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Abstract: In this study, a Mn-Ce/γ-Al2O3 catalyst with multiple active components was prepared
through the doping–calcination method for advanced treatment of coal chemical biochemical treat-
ment effluent and characterized by X-ray diffraction, X-ray fluorescence spectroscopy, scanning
electron microscopy, and BET analysis. In addition, preparation and catalytic ozonation conditions
were optimized, and the mechanism of catalytic ozonation was discussed. The Mn-Ce/γ-Al2O3

catalyst significantly enhanced COD and total phenol removal in reaction with ozone. The charac-
terization results suggested that the pore structure of the optimized Mn-Ce/γ-Al2O3 catalyst was
significantly improved. After calcination, the metallic elements Mn and Ce existed in the form of
the oxides MnO2 and CeO2. The best operating conditions in the study were as follows: (1) reaction
time of 30 min, (2) initial pH of 9, (3) ozone dosage of 3.0 g/h, and (4) catalyst dosage of 30 g/L. The
removal efficiency of COD and total phenol from coal chemical biochemical tail water was reduced
with the addition of tert-butanol, which proves that hydroxyl radicals (•OH) played a leading role
in the Mn-Ce/γ-Al2O3 catalytic ozonation treatment process of biochemical tailwater. Ultraviolet
absorption spectroscopy analysis indicated that some conjugated structures and benzene ring struc-
tures of organics in coal chemical biochemical tail water were destroyed. This work proposes the
utilization of the easily available Mn-Ce/γ-Al2O3 catalyst and exhibits application prospects for the
advanced treatment of coal chemical biochemical tailwater.

Keywords: catalyst; catalytic ozonation; activated alumina; biochemical tail water; advanced treatment

1. Introduction

Industrial phenol-containing wastewater has become a common type of wastewater in
industrial production due to its wide range of sources and strong hazards. Its main sources
are chemical industries such as petroleum, gas, coking and oil refining, and industries that
use phenol and its derivatives as raw materials or products [1]. Phenolic compounds are a
class of polar, weakly acidic and ionizable organic compounds that are toxic and difficult
to degrade. Phenolic compounds are protoplasmic poisons that are toxic to all organisms,
causing the coagulation and denaturation of proteins. If phenol-containing wastewater is
directly discharged, it causes great harm to aquatic environments [2]. Due to the biologically
toxic and stable structures of most of the phenolic substances, conventional biological
treatment is insufficient to achieve compliance with wastewater treatment [3]. Therefore,
the technology of in-depth and efficient treatment of phenol-containing wastewater has
become an urgent problem to be solved.

At present, treatment methods can be roughly divided into three categories: physical
methods [4], chemical methods [5–7] and biological methods [8]. The physical treatment
of wastewater is simple and highly efficient, with strong operability and demonstrat-
ing obvious treatment effects with high costs. The biological treatment method involves
decomposing pollutants in wastewater by domesticating the metabolic activities of mi-
croorganisms to achieve the effect of purifying sewage. The biological method has high
requirements on the biodegradability of the influent water. Coal chemical biochemical
tailwater mostly contains refractory phenolic substances and has poor biodegradability [9].
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Phenolic substances in coal chemical biochemical tailwater have toxic effects on microor-
ganisms [3]. Chemical treatment methods have fast reaction rates and high processing
efficiency. Some of the most widely used chemical treatment methods are the advanced
oxidation processes (AOPs). AOPs use free radicals with high redox potential to degrade
refractory and hazardous organic contaminants in wastewater [10,11]. Among them, the
Fenton process has been widely used and is considered one of the most effective methods
to treat phenol-containing wastewater [12]. In this process, H2O2 is activated to form hy-
droxyl radicals in the presence of Fe2+. The hydroxyl radicals oxidize organic compounds
in wastewater, and Fe(OH)3 produced at the same time can also play a role in coagulation
to further remove organic pollutants [13]. Fenton process has strict requirements on the pH
of the reaction system and will generate a large amount of iron sludge [14]. Therefore, some
improved processes that combine the traditional Fenton process with physicochemical
technologies, such as light and electricity, have been researched to reduce the generation of
secondary pollution. However, the photoelectric-Fenton process has higher energy con-
sumption and costs [15]. Among AOPs, ozonation has attracted much attention attributable
to its high oxidization capability, quick reaction speed, versatile operation, and lack of
secondary pollutants [16,17]. However, limited oxidation capacity and selective oxidation
of molecular ozone cause unsatisfying degradation of some pollutants [18,19]. In order
to solve the problems of ozonation, catalytic ozonation is favored by researchers due to
its high catalytic activity, reusable catalyst, and lack of a need for the addition of other
chemicals and energy [11]. To date, several types of heterogeneous catalysts have been
used to catalyze ozonation, such as iron oxides/hydroxyl oxides, bimetallic/polymetallic
oxides, carbon-based materials, and metal/metal oxides supported on the carrier.

