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Abstract: Ethanol has been widely used as a clean fuel, solvent, and hydrogen carrier. Cur-
rently, ethanol is generally produced through fermentation of starch- and sugarcane-derived sugars
(e.g., glucose and sucrose) or ethylene hydration. Its production from abundant and inexpensive
lignocellulosic biomass would facilitate the development of green and sustainable society. Biomass-
derived carbohydrates and syngas can serve as important feedstocks for ethanol synthesis via
biological and chemical pathways. Nevertheless, the biological pathway for producing ethanol
through biomass-derived glucose fermentation has the disadvantages of long production period
and carbon loss. These issues can be effectively mitigated by chemocatalytic methods, which can
readily convert biomass to ethanol in high yields and high atomic efficiency. In this article, we review
the recent advances in chemocatalytic conversion of lignocellulosic biomass to ethanol, with a focus
on analyzing the mechanism of chemocatalytic pathways and discussing the issues related to these
methods. We hope this mini-review can provide new insights into the development of direct ethanol
synthesis from renewable lignocellulosic biomass.

Keywords: biomass; cellulose; ethanol; chemocatalytic conversion

1. Introduction

Ethanol is an important energy and chemical source, the annual production of which
is expected to exceed 130 billion liters worldwide [1]. Compared to the fossil fuels such
as ethylene, it is more sustainable to produce bioethanol from renewable biomass. First-
generation bioethanol is produced from high-quality food-based feedstocks featuring
starch (e.g., potato, and corn) and/or sugar (e.g., sugar cane, and sugar beet), whereas
second-generation bioethanol is derived from lignocellulosic biomass [2]. In both cases, the
processes involve pretreatment (or fractionation), hydrolysis to sugars (not required for
sugar cane), and alcoholic fermentation of sugars [3]. Typical pretreatments include physi-
cal (e.g., milling, ultrasonication, steam explosion) [4] and chemical (e.g., dilute acid [5],
organosolv [6,7] and hydrotrope [8,9] solvent treatments, as well as reductive fractiona-
tion [10,11]) processes. The obtained carbohydrate pulp or extracted starch (or sugars) are
ideal sources for industrial-scale production of bioethanol via enzymatic saccharification
followed by fermentation. For instance, with the high-quality biomass inputs, little pre-
treatment (milling and/or sugar extraction) is required to afford relatively high bioethanol
yields of 70–75, 400 and 430 L/t from sugar cane, maize, and rice (first-generation biomass
sources), respectively [12,13]. The conversion of corn stover, sugarcane bagasse, mixed
papers, and poplar (second-generation biomass sources) after delignification (fractiona-
tion) can also give various bioethanol yields of 362–456, 318–500, 439, and 419–456 L/t,
respectively [13–15].

For the consideration of food safety and the availability of feedstocks, production of
ethanol from abundant lignocellulosic biomass has been intensively studied worldwide
for years [16]. In general, ethanol is produced via fermentation of glucose that can be
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derived from starch, sucrose, and cellulose. The technology for production of ethanol from
food-based feedstocks such as starch and sucrose is quite mature, while production of
ethanol from lignocellulosic biomass still has some issues [17]. First, glucose is required
to release from lignocellulosic biomass for fermentation but this process requires energy-
intensive pretreatments and costly cellulolytic enzymes; in addition, enzymatic hydrolysis
of cellulose and fermentation of glucose to ethanol take days, so it is necessary to shorten
the processing time and increase processing efficiency. Second, enzymes are sensitive
to temperature; high temperature cannot be used to accelerate the enzymatic hydrolysis
rate because it will inhibit the activity of enzymes and even denature enzymes [18,19].
Despite the fact that acid catalysts (e.g., traditional mineral acids and solid acid catalysts)
are also widely studied for cellulose hydrolysis, acid-catalyzed cellulose hydrolysis can
lead to further degradation of glucose (e.g., 5-hydroxymethylfurfural (HMF) formation
via dehydration) due to the unselective catalytic activity [20–23]. Further studies should
be dedicated to developing novel catalysts to improve the yield and selectivity of glucose
during cellulose hydrolysis with low cost, as well as developing effective technologies for
the post-treatment of cellulose hydrolysate to be compatible with the yeasts. Third, the
theoretical yield of ethanol resulting from glucose fermentation is limited to 67%, due to the
loss of carbon as CO2 for the metabolic need of yeasts [17]. Fourth, yeasts are very sensitive
to ethanol concentration; high ethanol concentrations will restrict the activity of yeasts.
To overcome these issues of the biological process, chemocatalytic conversion of biomass-
derived carbohydrates (polysaccharides or monosaccharaides) and syngas to ethanol is
receiving increasing attention. A chemocatalytic method allows the production of ethanol
in higher yields without deactivating the catalyst [24] and avoids the long fermentation
cycle and carbon loss related to the biological process (Figure 1) [25]. Therefore, this review
mainly introduces the progress in chemocatalytic production of ethanol from lignocellulosic
biomass. We analyze the mechanisms of these methods and discuss the issues and prospects
associated with these methods.
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Figure 1. The production of ethanol via biological and chemical pathways.

