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Abstract: Organic contaminants, volatile organic compounds (VOCs), and heavy metals have posed
long-term threats to the ecosystem and human health. Natural minerals have aroused widespread
interest in the field of environmental remediation due to their unique characteristics such as rich
resources, environmentally benign, and excellent photoelectric properties. This review briefly intro-
duced the contributions of natural minerals such as sulfide minerals, oxide minerals, and oxysalt
minerals in pollution control, which include organic pollution degradation, sterilization, air pu-
rification (NO VOCs oxidation), and heavy metal treatment by means of photocatalysis, Fenton
catalysis, persulfate activation, and adsorption process. At last, the future challenges of natural
mineral materials in pollution control are also outlooked.

Keywords: natural mineral; photocatalysis; environmental remediation; advanced oxidation
processes (AOPs)

1. Introduction

In today’s world, the rapid growth of the world’s population and industrial devel-
opment has produced massive expansion of economic activities such as industry and
agriculture, yielding contaminants harmful to shadow the ecological systems [1]. Anthro-
pogenic activities give rise to significant imbalances of air, aqueous, and soil matrices, due
to climate change and environmental pollution [2]. Seriously, it is fairly urgent to take some
effective measures to adopt environmental remediation increasingly. Statistically, current
primary pollutants include organic matter [3], volatile organic compounds (VOCs) [4],
heavy metal ions [5], hazardous gases [6], and dyes [7]. Hence, efficient and economic
environmental remediation technologies are supposed to be considered in order to contain
and reduce these pollutants to safe concentrations.

Photocatalysis provides a sustainable way to solve environmental problems [8]. When
light energy is irradiated onto the surface of a semiconductor photocatalyst, the photogen-
erated electrons can bind with surface adsorbed oxygen to produce superoxide radicals
(•O2

−) [9]. Then, the surface of the photocatalyst becomes positively charged, which
can take electrons from surface adsorbed water, resulting in the production of hydroxyl
radicals (•OH) [10]. Reactive oxygen species (ROS) such as •O2

− and •OH radicals are
powerful enough to attack organic compounds and turn them into water or other harmless
substances.

TiO2 is considered the star semiconductor photocatalytic material due to its strong
oxidation ability, high photochemical stability, and excellent biocompatibility [11]. How-
ever, the pure anatase TiO2 has a band gap of 3.2 eV, which therefore can only be excited by
ultraviolet light with the utilization of less sunlight. Whereafter, it has been investigated
that graphitic carbon nitride (g–C3N4) has a narrow band gap with a strong visible light
response, which has aroused a strong response in the field of photocatalysis. However, it
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has the disadvantages of low quantization yield and easy recombination of photogenerated
electron holes [12]. Nevertheless, the efficiency of semiconductor photocatalysis is still dif-
ficult to meet the practical requirements at present and the high cost of catalyst preparation
also be considered a challenge in the field of remediation.