In recent years, Al2O3 has been widely used as a catalyst support due to its low cost, high
surface area, mesoporosity, high stability and many Lewis acid sites, which are conducive to
the adsorption of organic substances. The surface of Al2O3 is rich in hydroxyl groups (–OH),
which can effectively promote the generation of hydroxyl radicals [20,21]. Considering that
manganese oxides have the advantages of high redox potential, environmental friendliness,
low cost, and low water solubility, manganese oxides are selected as active components
supported on the catalyst for catalytic ozonation [22,23]. MnO2 nanoparticles supported on
the activated carbon also exhibited high catalytic activity to remove Congo red dye [24].
Long-term disposal of the manganese catalyst in wastewater will lead to the dissolution
of the active components, resulting in secondary pollution and reducing the lifetime of
the catalyst. Cerium oxides are commonly used catalysts with excellent redox properties
and good oxygen storage capacity [25,26]. The addition of the element Ce can generate
more surface vacancies, improve the activity of the catalyst, and significantly improve the
stability of the catalyst [27]. Cerium oxides can accelerate the activation of lattice oxygen,
make the dispersion of active components in the catalyst higher, and their combination
with other active metals can also produce synergistic effects. At the same time, it will also
improve the anti-poisoning ability and stability of the catalyst, resulting in a longer service
life of the catalyst. Therefore, to degrade phenol-containing tailwater after secondary
biochemical treatment, activated alumina was selected as the catalyst carrier, and Mn and
Ce metal active components were supported on the carrier to synthesize a heterogeneous
catalyst for catalytic ozonation.

In this study, activated alumina loaded with Mn and Ce was prepared via a doping–
calcination method as a high-efficiency heterogeneous catalyst, Mn-Ce/γ-Al2O3, for cat-
alytic ozonation. The catalyst was applied to the research of advanced treatment of phenol-
containing coal chemical biochemical tailwater. The application of X-ray diffraction (XRD),
X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy (SEM) were used
to analyze the characteristics of Mn-Ce/γ-Al2O3 catalysts. To optimize the performance
of the catalytic ozonation system, the effects of Mn-Ce/γ-Al2O3 catalyst dosage, ozone
dosage, reaction time, initial pH, and other factors were studied. The stability of the
Mn-Ce/γ-Al2O3 catalyst was researched. The heterogeneous catalytic ozonation reaction
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mechanism of the Mn-Ce/γ-Al2O3 catalyst was explored by radical quencher and UV
absorption spectroscopy.

2. Results and Discussion
2.1. Effect of Preparation Conditions of Mn-Ce/γ-Al2O3 Catalyst on Pollutant Removal

The water quality parameters of the wastewater used in this paper are shown in Table 1.
As shown in Figure 1a,b, with the increase in the ratio of Mn and Ce, the degradation of
total phenol (meaning the total amount of phenol in wastewater) and chemical oxygen
demand (COD) in wastewater showed a trend of first rising and then decreasing. As
the ratio of Mn and Ce increases from 1:3 to 1:2, the degradation effect of the catalytic
ozonation system is obviously improved. When Mn: Ce = 1:1, the catalytic ozonation
degradation effect is the best, and the removal efficiencies of total phenol and COD are
40.32% and 67.71%, respectively. Insufficient active components may cause a lack of active
sites, but in excess, catalytic activity decreases due to clusters of active components formed
on the catalyst surface [28]. Figure 1c,d shows that when the calcination temperature is
400–900 ◦C, with the increase in calcination temperature, the effect of catalytic ozonation
degradation of wastewater showed a trend of increasing first and then decreasing. The
removal efficiency of total phenol and COD in wastewater reached maximum values of
42.56% and 68.98%, respectively, when the calcination temperature was 500 ◦C. When the
calcination temperature was too low, the boehmite and active components in the γ-Al2O3
carrier did not completely decompose, resulting in a low catalytic effect. With the increase
in calcination temperature, the pore structure of the catalyst is gradually formed, and the
metal salt is continuously converted to metal oxide and dispersed on the surface of the
catalyst. The active sites are gradually increased, resulting in enhanced catalytic activity.
However, with the further increase of the calcination temperature, the metal oxide may
melt, the pores may be blocked, and the catalyst may be sintered, resulting in the reduction
of effective active sites, and the catalytic activity of the catalyst may be greatly reduced [29].
As shown in Figure 1e,f, when the roasting time was 1 h, the removal efficiencies of total
phenol and COD were 34.65% and 51.78%, respectively. The removal efficiency of total
phenol and COD reached maximum values of 44.23% and 72.65% with a roasting time of
3 h. Metal could not be completely oxidized to generate highly active components through
a shorter calcination time. Metal oxides would sinter together, resulting in a lower specific
surface area and the dispersion of metal oxides with too long a roasting time [30].

