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Abstract: Increasing energy consumption and environmental pollution problems have forced people
to turn their attention to the development and utilization of hydrogen energy, which requires that
hydrogen energy can be efficiently prepared. However, the sluggish kinetics of hydrogen evolution
reaction (HER) requires higher overpotential. It is urgent to design and fabricate catalysts to drive
the procedure and decrease the overpotential of HER. It is well known that platinum catalysts are the
best for HER, but their high cost limits their wide application. Transition metals such as Fe, Co, Mo
and Ni are abundant, and transition metal phosphides are considered as promising HER catalysts.
Nevertheless, catalysts in powder form are very easily soluble in the electrolyte, which leads to
inferior cycling stability. In this work, Ni5P4 anchored on Ni foam was doped with Se powder. After
SEM characterization, the Ni5P4-Se was anchored on Ni foam, which circumvents the use of the
conductive additives and binder. The Ni5P4-Se formed a porous nanosheet structure with enhanced
electron transfer capability. The prepared Ni5P4-Se exhibited high electrochemical performances. At
10 mA cm−2, the overpotential was only 128 mV and the Tafel slope is 163.14 mV dec−1. Additionally,
the overpotential was stabilized at 128 mV for 30 h, suggesting its excellent cycling stability. The
results show that Se doping can make the two phases achieve a good synergistic effect, which makes
the Ni5P4-Se catalyst display excellent HER catalytic activity and stability.

Keywords: HER; Ni5P4; Se-doped; electrocatalyst; electron transfer

1. Introduction

As an energy carrier with high specific energy density and zero greenhouse gas emis-
sions, hydrogen can be used as a clean renewable energy on a large scale [1–5]. However,
there is a high overpotential in the process of electrolysis of water, resulting in a large
amount of energy consumption. It is necessary to use efficient catalysts to reduce this
overpotential [6–9]. At present, the catalyst with the best hydrogen evolution performance
is platinum group metals, but the scarcity and high price make large-scale application
difficult [10–16].

Nickel is widely known for its excellent HER performance. Therefore, the enthusiasm
of researchers to improve the performance of nickel-based catalysts in alkaline solution
has not subsided [17,18]. The surface adsorption properties of nickel-based alloys and het-
erostructure catalysts can optimize their electrocatalytic activity and stability by fine-tuning
the synergistic effect generated by adjacent elements [19,20]. Extensive work has found that
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phosphides have stable behavior in acidic and basic solutions and high current densities
at low overpotentials, which make them show great potential as HER catalysts [21–23].
The phosphorus in the metal phosphide structure is moderately bonded to the reaction
intermediate to participate in the reaction, resulting in the formation of surfaces with
proton acceptor and hydride acceptor sites. These reasons make metal phosphides highly
active [24–26]. Ni and P elements are abundant in the crust. Nickel phosphide compounds
have exhibited good electrochemical hydrogen evolution performance in the previous
reports [27]. Among them, Ni5P4 particles reveal superior HER performance in both
acidic and alkaline solutions [27–29]. The preparation of these catalysts is mostly based on
nanoparticles. Despite the large surface area of nanoparticles, issues such as uncontrolled
agglomeration, high series resistance and susceptibility to oxidation are also detrimental to
the overall performance. NiSe2/Ni5P4 nanosheets grown in situ on nitrogen-doped carbon
nanofibers were prepared for water splitting [30]. NiSe2/Ni5P4, which has a unique porous
nanostructure, was obtained by low-temperature phosphating/selenization of Ni(OH)2. In
H2SO4 solution, the HER performance of NiSe2/Ni5P4 is excellent, with an overpotential
of only 112 mV at 10 mA cm−2. The heterostructure of NiSe2/Ni5P4 optimizes the adsorp-
tion of hydrogen-containing intermediates, which enables the excellent HER activity of
NiSe2/Ni5P4 on nitrogen-doped carbon nanofibers. Zhuo et al. obtained a HER catalyst
grown on carbon paper by doping pyrite-phase nickel phosphide with Se [31]. Compared
with undoped NiP2, the overpotential and Tafel slope of Se-doped NiP2 (NiP1.93Se0.07)
have obvious advantages. The above results show that Se doping can improve the HER
performance of NiP2. The two phases of biphasic catalysts are promisingly synergistic
to optimize the adsorption–desorption behavior of intermediates at active sites [30,32,33].
Nevertheless, the catalyst in powder form is very easily soluble in the electrolyte, which
leads to the inferior cycling stability. Moreover, the addition of the conductive additives
and binder increases the whole cost.