2. Chemocatalytic Conversion of Biomass-Derived Carbohydrates to Ethanol

Generally, chemical conversion of cellulose (the major carbohydrate component of lig-
nocellulose) to ethanol undergoes the hydrolysis of cellulose to glucose (or its derivatives)
and the retro-aldol reaction of glucose to a two-carbon intermediate, glycolaldehyde, which
is subsequently hydrogenated to ethanol. Glycolaldehyde (GA) is very active and easy to
undergo aldol condensation with itself or other saccharides to form byproducts, reducing
the ethanol yield [26]. Due to the instability of glycolaldehyde, current chemocatalytic
methods center on maximizing the production of glycolaldehyde for the subsequent hydro-
genation process. Based on the production mechanism of glycolaldehyde, chemocatalytic
methods can be categorized into one-step and two-step processes.

2.1. Two-Step Process

The W-containing compounds have been considered as the highly active and selective
catalysts for glycolaldehyde formation via C–C cleavage of cellulose especially at an ele-
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vated temperature (>200 ◦C) [27]. To stabilize the formed glycolaldehyde, Zhang et al. [28]
conducted the retro-aldol reaction of cellulose with the WOx + CMK-3 (a physical mixture
of WOx and CMK-3) catalyst in an oxygen atmosphere at 240 ◦C for 2 h, where glycolalde-
hyde could undergo readily oxidation upon its formation followed by esterification with
methanol to form methyl glycolate (MG) with a yield of up to 57.7 C% (Figure 2a). By
following the same conditions (1 MPa O2, 240 ◦C, and 2 h), the supported W2C/CMK-
3 catalyst could also give high MG yields of 35.5 and 49.1 C% from glucose and Birch,
respectively [28]. Due to the superior activity of Cu-based catalyst for the C–O bond hydro-
genation compared to the C–C bond hydrogenolysis [29], MG was further hydrogenated
under 3 Mpa H2, and 280 ◦C with Cu/SiO2 as a catalyst (Cu nanoparticles with 2–3 nm
size were highly dispersed on SiO2 support) to make ethanol (Figure 2b; Table 1, entry 1).
An ethanol yield of 29 C% with a selectivity of 50% was achieved [28].
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tion.

Table 1. Chemocatalytic conversion of biomass-derived carbohydrates to ethanol.

En. Substrate
Substrate
Loading,

wt%
Solvent/Catalyst

Catalyst
Loading,

wt%

P(H2),
Mpa

Reaction
Tempera-

ture,
◦C/Time, h

Ethanol
Yields, C% Ref.

1 MG 10 THF, Cu/SiO2 10 3 280 29.0 [28]
2 MG 10 Methanol, 0.1 Pt-Cu/SiO2 10 3 230 76.7 [30]
3 MG 10 Methanol, Cu/SiO2 10 3 230 23.1 [30]
4 Cellulose 1 H2O, H2WO4-Pt/ZrO2, 0.25/0.5 4 230/5 32.0 [31]
5 Cellulose 1.5 H2O, 0.1Mo/2Pt/WOx 1 6 265/2 43.2 [32]
6 Cellulose 10 H2O, 0.1Mo/2Pt/WOx 1 6 245/2 25.6 [32]
7 Cornstalk 1.5 H2O, 0.1Mo/2Pt/WOx 1 6 245/2 25.5 [32]
8 Miscanthus 1.5 H2O, 0.1Mo/2Pt/WOx 1 6 245/2 26.3 [32]
9 Birch 1.5 H2O, 0.1Mo/2Pt/WOx 1 6 245/2 29.0 [32]

10
Alkaline-

pretreated
miscanthus

1.5 H2O, 0.1Mo/2Pt/WOx 1 6 245/2 41.3 [32]

11 Cellulose 1 H2O,
5Ru-25WOx/HZSM-5 1 3 235/20 76.8 [33]

12 Cellulose 1
H2O,

5Ru-25WOx/HZSM-5 +
5Ru/WOx

1/1 3 235/20 87.5 [33]