Similar to synthetic semiconductor materials, some natural minerals have photocat-
alytic properties. Under light excitation, electron transitions occur in the valence bands
of semiconductor minerals, resulting in the production of electron-hole pairs, which can
initiate the photocatalytic oxidation of organic pollutants [13]. As is shown in Figure 1A,
Professor M.F. Hochella from America revealed that the natural iron manganese ore widely
distributed in earth exhibit highly responsive and stable photon-to-electron conversion
similar to semiconductor materials. The element mapping from Figure 1B explained that
this is due to surface weathering gradually resulting in the conversion of minerals to
semiconducting types of iron oxides and manganese oxides [14]. And the photocurrent
response of Fe-Mn coating from Figure 1C shows a strong signal, which suggested that
natural mineral semiconductors deserved to be further studied.
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Professor C. George, a French scientist, studied the surface properties and photo-
chemical behavior of natural mineral dust particles and clarified the chemical interactions
between light and mineral [15], which revealed that natural mineral materials are expected
to be used in air purification (Figure 1D). Similarly, Professor S.A. Styler, from the University
of Alberta, Canada, investigated that a series of titanium minerals have a visible light cat-
alytic decomposition of ozone in the air [16] (Figure 1E). Moreover, it has been studied that
the heat-treated natural pyrrhotite (main components Fe2O3 and FeS2) has excellent visible
light sterilization performance [17] and the natural wolframite also has visible organic
degradation and sterilization properties [18]. Xiaoyong Wu and co-workers disclosed that
hematite nanocrystals exposed to different crystal planes affect persulfate (PS) activation for
contaminant degradation under visible light irradiation [19]. These studies above have laid
a solid foundation for the application of natural minerals in environmental remediation.
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In fact, natural mineral materials are emerging hybrid materials for the treatment
of pollutants in the field of environmental remediation. As the product of the natural
evolution of the geological environment [20], natural minerals contribute greatly to the
regulation and purification of the natural environment and offer valuable solutions to
emerging environmental challenges according to their interaction and coordination with the
hydrosphere, atmosphere, pedosphere, and biosphere. Generally, the different components
of natural minerals give them different chemical properties. Some sulfide minerals have
been proven to be conducive to visible-light photocatalysis, due to their narrow gap and
excellent photoelectric property [21]. In addition, some minerals including transition
metals or metal oxides usually cover the variable chemical states and empty orbitals, which
can donate electrons to activate persulfate molecules [22]. Besides, some oxygenated salt
minerals can be used as carriers or adsorbents, due to their high crystallinity [23], ultra-high
surface area [24], and rich chemical functionality [25]. Meanwhile, serving as an important
constituent of the earth’s ecological environment, the properties of physics, chemistry,
and biology about natural minerals are well coordinated with the ecological environment,
which makes extensive progress using in the process of environmental remediation.

However, how to use natural mineral materials to improve the natural environment
and carry out effective environmental self-purification lacks in-depth mechanism analysis
and research summary. In this paper, we reviewed the relevant research progress of natural
mineral materials in environmental remediation, including the classification of natural min-
erals and specific reaction processes of natural mineral materials in the field of environmen-
tal remediation. Meanwhile, the existing problems and the future development direction of
natural mineral materials in the field of environmental remediation are also analyzed and
summarized. It is fairly expected that this paper can provide reference information for the
practical application of natural minerals in the field of environmental remediation.

2. Classification of Natural Mineral Materials

Natural mineral materials are natural elements or compounds formed under the
comprehensive action of various materials in the Earth’s crust. Meanwhile, the chemical
composition and connection of natural minerals determine their unique physicochemical
properties and thus have a decontamination function for some pollutants. On the base of
the mineral element composition, it can be precisely divided into sulfide mineral, oxide
and hydroxide mineral, oxysalt mineral, and other minerals.

2.1. Sulfide Minerals

In recent years, sulfides have become a hot topic due to their excellent catalytic activity,
effective cost, and promising potential for activating peroxy-mono-sulfate to efficiently
oxidize and degrade organic pollutants. Furthermore, the sulfides possess the advantages of
great thermal conductivity and low carrier mobility, which is beneficial to use photocatalysis
for environmental remediation [26]. For instance, chalcopyrite(CuFeS2) has the excellent
property to activate peroxydisulfate (PDS) for the simultaneous degradation of organic
pollutants [27]. Accordingly, natural chalcopyrite (CuFeS2) makes it possible for in-situ
remediation, immensely reducing the repair cost. [28]. In addition, it has been proven that
pyrite (FeS2) has remarkable performance in degrading organic matter [29], photocatalytic
sterilization [17], and removing heavy metal ions [30].

