO)3Cl DMF −1.81 c 425 532 380 ns / 2130 ~150/s [59]

* Measurements were performed on the listed solvent unless otherwise noted. a Potential versus NHE in 0.1 M
HClO4. b Ferrocene (Fc) was used as an internal reference (E1/2 = + 0.40 V (Fc+/Fc) vs. SCE). c Potential vs. Fc+/0.
d Potential vs. SCE. e In DMF. f In THF. g Potential vs. Ag/AgNO3. h 20 µM PSs.

4. Noble-Metal-Free Photosensitizers

Over the last decade, the investigation of photosensitizers based on nonprecious
transition metals dramatically increased owing to their favorable (photo)physical properties,
high earth abundancy, and low cost. Table 2 shows the earth abundancy of the metal
elements mentioned in this review. However, due to the fact of these photosensitizers’
feature of unwanted nonradiative decay, they generally perform worse than noble-metal-
based photosensitizers in terms of photophysical properties (i.e., MLCT and lifetime) and
redox potential [60]. Nevertheless, nonprecious transition metal complexes have shown
highly attractive potentials in photocatalytic hydrogen production and CO2 reduction [61].
In the subsequent sections, recent advances in noble-metal-free photosensitizers from low
atomic number to high atomic number are summarized.

Table 2. Earth abundance (in mass percent) of the metal elements mentioned in this review [62].
Adapted with permission from J. Am. Chem. Soc. 2018, 140, 42, 13522–13533. Copyright 2018
American Chemical Society.

Element Abundance Element Abundance

Ru 10−6 Mn 0.091
Re 10−7 Fe 4.7
Os 5× 10−7 Ni 7.2× 10−3

Ir 10−7 Cu 0.005
Pt 10−6 Zn 0.007

4.1. Mn-Based Photosensitizers

Manganese plays an essential role in absorbing light in natural photosynthesis process;
hence, it has inspired the development of Mn-based nanomaterials for photocatalysis [63–66].
However, due to the fact of their intrinsic nonradiative decay of excited states, it is still a
grand challenge to make Mn-based complexes luminescent and photoactive.

Wenger et al. recently reported a family of novel isocyanide Mn(I) complexes, [Mn(Lbi)3]+

and [Mn(Ltri)2]+, that exhibited the first example of manganese complexes with luminescent
MLCT and photo-reactivity at room temperature [67,68] as shown in Figure 7. This series of
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Mn-based homoleptic photosensitizers is air-stable and nontoxic, and the redox potential of
Mn(I/II) is reversible. Spectrum studies gave a 1MLCT absorption wavelength at ~390 nm
and an emission wavelength at ~500 nm. These complexes have been successfully applied
in energy conversion reactions. Unlike traditional energy transfer pathways (i.e., MLCT,
LMCT, and MC excited states), their study provide the attractive possibility of realizing the
triplet-energy-transfer photo-reactivity by a ligand-centered π–π* state.
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Currently developed Mn-based complexes are not comparable with traditional noble-
metal-based photosensitizers in terms of excited-state lifetime or driving force for photo-
catalytic reactions, but these studies open new avenues to exploring cheap bio-inspired
molecules for artificial photosynthesis.

4.2. Fe-Based Photosensitizers

Iron is the most earth-abundant transition metal element [62]. Therefore, in recent
years, much attention has been paid toward developing Fe-based photosensitizers con-
sidering their low cost. Inspired by Ru(II) polypyridyl complexes, which show decent
photophysical properties [38], iron(II) polypyridyl photosensitizers have been widely stud-
ied [69–74].

Kunnus et al. recently reported a series of [Fe(NˆN)(CN)4]2−-type photosensitiz-
ers, where NˆN represents 2,2′-bipyridine (bpy); 2,3-bis(2-pyridyl)pyrazine (bpyz); 2,2′-
bipyrimidine (bpym), respectively (Figure 8a), and studied the solvent effect on the chemical
properties as well as the MLCT excitation energy dependence of the 3MLCT lifetime. Fem-
tosecond transient absorption (TA) data and td-DFT calculations revealed the tunability
of the excited-state relaxation mechanisms and charge transfer lifetimes, which increased
from 0.22 to 16.9 ps with an increasing number of nitrogen in the ligand.
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In addition to iron(II) polypyridyl complexes, iron (II) N-heterocyclic carbene (NHC)
complexes (Figure 8b) have been extensively investigated as photosensitizers [75–79].
The strong bonding between ion and the carbene ligands leads to increased ligand-field
splitting, resulting in the destabilization of the MC states. As a consequence, Fe(II)-NHC-
type photosensitizers present prominent properties such as long excited-state lifetimes and
high charge transfer abilities [77]. Bauer et al. studied the relationships between the number
of NHC ligands and the photophysical properties of Fe photosensitizers. An increasing
trend in the 3MLCT lifetime was found when there was an increase in the number of
NHC ligands [78]. In their follow-up study, the excited-state dynamics of [FeII(tpy)(pyz-
NHC)]2+ was investigated. The results of intersystem crossing and triplet dynamics further
interpreted the excellent performance of Fe(II)-NHC photosensitizers.