13 Cellulose 1 0.06 M H3PO4 aqueous
solution, Ni@C-700 0.375 5.5 200/3 69.1 [34]

14 Cellobiose 1 0.06 M H3PO4 aqueous
solution, Ni@C-700 0.375 5.5 200/3 39.6 [34]

15 Glucose 1 0.06 M H3PO4 aqueous
solution, Ni@C-700 0.375 5.5 200/3 35.4 [34]

To selectively obtain the intermediate MG, the generation rate of glycolaldehyde
should be comparable to the consumption rate of glycolaldehyde to MG in order to avoid
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the accumulation and condensation of glycolaldehyde. In this process, O2 was used to ma-
nipulate the kinetics of the reaction process. In the presence of O2, no (hemi)acetal products
of glycolaldehyde were detected, which indicated O2 suppressed the (hemi)acetalization
of glycolaldehyde via oxidizing the unstable hemiacetal intermediate products into stable
compounds such as MG [35]. By further studying the reaction kinetics over WOx catalyst
in N2 and O2, Zhang et al. [28] observed that the formation rate of MG from cellulose under
O2 atmosphere (7.7 mmol molW−1 s−1) was two orders of magnitude faster than that of
the reaction under N2 atmosphere (0.07 mmol molW−1 s−1). In addition, a lower reaction
temperature or the presence of water in methanol reduced the yield of MG, but the authors
did not explain the specific reasons for the effect of these factors on the catalytic system.
According to the formation mechanism of products [36], we speculated that the change in
these factors could facilitate the isomerization of glucose to fructose which subsequently
underwent another retro-aldol reaction pathway to form glycolaldehyde and dihydroxy-
acetone, and further to lactic acid and acetic acid. Although methanol as a solvent in this
system could effectively improve the hydrothermal stability of the catalyst, methanol could
be problematic at large-scale implementation due to its toxicity and volatility. Furthermore,
the purification and separation of the intermediate MG may be energy-intensive.

Zhang et al. [30] believed that side reactions during the conversion of cellulose to
MG was inevitable while the yield of ethanol from MG could be further improved by
optimizing the catalyst system. In order to obtain higher ethanol yield, they developed a
novel composite catalyst, Pt-Cu/SiO2. In this catalyst, Pt and Cu formed a special single-
atom alloy (SAA) structure where Pt atoms were completely isolated by surrounding Cu
atoms. The SAA structure could also promote the dispersion of Cu atoms, which gave the
catalyst a larger specific surface area and better catalytic efficiency than Cu/SiO2 catalyst
without SAA structure [30]. In addition, Pt effectively improved the yield of ethanol by
activating H2 and inhibiting C-C bond cleavage. With the 0.1Pt-Cu/SiO2 catalyst (Table 1,
entry 2), the yield of ethanol from MG reached up to 76.7 C% at 230 ◦C which was higher
than that of the Cu/SiO2 catalyst (the yield was 23.1 C% at 250 ◦C; Table 1, entry 3). Also,
the catalyst did not lose activity during 700-h operation. The proposed reaction pathways
were shown in Figure 3.
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In summary, the two-step processes involve multiple catalysts and intermediates,
which could be inefficient and energy-intensive. Therefore, the processes that can convert
cellulose to ethanol in one pot were also studied.
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2.2. One-Pot Approach

Differently from the two-step process, the one-pot approach can stabilize the unstable
intermediate glycolaldehyde via hydrogenation. When glycolaldehyde was generated
via the retro-aldol reaction of glucose under an acidic [31] or alkaline [37] condition, it
was readily hydrogenated to a stable intermediate, ethylene glycol (EG). However, in
such a hydrogenation environment, glucose could be hydrogenated to sorbitol, which was
unable to undergo the retro-aldol reaction to form glycolaldehyde due to the lack of a
carbonyl group; therefore, it was important to prepare a suitable bifunctional catalyst that
could readily catalyze the retro-aldol reaction of glucose to avoid the hydrogenation of
glucose to sorbitol and, meanwhile, selectively convert the formed glycolaldehyde to EG.
Wang et al. [31] reported a novel one-pot method for direct conversion of cellulose into
ethanol in an aqueous medium with H2WO4-Pt/ZrO2 as a catalyst (Table 1, entry 4). The
highest ethanol yield of 32 C% was achieved from cellulose under 4 MPa H2 and 250 ◦C
for 5 h, together with the formation of EG, propanol, 1,2-propanediol and alkanes (a total
carbon balance of 89–96%). In the presence of H2WO4, only Pt/ZrO2 achieved high yields
of ethanol while other ZrO2-supported metals (e.g., Ru/ZrO2, Pd/ZrO2, Rh/ZrO2) resulted
in the ethanol yields of less than 15 C% [31]. The high activity of Pt could readily catalyze
the hydrogenation of GA to EG to avoid the condensation of GA while other metals on
ZrO2 had lower activity to achieve such a purpose. Additionally, when metal oxides with
strong acids or weak bases (such as Al2O3 and MgO) were used, more C3 alcohols (such as
1,2-propanediol, propanol and glycerol) were generated. The authors believed that Lewis
acid and base were more conducive to the conversion of cellulose and/or its derivatives
to C3 compounds through isomerization and retro-aldol reactions. When water-soluble
carbohydrates such as glucose, cellobiose, and starch were used as the feedstocks, the EG
and ethanol yields were lower than that of cellulose under this catalytic condition. The
reason was that the hydrolysis of cellulose was a slow process, but the above-mentioned
raw materials had high reactivity under this system and were prone to cause more side
reactions. For example, sorbitol, the hydrogenation production of glucose, could be hardly
converted to ethanol because it was unable to undergo retro-aldol reactions due to the
loss of the aldehyde group; fructose, the isomer of glucose, would form C3 retro-aldol
intermediates such as glyceraldehyde and dihydroxyacetone and several derivatives such
as lactic acid, glycerol, and propanol. These results could be explained by the possible
mechanism shown in Figure 4.
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H2WO4-Pt/ZrO2 as a catalyst.