Table 1. Water quality analysis of coal chemical biochemical tailwater.

Index Unit Method Content

COD mg/L Potassium dichromate method [31] 219.1
NH3-N mg/L Nessler’s reagent colorimetry [31] 12.6

pH / pH meter 7.05
Conductivity µs/cm Conductivity meter 2.6

Turbidity NTU Turbidimeter 68
Chroma PCU Colorimeter 1780

Total phenols mg/L 4-Aminoantipyrine
Spectrophotometry [32] 36.52
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Figure 1. Effect of different preparation conditions on total phenol and COD removal efficiencies:
(a) effect of Mn:Ce doping ratio on total phenol removal efficiency; (b) effect of Mn:Ce doping ratio
on COD removal efficiency; (c) effect of calcination temperature on total phenol removal efficiency;
(d) effect of calcination temperature on COD removal efficiency; (e) effect of calcination time on total
removal efficiency; (f) effect of calcination time on COD removal efficiency.

2.2. Characterization of the Mn-Ce/γ-Al2O3 Catalyst
2.2.1. SEM Characterization

Figure 2 shows that the surface of blank alumina has a certain degree of roughness,
irregular shape, and many depressions and pores, providing more points for the loaded
metal. When the calcination temperature rises from 400 ◦C to 500 ◦C, it can be seen that the
particle distribution of the carrier is more uniform, the pore structure is more abundant,
and there are more fold structures. Increasing the calcination temperature properly can
increase the surface roughness, which is conducive to the adhesion of manganese dioxide
and cerium oxide [33]. When the temperature rises from 500 ◦C to 900 ◦C, an obvious
molten layer appears on the surface of the catalyst; the surface becomes relatively smooth,
the pore structure disappears, the specific surface area of the catalyst decreases and the
oxides melt each other. With the increase in temperature, the small crystals dispersed on
the surface of the catalyst gradually increase, showing irregular polyhedrons [34]. The
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size of the alumina matrix gradually decreases, making the active site distribution more
dispersed. However, when the temperature is too high, it can be seen from the above figure
that the roughness of the catalyst surface decreases, resulting in the mutual connection
of crystals and the change of the concave-convex characteristics of the carrier surface, the
destruction of the pore structure and the reduction of the number of active sites.
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Catalysts 2022, 12, 1019 6 of 16

2.2.2. XRD Characterization

As presented in Figure 3, the diffraction peak spectrum of the blank sample shows
that the characteristic diffraction peak of Al2O3 was found at 35.2◦ and 67.9◦, and the
characteristic diffraction peak of CeO2 is found at the diffraction angles of 28.5◦, 33.1◦, 47.5◦

and 56.4◦ (JCPDS#43-1002) [35]. Compared with the blank sample, the diffraction peak of
CeO2 has higher intensity, which illustrates that the metal element Ce was successfully
supported on the catalyst. The obvious diffraction peaks at 2θ = 12.7◦, 18.1◦, 28.8◦, 37.5◦

and 41.2◦ are consistent with MnO2 (JCPDS#44-0141), indicating that the metal element Mn
in the catalyst is mainly in the form of MnO2. The observation of CeO2 and MnO2 might
be the reason for the high COD and total phenol removal efficiency by Mn-Ce/γ-Al2O3
catalytic ozonation in Figure 1. Compared with Mn-Ce/γ-Al2O3 catalyst before use, the
intensity of characteristic diffraction peaks of MnO2 and CeO2 in catalyst after repeated
use decreased, suggesting the reduction of crystal forms MnO2 and CeO2. This may be
the result of the loss of active components Mn and Ce in the Mn-Ce/γ-Al2O3 catalyst
after repeated use. Combined with the result of XRF, the loss of active components in the
Mn-Ce/γ-Al2O3 catalyst is small after repeated use. The stability of the catalyst is excellent.
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2.2.3. XRF Characterization