At present, the photophysical properties and stability of Fe-based photosensitizers
are not comparable to Ru-based complexes. However, its high earth-abundancy and low
cost attract continuous attention. Future work on Fe-based photosensitizers will focus on
extending their charge-separated state and improving their photostability.

4.3. Cu-Based Photosensitizers

Copper-based photosensitizers have been popular since the 1970s because of their
MLCT nature and high earth abundancy [80–84]. With the extensive study of copper
complexes, Cu-based photosensitizers possessing considerable properties and good per-
formances have increasingly been developed. Unlike other abundant transition metals,
copper complexes have a filled d subshell, which blocks the formation of a metal-centered
excited state. Therefore, many copper (I) complexes show MLCT luminescence [60]. As a
result of its sustainability and photophysical properties, in recent years, copper is replacing
ruthenium for use as molecular photosensitizers in dye-sensitized solar cells (DSSCs) [85].
Housecroft and Constable have reviewed the progress of copper(I)-containing DSSCs [86].

Mulfort et al. developed and studied a series of copper(I) diimine photosensitizers
based on the HETPHEN method [87,88] and immobilized these photosensitizers on the
metal oxide surface via carboxylate groups [26]. The CuHETPHEN strategy provides
many more possibilities for tuning the structures and properties of copper photosensitizers.
These discoveries related to copper complexes promote important improvements in Cu-
based photosensitizers and further increase their potential applications in the solar energy
conversion industry. The photochemical processes of copper-based photosensitizers have
been well explored by advanced technologies such as spectroscopics [89–92]. In general,
ground-state copper complex is excited into a singlet MLCT state, which then undergoes
a flattening distortion and becomes triplet MLCT state. Depending on the coordination
ability of the solvent, the 3MLCT state complex may or may not bind the solvent molecule.
After experiencing a strong interacting, the complex recovers to the ground state as shown
in Figure 9. Chen et al. reviewed the photocatalytic mechanisms of copper(I) diimine
complexes and their developments and applications in solar energy conversion in 2015 [93].

From a chelating element perspective, there are four types of copper (I) photosen-
sitizers: Cu(NˆN)(NˆN), Cu(NˆN)(PˆP), Cu(NˆN)(NˆP), and Cu(NˆP)(NˆP) as shown in
Figure 10a. In terms of Cu(NˆN)(NˆN)-type photosensitizers, Hadt et al. quantified the
entatic effects of several [Cu(phen-X)2]+ complexes, where X are the 2,9-alkyl substitutions,
and correlations were found between the lifetime, the excited-state relaxation energy, the
reorganization energy, and the energy gap [94]. Castellano et al. successfully prepared
various Cu-phen MLCT photosensitizers featuring bulky substituents. Impressive photo-
physical properties (τ = 1.5 µs, Φ = 2.6% in acetonitrile) were discovered when use dchtmp
as the ligand. Their C−C radical coupling photochemistry strategy broke through the
traditional limit of steric bulk possibility for homoleptic Cu(I) complexes [95,96].
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In recent years, scientists have aimed at replacing nitrogen with phosphines in
transition-metal-based photosensitizers. Generally, the introduction of phosphines usually
brings about a higher stability and lower redox potentials [97–102]. Karnahl et al. pre-
pared a hetero-bidentate PˆN ligand, phox, and improved the performance of Cu-based
photosensitizers [100]. Ishitani et al. synthesized [Cu(dmp)(DPEphos)]+ complexes, where
DPEphos is 2-(diphenylphosphino)phenyl]ether, for photocatalytic CO2 reduction. By com-
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paring the properties of a series of [Cu(NˆN)(DPEphos)]+ photosensitizers, the influences
of expending π-systems were discovered [103]. Dietzek et al. [91] and Karnahl et al. [104]
recently studied the extended π-system effect on the properties of [Cu(xant)(dppz)]+ and
[Cu(xant)(dmdppz)]+. The extended π-system provided unusual properties such as broad-
ening and a red-shift of the MLCT absorption and a prolonged lifetime. Dietzek et al.,
in particular, studied the effect of the electronic structures of Cu(I) photosensitizers con-
taining phosphines [105]. Their study on the Franck−Condon region of heteroleptic Cu(I)
complexes provides new theoretical principles for designing Cu-based photosensitizers.
Bruggeller et al. recently reviewed the development of photosensitizers with phosphines
and summarized the influence of phosphines on the properties of photosensitizers [106].

Among the aforementioned noble-metal-free complexes, the copper family has the
greatest potential to replace noble-metal photosensitizers as indicated by their promising
photophysical properties such as long lifetimes. Nevertheless, their poor chemical stability
and environmental sensitivity (to pH value, humidity, etc.) impede their broad applications
in energy conversion. Efforts towards improving these properties will be the focus of
future research.