2.2. Oxide Minerals

Oxides or hydroxide minerals are generally synthesized by calcination, and different
phases of oxides may be formed by calcination, which are listed in Table 1. For instance, a
micrometer-scale ZnO/ZnFe2O4 coupled photocatalyst was obtained by heat treatment of
natural Fe-bearing sphalerite ((Zn, Fe) S). Among oxide minerals, hematite (Fe2O3), goethite (α-
FeOOH), and ilmenite (FeTiO3) can be typically considered. For example, hematite nanocrys-
tals have been considered in advanced oxidant processes (AOPs) due to their cost-effectiveness
and eco-friendly, which are able to activate persulfate in order to achieve environmental reme-
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diation [22]. Furthermore, it is reported that goethite (α-FeOOH) has been utilized to construct
the Fenton system, contributing to removing multiple organic contaminants effectively [3].
Moreover, plasma-treated goethite nanoparticles have the characteristic of high surface area
and surface hydroxyl groups, enhancing the performance of ozone removal [31]. Besides, it
has been investigated that ilmenite (FeTiO3) has promising prospects in photocatalytic and
catalytic processes, with a proper band gap varying at 2.4–2.9 eV [32].

Table 1. Summary of preparation method, reaction process, and practical application of different
types of natural minerals in environmental remediation.

Materials Main Ponents Reaction
Process

Preparation
Methods

Composition in
Catalytic System Light Source Pollutants Activity/Removal

Efficiency Ref.

Clinoptilolite SiO2/Al2O3/CaO Photocatalysis Hydrothermal Clinoptilolite/BiOCl/TiO2 Xe lamp
Sodium

isopropyl
xanthate

90% (3 h) [24]

Kaolinite Al2O3/SiO2 Photocatalysis Sol-gel Kaolinite/TiO2 Xe lamp Ciprofloxacin 0.00597 min−1 [33]

Montmorillonite Al2O3/MgO/SiO2 Photocatalysis Thermal Montmorillonite/Bi2O3/Ag LED Tetracycline 90% (60 min) [34]

Iron minerals FeS2 Photocatalysis Calcination FeS2/SiO2 UV-lamp Bisphenol A 99% (120 min) [35]

Natural
magnetite Fe3O4 Photocatalysis Hydrothermal Magnetite /TiO2 Xe lamp Defotaxime 52.5% (60 min) [36]

Natural
porous

diatomite
SiO2 Photocatalysis Calcination TiO2/diatomite Hg lamp Rhodamine B 80% (60 min) [37]

Natural
wolframite FeWO4/MnWO4 Photocatalysis Hydrothermal - Xe lamp E. coli 80% (4 h) [18]

Natural
Fe-bearing
sphalerite

ZnO/ZnFe2O4 Photocatalysis Thermal - LED E. coli 100% (4 h) [38]

Natural
magnetic
sphalerite

ZnS, FeS2 Photocatalysis Ball milling - LED E. coli 100% (6 h) [39]

Natural
pyrrhotite Fe2O3–FeS2 Photocatalysis Thermal - LED E. coli 100% (4 h) [40]

Natural
magnetic
sphalerite

ZnS/ZnFe2O4 Photocatalysis Calcination ZnS/ZnFe2O4/ZnO LED

Gram-
negative

Escherichia
coli K-12

100% (6 h) [17]

Celestite SrSO4 Photocatalysis Calcination Celestite/g-C3N4 LED NO 67.5% (10 min) [41]

Illite SiO2/Al2O3 Photocatalysis Calcination Illite/g-C3N4 Xe lamp NO 70% (6 min) [42]

Attapulgite MgO/SiO2 Photocatalysis Impregnation Attapulgite/SmFeO3 Xe lamp NO 90% (120 min) [43]

Perovskite CaTiO3 Photocatalysis Sol-gel Perovskite/N-CQDs Xe lamp NO 75% (30 min) [44]

Clay brick
sands and

recycled glass

SiO2/Al2O3/Fe2O3,
CaO/MgO/Na2O Photocatalysis Impregnation Clay/TiO2 UV-lamp NO 75% (10 min) [45]

Hematite Fe2O3
Persulfate
oxidation Calcination - - Tetracycline 70% (5 min) [22]

Pyrite Fe2O3
Persulfate
oxidation Ultrasonic - -

2,4-
dichlorophenol 76.2% (120 min) [46]

Cr(VI) 80.1% (120 min)