A similar catalyst, Mo/Pt/WOx, could convert cellulose to ethanol in one pot with
the yield of 43.2 C% at 265 ◦C for 2 h (Table 1, entry 5) [32]. WOx as a Lewis acid catalyzed
the retro-aldol cleavage of glucose to form glycolaldehyde, and Mo/Pt/WOx catalyzed
the hydrogenation of glycolaldehyde to EG and ethanol. In the above two-step reaction,
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the C–O bond breakage caused by the hydrogenation of EG determined the over-all yield
of ethanol because the ethanol yield closely coincided with the Mo content. Besides, the
deposition order of Pt and Mo had a substantial effect on the catalytic activity of the
resulting catalysts. Deposition of Pt followed by Mo forming a unique structure showed
the highest catalytic efficiency. The yield of ethanol decreased from 43.2 to 25.6 C% when
cellulose concentration was increased from 1.5 to 10 wt% (Table 1, entry 6), which indicated
this catalytic system was not suitable for the catalytic conversion of higher concentrations
of cellulose. Zhao et al. [38] deemed that the decrease in the yield of ethanol at higher
cellulose concentrations was caused by the cleavage of glucose, an intermediate formed and
accumulated during cellulose conversion, not the cleavage of the C–O bond of EG. When the
catalytic system was used to catalyze lignocellulosic materials such as cornstalk, miscanthus,
and birch, the yields was 25.5, 26.3, and 29.0 C%, respectively (Table 1, entry 7–9) [32]. After
removing lignin from these materials by pretreatments, the conversion of these materials
was significantly improved (Table 1, entry 10), indicating that lignin has a substantially
negative effect on this catalytic system [32].

In addition, Ma et al. [33] reported a novel multifunctional catalyst Ru-WOx/HZSM-5
with suitable acidity for conversion of cellulose and hemicelluloses to ethanol. As shown
in Figure 5, WOx played an important role in the cleavage of the C–C bonds of glucose
units and WOx promoted the dispersion of Ru and formed Ru3W17 alloy with W. Ru3W17
alloy improved the ethanol yield by promoting the hydrogenation of EG. After a 20-h
reaction at 235 ◦C with 3 MPa H2, the yield of ethanol for 1 wt% of cellulose could reach
76.8 C% (Table 1, entry 11). However, when glucose was used as the substrate under
the same conditions, severe carbon loss occurred possibly due to oligomerization of high-
concentration glucose and the formation of humins, which were catalyzed by the acid
sites of the catalysts. The catalytic system was also very sensitive to the concentration of
cellulose. When the cellulose concentration was increased from 1 wt% to 5 wt%, the yield
of ethanol yield decreased from 76.8% to 42.3%. The authors concluded that the retro-aldol
reaction of glucose was a slow reaction while the side reactions such as oligomerization
and dehydration of glucose were faster, thereby resulting in lower ethanol selectivity and
yields [33]. The addition of extra Ru/WOx catalyst, which could promote retro-aldol and
hydrogenation ractions, led to higher ethanol yields (the yield for 1 wt% (Table 1, entry 12)
and 5 wt% of cellulose was 87.5% and 48.5%, respectively). Moreover, HZSM-5 showed
poor hydrothermal stability, which makes it necessary to search for a support with higher
hydrothermal stability in the future.
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In contrast, graphene-encapsulated nickel (Ni@C) exhibited excellent long-term sta-
bility for ethanol production due to the protection of graphene shell [34]. Combined with
phosphoric acid and H2, Ni@C led to an ethanol yield to 69.1% when the concentration of
cellulose was 10 g/L (Table 1, entry 13), reaching the theoretical yield of ethanol produced
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by fermentation [17,34]. In this catalytic system, phosphoric acid played the role of catalyz-
ing the hydrolysis of cellulose to glucose and forming a cyclic diester intermediate with
glucose. The C–O and C–C bonds of the cyclic diester intermediate were selectively broken
to form ethanol efficiently. In the repetitive utilization test of the catalyst, the yields were
almost the same without Ni leaching in eight cycles, which indicated that the encapsulation
of graphene could resist the corrosion of phosphoric acid to Ni and the catalyst still retain
the high catalytic activity in the harsh acidic environment. The less graphene carbon layers,
the faster the electron migration from the metal to the graphene surface. As a result, the
smaller-size Ni particles and the less graphene layers in the catalyst were favorable to
improving the activity and catalytic efficiency of the catalyst and the formation of ethanol.
The catalytic system could also catalyze cellobiose (Table 1, entry 14) and glucose (Table 1,
entry 15) to ethanol with yields of 39.6 C% and 35.4 C% et, respectively [34], which were
lower than that of cellulose. When glucose and cellobiose were used as substrates, the
concentrations of glucose and cellobiose in the system were higher than that of cellulose,
which resulted in more and severer side reactions such as oligomerization and dehydration.
In contrast, when cellulose was used as a substrate, glucose formed from slow hydrolysis
of cellulose could be readily and selectively converted into ethanol with no accumulation.