4.4. Other Photosensitizers

Other types of metal-based photosensitizers are less common than manganese, iron,
and copper. Inspired by natural photosynthesis, many of these photosensitizers (Figure 11)
are based on porphyrin and its derivatives, which itself is a biomimetic light-harvesting
molecule [107–109]. Poddutoori et al. reviewed unique aluminum (III) porphyrin com-
plexes, which can act as either electron donor or electron acceptor in donor–acceptor
systems because of their redox and optical properties [110]. Park et al. creatively de-
signed positively charged Zn and neutral Sn porphyrins complexes, [ZnTMePyP4

+]Cl4 and
Sn(OH)2TPyP, Sn(Cl2)TPP-[COOMe]4, and Sn(Cl2)TPP-[PO(OEt)2]4, as photosensitizers
for H2 evolution. Their study clearly demonstrated the influence of pH value as well
as solution concentration. It also showed that the photocatalytic process can be realized
by oxidative quenching of the photosensitizer [111]. The results of this study shed light
on designing and synthesizing metal-containing photosensitizers based on porphyrin.
Willner et al. developed an all-DNA system with Zn (II)-protoporphyrin IX (ZnIIPPIX)
as a photosensitizer [112]. In this mimic PSI system, ZnIIPPIX presented effective pho-
toinduced electron transfer (ET). Their report provides a versatile approach for designing
supramolecular photosensitizers.
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Detailed parameters for some of above noble-metal-free photosensitizers are summa-
rized in Table 3.
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Table 3. Summary of the properties of the partial noble-metal-free photosensitizers in this review.

Photosensitizer Solvent E1/2 (V) λabs (nm) λem (nm) τavg Φ Reference

[Mn(Lbi)3]+ CH3CN 1.05 a 385 485 0.74 ns 0.05% [68]
[Mn(Ltri)2]+ CH3CN 1.00 a 395 525 1.73 ns 0.03% [68]

[Fe(bpy)(CN)4]2− CH3OH / 514 b / 0.22 ps / [113]
[Fe(bpyz)(CN)4]2− CH3OH / 590 b / 0.61 ps / [113]
[Fe(bpym)(CN)4]2− CH3OH / 608 b / 16.9 ps / [113]

[Fe(tpy)(dipp-NHC)]2− CH3CN 0.56 c 379, 503, 538 / / / [78]
[Fe(isp-NHC)2]2− CH3CN 0.43 c 392, 458 / / / [78]

[Fe(bpyz)(dipp-NHC)]2− CH3CN 0.46 c 376, 409, 466,
506, 538 / / / [78]

[Cu(dsbtmp)2]+ CH3CN 0.428 c 445 649 1.5 µs 2.9% [95]
[Cu(dchtmp)2]+ CH3CN 0.43 c / 650 1.5 µs 2.6% [95]
[Cu(sbmpep)2]+ CH2Cl2 0.69 c 491 687 1.4 µs 2.7% [96]

[Cu(xant)(dppz)]+ CH3CN 0.815, 1.026 c 376, 394 / 4380 ns / [104]
[Cu(xant)(dmdppz)]+ CH3CN 0.926, 1.228 c 383, 400 / 1250 ns, 3785 ns / [104]
[Cu(xant)(dmphen)]+ CH3CN 0.82 c 378 / 64 ns / [104]
[Cu(DPEphos)(bcp)]+ CH3CN / 384 590 0.99 µs 2.7% [103]

[ZnTMePyP4
+]Cl4 1:1 CH3CN/H2O 1.28 d 438 627/667 85 µs / [111]

Sn(OH)2TPyP 1:1 CH3CN/H2O 1.38 d 417 597/650 78 µs / [111]
Sn(Cl2)TPP-[COOMe]4 1:1 CH3CN/H2O 1.29 d 425 604/660 70 µs / [111]

Sn(Cl2)TPP-[PO(OEt)2]4 1:1 CH3CN/H2O 1.32 d 424 605/659 / / [111]

a Data obtained in dichloromethane at 20 ◦C, potential versus SCE in CH3CN. b Data were calculated from 1240
Ev(ev) .

c Potential versus Fc+/0 standard in CH3CN. d Potential versus Fc+/0 standard in DMF.

5. Conclusions and Outlook

This review endeavored to summarize the evaluating parameters and recent work on
metal-based molecular photosensitizers. Noble-metal-based photosensitizers, such as ruthe-
nium, iridium, and rhenium, are the most investigated metal-based photosensitizers and many
reviews on these photosensitizers are available; hence, here, recent advances in noble-metal-
based photosensitizers were briefly reviewed. These photosensitizers, however, are scarce,
expensive, and toxic to humans. Thus, noble-metal-free photosensitizers have become research
hotspots in the solar energy conversion field. Due to the fact of their valuable photophysical
properties and their charge-separation ability to induce photochemistry, manganese, iron, and
copper, they have recently received particular attention. Some photosensitizers were found
to be active, but further work in promoting their higher efficiency and stronger stability as
well as a greater understanding of their mechanisms are needed for their large-scale industrial
application. In addition to the metal-based photosensitizers that were highlighted in this
review, biomolecular photosensitizers, such as from natural bacterial sources, are another
attractive alternative to expensive metal-based photosensitizers.
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