Goethite α-FeOOH Fenton
catalysis Hydrothermal - - Alachlor 90% (6 min) [3]

Natural
wolframite FeWO4/MnWO4

Fenton
catalysis Hydrothermal - - Methylene

blue 99% (3 h) [18]

Hematite Fe2O3
Fenton

catalysis Solvothermal - - Methylene
blue 80% (10 h) [36]

Montmorillonite Al2O3/MgO/SiO2 Adsorption Heat treatment Montmorillonite/biochar - Tetracycline 77.962 mg/g [47]

Montmorillonite Al2O3/MgO /SiO2 Adsorption Calcination Ti-montmorillonite - Imipramine 82.68 mg/g [48]

Zeolites SiO2/Al2O3 Adsorption Grinding - - Ni2+ 105.93 mg/g [49]

Bentonite SiO2/Al2O3/Na2O
/CaO Adsorption Grinding - - dichloromethane 119.93 mg/g [50]

- - Hg(II) 21.29 mg/g [51]

Attapulgite SiO2/MgO Adsorption Grinding - - Cd(II) 117.8 mg/g

organo-
Montmorillonite Al2O3/MgO/SiO2 Adsorption Grinding - Pb(II) 1.0803 mmol/g [52]

Magnetic
geopolymer SiO2/Al2O3 Adsorption Grinding - -

Cu(II) 440 mg/g
[53]Ni(II) 400 mg/g

Cd(II) 380 mg/g
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2.3. Oxysalt Minerals
2.3.1. Silicate Minerals

Silicate minerals are a kind of oxygen-bearing acid minerals formed by the combi-
nation of metal cation and silicate, estimated to account for more than 90% of the entire
crust, including layered clay minerals, lamellar chain structure of palygorskite (Si/SiOx)
and sepiolite (Si12Mg8O30(OH)4(OH2)4·H2O), and minerals with shelf, chain, island, and
other structures. Moreover, the methods of synthesis of silicate minerals include the hy-
drothermal method, sol-gel method, water bath precipitation method, and so on, which are
listed in Table 1. Statistically, both palygorskite (Si/SiOx) and sepiolite belong to porous
clay minerals with a high specific surface area. Palygorskite (Si/SiOx) has the unique char-
acteristic of rod-like structure, large surface area, and tunable chemistry, which attracted
massive interest in environmental remediation [54]. The large surface area of palygorskite
(Si/SiOx) enables organic matter to reach the active center, which is extremely beneficial
for removing contaminants from water. Similarly, sepiolite (Si12Mg8O30(OH)4(OH2)48H2O)
is a mineral with molecular-sized pores. It is described as oxygen-oxygen and hydroxide
bound to magnesium ion centers, due to the molecular organization of a unit cell stacked
in a 2:1 ratio. Because there are discontinuous octahedral lamellae in the sepiolite structure,
some porous channels enable pollutants to enter the surface structure rapidly. Therefore, it
has a promising potential in environmental remediation such as degradation of organic
matter and adsorption of heavy metal ions [23,34–36].

Kaolinite (Al2O3/SiO2), as a low-cost, easily available, and pollution-free material, has
been gradually applied in the field of environmental water treatment. Kaolin (Al2O3/SiO2)
is a 1:1 layered aluminosilicate clay mineral formed by a layer of tetrahedral silicon-oxygen
and a layer of octahedral aluminum oxygen connected by O atoms, which is abundant in
the Earth’s crust. Each unit layer consists of a silicon-oxygen tetrahedral sheet [SiO4] and
an aluminum oxygen octahedral sheet [AlO6], with adjacent layers connected by hydrogen
bonds. The unique porous structure is favorable for the catalyst to disperse on the surface
and has an excellent support function, which is conducive to removing heavy metal ions in
soil and degrading pollutants in water remediation [17,28–31].