The XRF results are shown in Table 2. The main elements contained in the blank carrier
are Na, Al, Si and Ca, mainly in the form of Na2O, Al2O3, SiO2 and CaO. The active metal
elements Mn and Ce in the Mn-Ce/γ-Al2O3 catalyst are in the form of MnO2 and CeO2,
with the contents of 2.832% and 0.875%, respectively, while the contents of MnO2 and CeO2
in the blank sample are only 0.174% and 0.085%. This indicates that the metal elements Mn
and Ce were successfully supported on the catalyst. As the utilization time of the catalyst
increased, a small loss of active components on the surface and inside the catalyst was
found [36]. The contents of MnO2 and CeO2 are reduced by 0.368% and 0.104%, indicating
that the preparation method of catalysts was valid and the prepared Mn-Ce/γ-Al2O3
catalyst had good stability. Compared with the catalyst that was recycled 30 times, the loss
of supported elements is small, and there is basically no secondary pollution.
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Table 2. XRF characterization of Mn-Ce/γ-Al2O3 catalyst (wt, %).

Materials Na2O MgO Al2O3 SiO2 K2O CaO MnO2 CeO2

Blank sample 6.581 2.93 18.77 60.384 1.66 6.24 0.174 0.085
Mn-Ce/γ-Al2O3 5.476 2.609 17.92 59.327 1.6 5.644 2.832 0.875

Mn-Ce/γ-Al2O3 after utilization 10 times 6.817 2.564 17.932 58.612 1.63 5.522 2.652 0.866
Mn-Ce/γ-Al2O3 after utilization 20 times 3.7 2.657 18.613 60.794 1.586 5.242 2.555 0.803
Mn-Ce/γ-Al2O3 after utilization 30 times 5.376 2.569 18.151 61.234 1.706 5.24 2.464 0.771

2.2.4. BET Analysis

BET analysis was performed to investigate the specific surface area, pore volume, pore
size, and adsorption characteristics of the catalysts. The specific surface area, pore volume
and pore size are shown in Table 3. Metal oxide loading on γ-Al2O3 increased the specific
surface area and pore volume but decreased the pore size. The increase in the specific
surface area was observed due to the addition of a pore-forming agent. The addition of
a pore-forming agent resulted in a larger specific surface area and pore volume. Figure 4
presents the N2 adsorption–desorption isotherms of the samples. Both the blank sample
and the Mn-Ce/γ-Al2O3 catalyst showed typical type IV isotherms and H3 hysteresis loops,
indicating that a mesoporous structure existed in the Mn-Ce/γ-Al2O3 catalyst and the
internal structure was a slit-like pore structure. The mesoporous structure contributed to
the mass transfer and adsorption of pollutants [37].

Table 3. BET characterization analysis of Mn-Ce/γ-Al2O3 catalyst.

Sample
Specific Surface Area

(m2/g)
Average Pore Volume

(cm3/g)
Average Pore Size (nm)

γ-Al2O3 153.46 0.37 9.65
Mn-Ce/γ-Al2O3 195.93 0.48 8.61
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2.3. Stability and Sustainability of Mn-Ce/γ-Al2O3 Catalyst

In order to investigate the stability of the catalyst, the catalyst was repeatedly used
30 times with a pH of 7, catalyst dosage of 30 g/L and ozone dosage of 2.5 g/h. Figure 5
presents that the degradation performance of biochemical tailwater gradually decreased.
This phenomenon is consistent with XRD results, where the intensity of characteristic
diffraction peaks of MnO2 and CeO2 decreased after repeated use. After the catalyst is
repeatedly used 5 times, the degradation effect on wastewater begins to decrease slowly.
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The degradation of organic pollutants in tailwater remained relatively high, and the removal
efficiencies of total phenol and COD only decreased by 9.30% and 12.90%, respectively,
when Mn-Ce/γ-Al2O3 catalyst was repeated used 30 times. These results indicated that
the Mn-Ce/γ-Al2O3 catalyst was stable and could be repeatedly used.
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2.4. Degradation of Coal Chemical Biochemical Tailwater by Mn-Ce/γ-Al2O3 Catalytic Ozonation
2.4.1. Effects of Catalyst Dosage on Catalytic Performance