3. Conversion of Biomass-Derived Syngas to Ethanol

Syngas (H2/CO) is generally resulted from gasification of coal or biomass in industry,
which can be used for chemical and energy supply through different chemical processes.
Currently, direct ethanol synthesis from biomass-derived syngas is one of the most attractive
and challenging processes [39,40]. However, this reaction involves some complex processes
such as the dissociation of H2 (H-H cleavage), the generation of intermediates and the
coupling between intermediates. Therefore, it seems relatively difficult to achieve one-
step synthesis of ethanol from syngas, but cascade catalytic reactions have been widely
investigated for ethanol synthesis.

3.1. Multi-Step Processes

The multi-step processes for ethanol synthesis mainly include two pathways (Figure 6).
Route A involves syngas to methanol, carbonylation of methanol with CO, and acetic
acid (AA) hydrogenation to ethanol. Route B involves syngas to dimethyl ether (DME),
carbonylation of DME with CO, and methyl acetate (MA) hydrogenation to ethanol [41–43].
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Previously, Zhou et al. [44] reported a relay catalysis system which enabled the selec-
tive conversion of syngas into C2+ oxygenates including MA, DME, and ethanol. In such
system, several catalysts with different functions were applied in one reactor to synergis-
tically catalyze the conversion of syngas. For instance, the Cu-Zn-Al/H-ZSM-5 catalyst
(a mixture of Cu-Zn-Al oxide and H-ZSM-5 powders) could give a high DME selectivity of
93% from syngas at 200 ◦C for 5 h while a high CH3OH selectivity was achieved with the
use of Cu-Zn-Al oxide solely under the same condition, confirming that H-ZSM-5 could cat-
alyze the dehydration of CH3OH to DME (Figure 7a) [44,45]. Furthermore, the combination
of Cu-Zn-Al/H-ZSM-5 and H-MOR (a weight ratio of 0.5:1) showed a high MA selectivity
of 84% together with 13% AA selectivity and a negligible DME selectivity, suggesting
that H-MOR functioned for the carbonylation of DME with CO. Therefore, an increased
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weight ratio of H-MOR to Cu-Zn-Al/H-ZSM-5 (>0.5:1) could facilitate the formation of
MA from syngas [44]. As mentioned before, water released from the formed CH3OH over
the H-ZSM-5 catalyst could also inhibit the followed DME carbonylation via the Cu-Zn-Al
oxide-catalyzed water-gas shift (WGS) reaction (i.e., CO + H2O→ CO2 + H2). Although
most of the H2O could be removed by the WGS reaction over the combination of Cu-Zn-Al
oxide and H-ZSM-5 in direct contact, the small amount of the residual water could lead
to the formation of AA, which was unable to form via the DME carbonylation path over
H-MOR (Figure 7b) [44,46,47]. The authors also claimed that syngas could be converted
into ethanol via DME and MA intermediates in the relay catalysis system. An ethanol selec-
tivity of 52% could be achieved at 6% CO conversion with ZnAl2O4 |H-MOR |ZnAl2O4
(a sandwich structure) as the catalyst (Figure 7c, Table 2) [44], which was better than most of
the reported results for the direct conversion of syngas (Table 2, entry 1–4) [48–51]. Limited
by the selectivity of MA and AA during the conversion of syngas over ZnAl2O4 |H-MOR,
the maximum ethanol selectivity was 64% [44]. These results suggested that the ZnAl2O4
in the downstream of the sandwich structure functioned for the hydrogenation of MA and
AA intermediates into ethanol.
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ethanol from syngas.

Table 2. Chemocatalytic conversion of biomass-derived syngas to ethanol.

En. Catalyst T, ◦C P, MPa H2/CO WHSV CO Conv. Selectivity,
% Ref.