Here, we used Ni foam as the substrate and sodium hypophosphite as the phosphorus
source to prepare a Ni5P4 anchored on Ni foam for water electrolysis through a gas-phase
reaction with a low-process cost. The structure, morphology and hydrogen evolution
properties were characterized. After that, we tried to use selenium powder as the selenium
source to dope the catalyst to form the Ni5P4-Se composite, which further reduced the over-
potential. Among the four catalysts, the Ni5P4-Se anchored on Ni foam displayed the best
HER performances. At 10 mA cm−2, the Ni5P4-Se composite displayed an overpotential
of only 128 mV and possessed a Tafel slope of 163.14 mV dec−1. The Ni5P4-Se electrode
also exhibited excellent cycling durability, with an overpotential stabilized at 128 mV when
tested at 10 mA cm−2 for 10 h.

2. Experimental
2.1. Synthesis

The synthesis of the Ni(OH)2 precursor: First, the Ni foam was divided into small
pieces (1 × 1.5 cm), soaked in 1 M HCl solution for 15 min, and ultrasonically cleaned with
ultrapure water and anhydrous ethanol for three times. Then, 6 mmol Ni(NO3)2·6H2O and
10 mmol urea were dissolved in 30 mL of deionized water, and a clear and transparent
green solution was obtained after magnetic stirring for 30 min. The treated Ni foam was
immersed in the green solution. The above solution was transferred to an autoclave, which
was placed in an oven at 180 ◦C for 12 h. After cooling down to the room temperature,
the sample was taken out and washed with ultrapure water for several times. Lastly, the
Ni(OH)2 precursors in situ grown on the Ni foam were obtained.

The synthesis of the Ni5P4-Se nanocatalysts: The Ni(OH)2 precursor was placed on
the downstream side of the tube furnace. In all, 1 g NaH2PO2·H2O and 50 mg Se powder
were placed on the upstream side. Then, the tube furnace was heated to 300 ◦C at a heating
rate of 2 ◦C min−1 under an argon atmosphere, which was kept for 120 min. After naturally
cooling to room temperature, in situ Ni5P4-Se nanocatalysts grown on nickel foam were
obtained. Single-phase Ni5P4 and NiSe2 were prepared by the above-mentioned method
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from equimolar amounts of NaH2PO2·H2O and Se powder as phosphorus and selenium
sources, respectively.

2.2. Characterization

The physicochemical properties of the catalysts were mainly characterized using
the following means. The microstructure, morphology and elemental constitution of
samples were characterized on field emission scanning electron microscope (SEM, Quanta
FEG 250), super-resolution SEM (Verios 460L, Hillsboro, OR, USA), transmission electron
microscope (TEM, LaB6) and high-resolution TEM (Talos F200X, Hillsboro, OR, USA). The
X-ray diffraction (XRD) patterns of the materials were obtained on a MiniFlex600 X-ray
diffractometer (Rigaku, Japan). The scan rate is 5◦ min−1. The range is from 10◦ to 90◦. An
X-ray photoelectron spectrometer (XPS, ESCALAB 250Xi, Waltham, MA, USA) was used to
determine the elemental composition and chemical valence of the samples. The samples for
SEM, XRD and XPS characterizations are powder. For TEM characterization, the powder
sample is dispersed in ethanol to form a homogeneous solution, which is dropwise added
into Cu mesh.

2.3. Electrochemical Measurements

The electrochemical measurements were conducted on the CHI660E electrochemical
workstation. In the three-electrode system, the prepared material was used as the working
electrode, graphite as the counter electrode and saturated calomel electrode (SCE) as the
reference electrode. The measured raw data potentials were relative to the SCE. They
needed to be converted into a standard reversible hydrogen electrode (RHE) potential. The
specific conversion formula is: E (vs. RHE) =E (vs. SCE) + (0.059 × pH) +0.241 V. Elec-
trochemical measurements include: linear sweep voltammetry (LSV), cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS) and galvanostatic stability curve (V-t).