Figure 6 presents the influence of catalyst dosages on COD and total phenol removal
with a pH of 7.05 and ozone dosage of 2.5 g/h. When catalyst dosages were 10–30 g/L, with
the increase in dosage, COD and total phenol removal efficiencies increased rapidly. The
removal efficiency of total phenol and COD increased to 58.32% and 78.91% with 30 g/L
catalyst addition. However, COD and total phenol removal declined as catalyst dosage
increased from 30 to 50 mg/L.
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This is because increasing the dosage of Mn-Ce/γ-Al2O3 catalyst increases the effective
contact area of the entire reaction system and the amount of active catalytic sites, which
improves the mass transfer efficiency of ozone and promotes the generation of •OH,
enhancing the reaction between ozone and biochemical tailwater [38]. However, when
catalyst dosage exceeds a certain amount (30 g/L in this study), the effective active sites in
the reaction system may reduce [39]. This will make the degradation performance worse.
Meanwhile, part of the excess •OH may be quenched, leading to the decline in COD and
total phenol removal [40].

2.4.2. Effects of Ozone Dosage on Catalytic Performance

The effect of ozone dosage on COD and total phenol removal efficiency was shown in
Figure 7, with a pH of 7.05 and catalyst dosage of 30 g/L. COD and total phenol removal
efficiencies increased gradually with the increase in ozone dosage. The removal efficiencies
of total phenol and COD reached approximately 60.40% and 80.20%, respectively, with an
ozone dosage of 3 g/h. Further increase in ozone dosage had little effect on the degradation
performance of the system. The increased rate of removal efficiencies slowed down when
ozone dosage reached 3 g/h. This phenomenon may be attributed to the increase in ozone
dosage, causing the generation of more •OH when the ozone dosage is below a certain
level [41]. When the ozone in the system reaches a saturated state, the utilization rate of
ozone decreases, and further increases in ozone dosage have little improvement on the
degradation of wastewater [42]. On the other hand, the residue organics were structurally
stable and difficult to degrade. Considering the cost and pollutants removal efficiency,
3 g/h was selected as an optimal ozone dosage.
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2.4.3. Effects of Reaction Time on Catalytic Performance

Figure 8 depicts that the removal efficiencies of total phenol and COD rise rapidly
at the beginning of the reaction. After 20 min, total phenol and COD removal efficiencies
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increase relatively slowly. Thereafter, the removal efficiencies of total phenol and COD
increase insignificantly when the reaction time increases to 120 min. This is because the
concentration of organic matter in the initial reaction system is relatively high, and the
active oxygen-containing groups, such as hydroxyl radicals generated by the catalytic
ozonation of the catalyst, can rapidly react with the pollutants to degrade the pollutants.
Therefore, the removal efficiencies of total phenol and COD in the reaction system rise
rapidly. As the reaction time is prolonged, the concentration of pollutants is lower, and
remaining organic pollutants are difficult to degrade. Therefore, the optimal reaction time
is 30 min in the experiments.
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2.4.4. Effects of pH on Catalytic Performance

The pH of the solution dramatically affects the performance of the catalyst and is
considered an essential parameter in wastewater treatment [43,44]. Figure 9 shows that the
removal efficiency of total phenol gradually increased as the initial pH increased with a
catalyst dosage of 30 g/L and an ozone dosage of 3 g/h. When the pH value rose from 5.1 to
10.05, the total phenol removal efficiency increased from 55.43% to 64.24%. Correspondingly,
COD removal efficiency improved from 74.62% to 82.95%. This is because ozone molecules
become the main oxidant in the reaction system under acidic conditions, and the selectivity
is high, resulting in incomplete oxidation of organic matter [36]. Under alkaline conditions,
the concentration of OH− in the solution increases, and OH−, as the initiator of the free
radical reaction, can promote the adsorption and decomposition of ozone by the catalyst
surface to generate more active free radicals such as •OH and improve the reaction rate.
The surface charge of the catalyst is also affected by the pH of the wastewater. However,
when the pH continues to increase, the utilization of the initiator in the reaction system
is saturated. The excess OH− will cause the deprotonation of the hydroxyl group on the
catalyst surface and change the charge of the catalyst surface, thereby weakening the free
radical reaction, which reduces the degradation performance of coal chemical biochemical
tailwater [45]. The initial pH of 9.08 was selected as the optimal operational pH value in
the subsequent experiment.
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2.5. Ozone Catalytic Oxidation Mechanism of Mn-Ce/γ-Al2O3 Catalyst
2.5.1. Effect of Free Radical Inhibitors on Catalytic Ozonation Performance