1 7Rh/NFe2O3 240 0.1 0.5 1140 h−1 2.0 27.3 [48]
2 K(C)06Co05MoAl1000 260 7.0 1.0 5000 h−1 4.4 31.6 [49]
3 Ni1Mo1K0.05−Ni/CNTs 285 5.0 1.0 3000 mLSTP h−1 g−1 15.5 23.4 [50]
4 CuZnAlOOH 250 4.5 2.0 150 mL/min 3.63 55.5 [51]

5
K+−ZnO−ZrO2|H-
MOR−DA−12MR

|Pt-Sn/SiC
270 5.0 1.0 25 mL min−1 3.9 90.0 [52]

6 NF-MOR&CZ/SiO2 220 1.5 2.0 20 mL/min - 54.9 [53]
7 1.0%Rh/(5.0%FeOx-SiO2) 250 2.0 2.0 8000 mL g(cat)−1 h−1 6.1 45.0 [54]
8 2.5Rh4Fe0.5Li/γ-Al2O3 260 2.0 2.0 3600 mL/(g·h) 10.5 30.2 [55]
9 Rh/Ce0.8Zr0.2O2 275 2.4 2.0 W/F = 10 g h mol−1 27.3 25.2 [56]

10 RhMn in CNTs 320 3.0 2.0 12,000 h−1 8.3 40.0 [57]
11 Rh 270 3.0 2.0 4000 h−1 5.0 8.2 [58]
12 1.5Rh–0.4Mn/SiO2 270 3.0 2.0 4000 h−1 17 17.7 [58]
13 1.5Rh–4Mn/SiO2 270 3.0 2.0 4000 h−1 5.8 17.7 [58]
14 Rh Mn /SiO2 265 5.4 2.0 1700 h−1 25.1 61.4 [59]
15 RhMn@S-1 320 3.0 2.0 30 mL min−1 42.4 67.8 [60]
16 Cu2Co1Al 270 2.5 2.0 7500 h−1 29.2 34.3 [61]
17 CoFe-300 280 3.0 2.0 10,800 mL (gcat h)−1 52.2 35.0 [62]

In order to reduce the ethanol loss in multiple reactions, Kang et al. [52] designed a
triple tandem catalytic system to convert syngas into ethanol with high selectivity. Three
catalyst components including K+–ZnO–ZrO2, H-MOR–DA–12MR, and Pt-Sn/SiC were
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involved in the tandem system, which catalyzed syngas to CH3OH, CH3OH carbonylation
to acetic acid (AA), and hydrogenation of AA to ethanol, respectively (Figure 8). The authors
claimed that the interplay among the three steps and the compatibility of different catalysts
in the syngas stream were crucial to achieve high ethanol selectivity [52]. Specifically,
the apparent activation energies for CH3OH formation, CH3OH carbonylation, and AA
hydrogenation were 81, 71, and 45 kJ mol−1, respectively. The rate of CH3OH formation
(rate-determining step) was the lowest among the three steps in the temperature range
of 240–320 ◦C, which determined the followed carbonylation of CH3OH with CO. Thus,
an elevated temperature facilitated CH3OH formation, thereby enabling a higher CO
conversion over the different catalysts (Table 2), and a relatively high ratio of CO/CH3OH
was necessary for efficient CH3OH carbonylation. Furthermore, an increased H2/CO ratio
(from 0.25:1 to 1:1) favored the conversion of CO (an increase from 3.2 to 5.7%) but was
unbeneficial to the ethanol selectivity (a slight decrease from 75 to 70%). The existence of H2
could deactivate the activities of zeolites (i.e. H-MOR) for catalyzing the AA formation. As
a result, the AA selectivity was significantly decreased when the H2/CO ratio was increased
to >1:1. This could be caused by that a high H2/CO ratio accelerated the conversion of CO
into by-products such as C2–C4 olefins and CO2, reducing the selectivity of ethanol or AA.
Apart from the H2/CO ratio, the total pressure of syngas could affect the CO conversion. A
low syngas pressure (<0.5 MPa) generally resulted in hydrocarbons (e.g., C2–C4 olefins),
while an increased syngas pressure (from 0.5 to 2.0 MPa) could not only enhance CO
conversion but also increase the ethanol selectivity from 11 to 76%. By following the
optimized reaction conditions (Table 2, entry 5), a high ethanol selectivity of 90.0% could
be achieved at 3.9% CO conversion. Therefore, such catalytic system not only achieved
the selective conversion of syngas into ethanol but also offered a strategy for controlling
reaction selectivity via decoupling a complicated and uncontrollable reaction system into
several well-controlled tandem reactions.
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3.2. One-Pot Processes

Considering that current zeolite catalysts exhibited undesirable efficiency and stability
for the carbonylation of DME to MA during ethanol synthesis from syngas, Yao et al. [53]
prepared the nano-filamentous MOR zeolite (NF-MOR) catalyst with diameter of around
70 nm by using nanocrystallization technology. Such nano-MOR zeolite had a larger
external surface area and more exposed active sites compared to the common MOR
zeolite [63,64], showing superior performance in DME carbonylation reaction and one-
step ethanol synthesis. Combined with the CZ/SiO2 catalyst, the NF-MOR&CZ/SiO2
catalyst could achieve a DME conversion rate of 85% and an ethanol selectivity of 54.9% at
220 ◦C (Table 2, entry 6) [53].