3. Results and Discussion

Ni(OH)2 anchored on Ni foam was prepared by hydrothermal method. As illustrated
in Figure S1, the diffraction peaks of the Ni(OH)2 catalyst are very obvious and match
well with JCPDS No. 74-2075. It is proved that the pure phase Ni(OH)2 was successfully
obtained with good crystallinity. The Ni(OH)2 nanoarrays are relatively uniformly grown
on the ligaments surface of the Ni foam (Figure S2a). The grown Ni(OH)2 precursor is a
flower-like cluster structure composed of many nanosheets, which can be clearly observed
in the local enlarged view of the Ni foam ligament (Figure S2b). Moreover, the content
of Ni(OH)2 in the composites is about 24 wt%. The Ni(OH)2 precursor was subjected to
phosphorization, selenization or simultaneous phosphorization and selenization reactions.
The XRD patterns of the obtained products are shown in Figure 1a. The diffraction peaks of
single-phase Ni5P4 and NiSe2 are matched with JCPDS No. 28-0883 and JCPDS No. 41-1495,
respectively, indicating that the Ni(OH)2 precursor was completely converted into Ni5P4
and NiSe2. The XRD pattern of the Ni5P4-Se is almost close to that of the single-phase Ni5P4
(Figure 1a). No obvious selenium diffraction peaks were presented in the XRD pattern of
the Ni5P4-Se due to the relatively low content of the Se element source. The doping of Se
induces the formation of a two-phase heterojunction and reduces the crystallinity of the
single-phase Ni5P4. Therefore, by observing the characteristic peaks of the Ni5P4 phase, it
can be found that Se doping significantly weakens the peak intensity of the Ni5P4 phase.
The corresponding microstructures were also characterized. It can be clearly observed in
Figure S3a,b that a single Ni5P4 nanoarray grows uniformly on the Ni foam. Many active
sites cannot be exposed in Figure S3c because of the accumulation of a large number of large
sheets to form clusters or particles. The morphology of the layered NiSe2 array is displayed
in Figure S4. The NiSe2 nanosheets grow more densely, which possess an approximate
microstructure with the Ni(OH)2 precursor.
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Figure 1. (a) XRD patterns of Ni5P4, NiSe2 and Ni5P4-Se. XPS spectra of Ni5P4-Se: (b) Ni 2p, (c) P 2p,
(d) Se 3d.

The high-resolution XPS spectras of Ni5P4 and NiSe2 are included in Figure S5. The
Ni 2p spectrum of Ni5P4 in Figure S5a illustrates that the peaks located at 853.4 eV and
870.5 eV correspond to Ni 2p3/2 and Ni 2p1/2, respectively. The peaks centered at 857.1
eV (2p3/2) and 874.7 Ev (2p1/2) can be ascribed to the oxidation state of Ni. Two doublets
are located at 129.6 eV and 130.4 eV in the P 2p spectrum, which belong to P 2p3/2 and
P 2p1/2, respectively. The characteristic peak at 134.2 eV suggests the existence of the
P–O bond. There are two peaks at 855.8 eV and 873.1 eV in the Ni 2p spectrum of NiSe2,
which are ascribed to Ni 2p3/2 and Ni 2p1/2, respectively (Figure S5c). The peak at 854
eV (2p3/2) corresponds to nickel oxide. In addition, two satellite peaks were observed at
855.8 eV and 879.5 eV. There are two peaks here at 55.1 eV and 54.5 eV in the Se 3d spectrum
corresponding to Se 3d3/2 and Se 3d5/2, respectively. (Figure S5d).

The XPS measurement of the Ni5P4-Se was conducted to investigate the chemical
composition and valences (Figure 1b–d). Similarly, several deconvoluted peaks (853.4 eV
for Ni 2p3/2 and 870.5 eV for Ni 2p1/2) were obtained in C 1s spectra (Figure 1b). The peaks
at 857.1 eV (2p3/2) and 874.7 eV (2p1/2) can be owing to the oxidation state of Ni. The two
doublets at 129.6 eV and 130.4 eV in P 2p spectra are attributed to P 2p3/2 and P 2p1/2,
respectively (Figure 1c). The characteristic peak at 134.2 eV is ascribed to the P–O bond. In
the Se 3d spectrum shown in Figure 1d, the peaks located at 54.9 eV and 54.2 eV belong
to Se 3d3/2 and Se 3d5/2, respectively. Compared with the single-phase Ni5P4, the P 2p
peak exhibits a small positive shift (0.4 eV) after Se doping. In contrast, the two peaks of Se
3d5/2 and 3d3/2 are negatively shifted (0.2 eV) compared to the single-phase NiSe2. This
phenomenon demonstrates that electrons are transferred from P to Se at the locally formed
heterostructure interface, suggesting the formation of a strong internal electronic effect
heterointerface. These will lead to the transfer and redistribution of electrons. Because of
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this electronic effect, the heterointerface provides more reactive sites, reduces the catalytic
reaction overpotential and improves the catalytic efficiency.