The effect of tert-butanol (TBA) on the ozone catalytic degradation system is shown
in Figure 10. The addition of TBA obviously reduces the effect of catalytic ozonation
on the degradation of coal chemical biochemical tailwater. After the addition of 30, 50
and 100 mg/L TBA to the catalytic ozonation system, the removal efficiency of total
phenol in biochemical tailwater decreased by 11.90%, 24.62% and 32.10% after 30 min,
respectively. Under the same conditions, the removal efficiency of COD in biochemical
tailwater decreased by 15.00%, 27.02% and 29.80% after 30 min, respectively. TBA is a
common hydroxyl radical inhibitor. It can inhibit the chain reaction of free radicals by
reacting with hydroxyl radicals to form highly inert substances and inhibit the oxidation
of other organic substances by hydroxyl radicals [46]. The addition of TBA reduced the
degradation performance of biochemical tailwater as a result of the competition between
TBA and organics in wastewater for hydroxyl radicals generated by ozone decomposition.
This finding indirectly proved that the degradation of biochemical tailwater by catalytic
ozonation follows a hydroxyl radical chain reaction. However, under the condition of
TBA addition, the degradation performance of the catalytic ozonation system is still better
than that of the ozonation system, which indicates that hydroxyl radicals are not the only
oxidant in the reaction system.
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2.5.2. UV-Vis Absorption Peak at Different Catalytic Ozonation Times

As shown in Figure 11, the UV absorption peak of the effluent sample treated with
biochemical tailwater shows a significant decrease in the range of λ = 200–500 nm, indicating
that the conjugated structure, the auxiliary color groups and unsaturated organic matter
were effectively degraded. When the reaction is carried out for 10 min, the absorption peak
at 200–500 nm is significantly decreased. With the prolongation of catalytic ozonation, the
intensity of the absorption peak at 200–500 nm reduced gradually. After 20 min, the UV
absorbance changed slightly, indicating that most organic matter and chromophores had
been degraded [47].
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Figure 11. UV–Vis analysis at different catalytic ozonation times with pH of 9, initial COD of 121.5 
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3. Materials and Methods
3.1. Experimental Materials

Manganese nitrate, sodium silicate, sodium bicarbonate, copper nitrate trihydrate
(Cu(NO3)2·3H2O), cerium nitrate (Ce(NO3)3·6H2O), cobalt nitrate hexahydrate
(Co(NO3)2·6H2O), ferric nitrate nonahydrate (Fe(NO3)3·9H2O), nitric acid, sulfuric acid,
bismuth nitrate, potassium bromate and sodium hydroxide were all analytical grade
and purchased from Nanjing Chemical Reagent Co., Ltd (Nanjing, China). Tert-butanol
(C4H10O) was analytical grade and purchased from Sinopharm Chemical Reagent Co.,
Ltd (Shanghai, China). Fly ash floating beads were 100 mesh and purchased from Henan
Borun Casting Material Co., Ltd (Gongyi, China). Activated alumina was 100 mesh and
purchased from Nanjing Chemical Reagent Co., Ltd. Coal chemical biochemical tailwater
taken from a coal chemical enterprise in Yunnan was used in the experiment. The same
batch of coal chemical biochemical tailwater was used throughout the study. The water
sample is dark and turbid, with a pungent odor and a little suspended matter floating on
the surface. The raw water quality test results and measurement methods are shown in
Table 2.

3.2. Preparation of Mn-Ce/γ-Al2O3 Catalyst

The catalyst was prepared by a doping-calcination method [48]. A quantitative amount
of nitrate solution of Mn and Ce was weighed, diluted to 100 mL in a volumetric flask,
shaken evenly, and placed in a beaker as a precursor solution for later use. Next, 30 g of
activated alumina and a certain amount of pore-forming agent and binder were weighed,
placed in a mortar, and stirred evenly. The precursor solution and deionized water were
poured into the uniformly mixed activated alumina powder, pore-forming agent, and
binder. The container was shaken vigorously to make the medium uniformly mixed. The
catalyst was taken out to make a spherical catalyst, and the particle size of the catalyst
sphere was controlled within 4–6 mm. The catalyst was placed in an oven to dry at 105 ◦C
for 24 h. The dried catalyst is placed in a crucible and calcined at a certain temperature in
a muffle furnace. After the calcination is completed, the calcined catalyst was taken out,
exposed to the air for natural cooling, and finally packaged for use.