Due to the superior catalytic performance for CO hydrogenation, Rh-based catalysts
have attracted much attention towards one-pot approach for ethanol synthesis from syngas.
Since Rh is a rare metal, researchers usually implemented three strategies in order to reduce
its loading: (i) preparing supported Rh-based catalysts by using the unique porous struc-
tures of the supports [54,55]; (ii) preparing highly dispersed Rh-based catalysts to improve
their specific surface areas [65]; (iii) modifying the electronic property of Rh via adding
different promoters (e.g., Li, Fe, La, V, Co, or Mn) [56]. For example, Pan et al. [57] reported
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that the nanotubes containing Rh particles could substantially improve the ethanol produc-
tion from syngas. Despite the higher accessibility of the outside of the nanotubes to syngas,
an improved ethanol formation rate (30.0 mol molRh

−1 h−1) by more than an order of mag-
nitude could be achieved inside the nanotubes. Compared to pure Rh (Table 2, entry 11),
the use of 1.5Rh-0.4Mn/SiO2 catalysts (Table 2, entry 12) could significantly increase the
CO conversion (5.0% vs. 17.0%) and the ethanol selectivity (8.2% vs. 17.7%) [58]. The
promoting effects of Mn have been studied for years. It is generally accepted that the
presence of Mn could enhance CO dissociation (C-O cleavage) via forming tilted CO at
the interface of Rh–MnOx [66], meanwhile modifying the electronic property of Rh via
forming Rh–MnOx bimetallic catalysts [58,67]. As an electron-withdrawing component,
the formed MnOx could partially oxidize the Rh atoms at the interface, promoting the
insertion of CO to form the CHxCO* species (Figure 9) [58]. However, excessive Mn could
also inhibit the activity by blocking the Rh site, leading to a decreased CO conversion
of 5.8% (1.5Rh-4.0Mn/SiO2; Table 2, entry 13). In addition, a high coverage of CO on
the surface of Rh–MnOx catalyst could inhibit the hydrogenation of CHxCO* species to
CH3CHO via hindering the adsorption and dissociation of H2, while an increased H2
coverage facilitated the deep hydrogenation of CH3CHO to ethanol and the H-assisted CO
dissociation to form OH* species. The OH* species together with CHxCO* species were
important sources for AA formation via coupling reactions, which could also undergo the
competing reactions with H* species to form H2O, CH3CH2OH or CH3CHO (Figure 9).
Therefore, the addition of an appropriate amount of Mn (Rh/Mn = 1.5:0.4) and a relatively
high ratio of H2/CO (2:1) was critical to achieve high-selective ethanol production in such
catalytic system.
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In addition, the catalytic performance of the supported Rh catalysts (Rh-Mn/SiO2)
could be strongly affected by the reaction temperature and pressure. The CO conver-
sion was increased from 24.6% to 40.5% when the reaction temperature was raised from
280 to 300 ◦C, while ethanol selectivity decreased remarkably from 56.1% to 44.5% and CH4
selectivity increased from 38.4% to 48.1% [59]. This result suggested that the hydrogenation
of CH2* species to CH4 was dominant at a higher temperature, which could be explained
by the higher activation energy for methanation than for ethanol synthesis. When the
total pressure was lowered from 5.4 to 3.8 MPa, CO conversion decreased (from 40.5% to
32.1%), whereas the selectivities of the main products (i.e., ethanol and CH4) remained
almost unchanged under a constant temperature of 300 ◦C [59], demonstrating that product
selectivity was mainly controlled by the reaction temperature rather than the pressure.
However, an increased CO conversion was observed with the increased pressure under a
relatively lower temperature of 270 ◦C. It could be because a high pressure facilitated CO
insertion into the surface of metal-CH2* to form C2 oxygenates, reducing the hydrogenation
rate of CH2* species for CH4 formation. Therefore, ethanol synthesis over Rh-Mn/SiO2
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was preferred to be conducted at a relatively lower temperature (<280 ◦C) and a higher
pressure (e.g., 5.4 MPa) for high ethanol selectivity (Table 2, entry 14) [59]. Since the optimal
conditions for achieving a high CO conversion and a high ethanol selectivity did not match,
the balance between the two reactions should be carefully evaluated.