The nanosheet layer uniformly grown on the ligament surface of the Ni foam was
obtained through the steam reaction jointly driven by sodium hypophosphite and selenium
powder (Figure 2a,b). The partial enlarged view of the nanosheet layer is displayed in
Figure 2c. A regular nanosheet array with a size of about 500–1000 nm can be observed
in the local area. Since these regular nanosheet arrays are not similar to other large-scale
curved nanosheets, we infer that the Ni5P4/NiSe2 heterojunction structure is locally grown
on the ligaments of the Ni foam. Energy Dispersive Spectrometer (EDS) and elemental
analysis were performed on this region to further analyze the doping situation of Se. In
the regular nanosheet region in Figure 2d–f, we can clearly observe that the content of the
Se element is higher than that of the P element, while the P element is dominant in the
large-sized nanosheet region. The morphological structure of the Ni5P4-Se composites were
verified by the TEM images (Figure S6). From the above results, it can be roughly concluded
that the Se-doped Ni5P4 phase is mainly concentrated in this region. The synergistic effect
of the regular two-phase structure nanosheets provides more active sites for HER. The
Energy Dispersive Spectrometer (EDS) spectrum is shown in Figure S7. The ratio of the Se
and P atoms in this region is about 1:1, which further verifies the successful doping of Se
into Ni5P4.
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composites (d–f).

The electrochemical HER performances of the Ni(OH)2 precursor, the single-phase
Ni5P4 and NiSe2 and the Ni5P4-Se were measured using a three-electrode system. The
LSV curves of the four catalysts at 10 mVs−1 are depicted in Figure 3a. The overpotential
of the the Ni5P4-Se is only 128 mV at 10 mA cm−2, which is significantly better than that
of the single-phase Ni5P4 (150 mV), NiSe2 (211 mV) and Ni(OH)2 (278 mV). To explore
the reaction kinetics in depth, we fitted the Tafel slope according to the Tafel equation.
The Tafel slope of the Ni5P4-Se electrocatalyst is 163.14 mV dec−1 in Figure 3b, which has
obvious advantages compared with Ni5P4 (177.94 mV dec−1), NiSe2 (183.94 mV dec−1) and
Ni(OH)2 (208.77 mV dec−1). The Ni5P4-Se catalysts exhibited good reaction kinetics and a
higher electron transfer efficiency, which makes the catalytic reaction easier. Meanwhile,
in order to explore the charge transfer kinetics, the electrochemical impedance spectra
(Figure 3c) show the charge transfer resistance of the four catalysts. The semicircle of the
Nyquist plot refers to the charge transfer resistance Rct during the HER process. Obviously,
the electrocatalyst of the Ni5P4-Se exhibits the smallest semicircular diameter, which further
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proves that the doping of Se accelerates the electron transfer of the single-phase Ni5P4 and
the HER catalytic kinetics are stronger. The long-cycle stability of the Ni5P4-Se electrode was
measured at 10 mA cm−2 for 30 h (Figure 3d). The overpotential was stabilized at 128 mV,
demonstrating its excellent cycling durability. Moreover, the SEM image of the Ni5P4-Se
catalyst is displayed in Figure S8. As we can see, the Ni5P4-Se catalyst exhibits a nanosheet
structure, which maintains its original morphological structure, further demonstrating its
structural stability. The comparison of the catalytic activity of catalysts is presented in
Table S1 [34–43].
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An electrochemically active surface area (ECSA), which was evaluated by measuring
electrochemical double layer capacitance (Cdl), was used to further study the electrocatalytic
kinetic performance of the catalyst. The Faradaic potential region was selected as shown
in Figure 4. The CV curves were tested at 10, 20, 50, 80 and 100 mV s−1, respectively. The
ECSAs of the catalysts were obtained by linear fitting. The Cdl values of the obtained
Ni(OH)2, Ni5P4, NiSe2, and Ni5P4-Se electrocatalysts are 2.32, 53.69, 28.32, 17.19, and
61.74 mF cm−2, respectively (Figure 5). Compared with the single-phase Ni5P4 and NiSe2,
the Se-doped electrocatalyst can expose more active sites to drive the catalysis, which is
more conducive to the hydrogen evolution reaction.

4. Conclusions

In this work, we successfully prepared a Ni5P4 catalyst on Ni foam and studied the
effect of Se doping on the catalytic performances and structure of single-phase Ni5P4 cata-
lysts. After characterization, the Ni5P4-Se displayed a unique porous nanosheet structure,
which is beneficial to expose a large quantity of active sites and greatly improve the catalytic
performances. The Ni5P4-Se composite catalyst exhibited amazing catalytic performances,
with an overpotential of only 128 mV and a Tafel slope of 163.14 mV dec−1 at 10 mA cm−2.
The overpotential was stabilized at 128 mV for 30 h, demonstrating its superior cycling
stability. The direct synthesis of the Ni5P4-Se on the Ni foam ensured good electrical contact
between the catalyst and the conductive support, fast electron transfer, mass transfer and
bubble release, thereby endowing more active sites and stability. The strategy of directly
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constructing composite catalysts on porous Ni foam provides a new idea for designing
efficient water electrolysis catalysts.
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