3.3. Characterization of Mn-Ce/γ-Al2O3 Catalysts

The surface morphology of the catalyst was characterized by SEM (ZEISS Merlin, Zeiss
AG, Oberkochen, Germany). XRD (D8 Advance, Bruker, Berlin, Germany) was used to
characterize the crystal morphology of transition metals in the catalyst. XRF (Axios Pw4400,
PANalytical, Eindhoven, Netherlands) was used to characterize the content of metal ele-
ments and metal oxides inside the catalyst. BET analysis was used to characterize the pore
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volume, pore size, and adsorption performance of the catalyst (ASAP-2020, Micromeritics
Company, Norcross, GA, USA). The sample was automatically degassed at 90 ◦C for 1 h for
the first stage and 350 ◦C for 4 h for the second stage, with the N2 adsorption-desorption
isotherm taken at 77 K.

3.4. Ozone Catalytic Oxidation Experiment

Figure 12 shows the schematic diagram of the catalytic reaction device used in this
study. The catalytic reaction device consisted of an oxygen cylinder, an ozone generator
(CF-G-3-10G, Qingdao Guolin, China), a gas flow meter, a reaction tower, and a tail gas
absorption device. At the beginning of the experiment, the oxygen source was opened to
pre-blow the ozone generator for 10 min, and the outlet pressure was controlled to 0.1 MPa.
After the pre-blow, a quantitative amount of the prepared catalyst was added, and 400 mL
of coal chemical biochemical tailwater was placed in the reaction tower. Then, the ozone
generator was turned on, and the oxygen generated ozone through high-voltage discharge
inside the ozone generator. By adjusting the gas flow meter of the ozone generator, we
controlled the output of ozone, reserved a water outlet on the side wall of the reactor, and
took samples regularly during the experiment to measure various indicators. The exhaust
gas generated in the experiment was discharged after passing through the two-stage 20%
KI absorption treatment device.
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The iodometric method was used to determine the gas-phase ozone concentration.
The sodium indigo disulfonate method was employed to measure the ozone concentration
in the liquid phase. The water samples of the outlet were tested and analyzed using UV–Vis
technology (ultraviolet spectrophotometer, UV-5500, Shanghai Yuanxi Instrument Co., Ltd.,
Shanghai, China) with a wavelength of 190–800 nm.

4. Conclusions

In this study, activated alumina was used as a carrier, and Mn-Ce/γ-Al2O3 catalyst was
prepared by loading Mn and Ce by the doping-calcination method to treat coal chemical
biochemical tailwater. The optimal preparation conditions of Mn-Ce /γ-Al2O3 catalyst
are presented as follows: the active metal loading ratio of Mn:Ce is 1:1, the calcination
temperature is 500 ◦C, and the calcination time is 3.0 h. SEM analysis showed that Mn-Ce/γ-
Al2O3 catalyst had a porous structure, and more fold structures developed. Mn and Ce were
successfully loaded on the surface and inside of the activated alumina in the form of MnO2
and CeO2, the contents of which were 2.832 and 0.875 wt%, respectively. MnO2 and CeO2
might be the active components that improved the catalytic activity of Mn-Ce/γ-Al2O3
according to the characterization analyses. The Mn-Ce/γ-Al2O3 catalyst exhibited excellent
catalytic activity on the degradation of coal chemical biochemical tailwater after repeated
use. The optimal conditions for the catalytic ozonation by Mn-Ce /γ-Al2O3 catalyst to
the coal chemical biochemical tailwater were as follows: catalyst dosage 30 g/L, ozone
dosage 3 g/h, initial pH 9.08, and reaction time 30 min. Alkaline conditions promoted the
degradation of organic matter. The COD and total phenol removal increased to 82.95%
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and 64.24%, respectively. Generation of hydroxyl radical was the dominant process in the
treatment of coal chemical biochemical tailwater. This study offers a candidate catalyst for
the advanced treatment of coal chemical biochemical tailwater upon catalytic ozonation.
The high removal efficiency, stability and feasibility suggested the prospect of applications
of catalytic ozonation for industrial wastewater.
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