The zeolite crystals (i.e., silicate-1 zeolite-fixed RhMn nanoparticles, and RhMn@S-1)
also showed superior performance for the direct conversion of syngas to ethanol, giving
an ethanol selectivity of 67.8% at 42.4% CO conversion (Table 2, entry 15) [60]. Compared
to the catalysts supported on conventional supporters, the unique core–shell structure (or
Mn-O-Rhδ+ structure) and zeolite fixation could synergistically enhance the productivity
of C2-oxygenates (105.0 mol molRh

−1 h−1) [60]. The proposed reaction pathways were
shown in Figure 10. The conversion of syngas to ethanol over RhMn@S-1 started from the
CO dissociation (CH2*) to form the *CHx intermediate, followed by the reaction with the
undissociated CO (CHO*/CO*) to form C2-oxygenates. The strong interaction between
catalysts and CO was favorable to the selective conversion towards methane due to the full
dissociation of C–O bonds, whereas the catalysts bonding weakly with CO exhibited high
methanol selectivity due to the hindered CO dissociation [68].
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Although Rh-based catalysts had excellent catalytic performance for CO hydrogena-
tion to ethanol, the high cost and scarcity limited the application of Rh in syngas conversion
processes [69]. Therefore, its necessary to replace it with non-precious metals. The highly
available CuCo alloy could be a promising alternative catalyst which exhibited excellent
adsorption of CO and CHx [70]. During the syngas conversion over the CuCo catalyst, the
Co component could catalyze CO dissociation to form surface alkyl groups (chain exten-
sion), and Cu component could catalyze the non-dissociative CO insertion and subsequent
generation of ethanol and higher alcohols. The synergistic effects of the two metals resulted
in the formation of ethanol and higher alcohols. Furthermore, Cao et al. [70] found the
selectivity of alcohol was sensitive to the microstructure of the CuCo catalysts. The (211)
CuCo surface exhibited high ethanol selectivity due to the lower C-O dissociation barrier
and higher CHx-CO coupling rate, whereas the (111) CuCo surface exhibited high methanol
selectivity. Therefore, it was essential to balance the interplay of CO dissociation and asso-
ciation for the formation of higher alcohols. To improve the selectivity of higher alcohols
(especially ethanol), Sun et al. [61] introduced the Cu and Co elements simultaneously in
the layered double hydroxides (LDH) system to prepare CuCo nanosheet catalysts with
small particle size (~6 nm) and uniform dispersion (Figure 11). When the ratio of Cu/Co
was 2:1, the CuCo nanosheet catalysts showed an optimal balance between CO dissociation
and association, giving an improved ethanol selectivity of 34.3% with a narrow alcohol
distribution (Table 2, entry 16) [61]. Mechanistic study suggested that the catalyst with
small Cu and Co nanoparticles could increase the migration of non-dissociation CO to
CHx, reducing the hydrogenation of CHx to CH4. Similarly, the CoFe bimetallic carbide
catalysts were also prepared to balance the nondissociative adsorption and dissociation of
CO, giving an ethanol selectivity of 35% at 52% CO conversion (Table 2, entry 17) [62].
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4. Conclusions and Perspectives

Ethanol, a green energy carrier, has great potential to promote the development of
the biorefining industries. However, the production of ethanol via biological pathways
has the issues of high cost, long production period, and low atomic economy. The efforts
devoted to chemocatalytically converting lignocellulosic biomass to ethanol is effective to
reduce processing time and improve atomic economy. Although it is promising, current
chemocatalytic pathways also possessed some disadvantages. Chemocatalytic conversion
of cellulose to ethanol is mainly achieved through cascade catalytic reactions including
cellulose hydrolysis, retro-aldol reaction, and hydrogenation. However, chemocatalytic
process also involves some side reactions such as dehydration and aldol condensation.
To obtain high-yield ethanol, it is necessary to design multifunctional catalys which can
balance the main and side reactions. Multifunctional and bimetallic catalysts are promising
catalysts for the conversion of cellulose to ethanol, but the poor hydrothermal stability of
some catalysts or the use of toxic organic solvents limit their large-scale implementations.
The future research could be focused on the development of an efficient and green catalytic
system that can significantly improve the ethanol yield with reduced cost.

In addition, the synthesis of ethanol from biomass-derived syngas in one or multiple
steps is attractive because all components of lignocellulosic biomass including cellulose,
hemicelluloses, and lignin could be utilized for ethanol production. DEM, MA and AA are
important intermediates in the multi-step conversion of syngas to ethanol. Improving CO
conversion and ethanol selectivity is beneficial to obtain high ethanol yield. The adsorption
and dissociation of CO with the catalyst, and the ratio of CO/H2 would affect the ethanol
yields resulted from one-step syngas conversion. For one-step conversion of syngas to
ethanol, Rh-based catalysts has superior catalytic performance, but of the high cost and
scarcity of Rh would limit its wide use. Developing effective non-noble metal catalysts,
e.g., transition metal-based bimetallic catalysts, and other multi-functional non-precious
metal catalysts, are particularly desired in near future.
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