In addition, the crystal structure of zeolite is composed of silicon (aluminum)-oxygen
tetrahedra connected into a three-dimensional lattice with holes and channels of various
sizes [55]. The structural formula of zeolite is A(x/q)[(AlO2)x(SiO2)y]·n (H2O): where A is
Ca, Na, K, Ba, Sr, and other cations, B is Al and Si, P is the cation valence, M is the number
of cations, n is the number of water molecules, x is the number of Al atoms, y is the number
of Si atoms, (y/x) is usually between 1 and 5, (x+y) is the number of tetrahedra in A unit
cell. Therefore, cavities of different sizes present in the lattice can absorb molecules of
other substances of different sizes [56]. Studies have shown that zeolite, as an inorganic
porous material with high surface area and special microporous channels, is considered a
promising adsorbent for VOCs control [57,58].

2.3.2. Borate Minerals

Borate minerals are considered a compound of a metal cation and borate radical.
Typically, tourmaline, due to its unique photochemical properties, has been extensively
studied in the field of environmental remediation. It has been investigated that tourmaline
is a natural borosilicate mineral consisting of a complex structure. It is a silicate mineral
with a ring structure characterized by aluminum, sodium, iron, magnesium, and lithium-
containing boron. The special structure of tourmaline has the ability to release negative ions
or generate an electric field on its surface, which makes it possible to apply in environmental
remediation [59].

2.4. Other Minerals

Interestingly, it has been strongly verified that other minerals used to purify the
environment are hydrotalcite, apatite (Ca5(PO4)3), and rutile (TiO2). Hydrotalcite is an
anionic layered compound. Further, the typical hydrotalcite compound is Mg-Al carbonate
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type hydrotalcite: Mg6Al2(OH)16CO3·4H2O. As a special material with great potential,
hydrotalcite has unique properties such as high porosity, high specific surface area, excellent
photostability, low cost, and adjustable band gap [60–66]. Hence, it can be fairly expected
to define hydrotalcite as a carrier to improve photodegradation by concentrating organic
contaminants on the catalyst’s surface via adsorption [67]. In addition, hydroxyapatite is
a potential material for carbon dioxide capture [68]. Natural rutile (TiO2) is cheaper and
easier to prepare than synthetic photocatalysts, which has been studied for dye removal
due to its narrow band gap and easy formation of hydroxyl groups on the surface [69].

3. Applications Minerals in Environmental Remediation

Benefiting from multiple synergetic effects, the natural mineral materials exhibit ex-
cellent photoactivity, which opens new eyes for achieving the desired applications of
catalysis in environmental remediation, including photocatalytic antibacterial, NO oxidiza-
tion, oxidation/degradation of organic pollutants, reduction of toxic high-valence metal
ions, and adsorption. Investigations on natural minerals endowed with environmental
remediation are in the developing stages, with both fantastic opportunities and challenges
coexisting. As discussed above, the unique porous structure and surface chemistry of
natural minerals show great potential in environmental remediation. Here, combining the
practical needs of environmental remediations and the advantageous properties of natural
minerals are discussed above. This paper highlights several notable findings about natural
minerals in the primary fields of environmental remediation, including water remediation,
air purification, and soil restoration. Meanwhile, we find that natural minerals mainly
play a role in environmental remediation through photocatalysis, Fenton catalysis, and
adsorption reaction.

3.1. Sterilization and NO Removal by Photocatalysis
3.1.1. Sterilization

Photocatalytic technology is an effective and sustainable method, which has attracted
more and more attention as green disinfection. In this regard, natural minerals are con-
sidered to be the most promising photocatalyst due to the unique advantages of easy
access to raw materials and low cost, and at the same time have great potential in practical
applications. The bactericidal ability of natural minerals mainly depends on the photo-
catalytic reaction. The metal oxides contained in minerals are semiconductors and thus
have photocatalytic capabilities. Typically, a naturally occurring ilmenite (FeTiO3) was
successfully synthesized to serve as an efficient photocatalyst. The result suggested that it
had bacteriostatic properties with 6 log10 CFU/mL E. coli under visible light irradiation for
30 min. As is shown in Figure 2A, the high bactericidal effect was attributed to ≡Fe(II) of il-
menite promoted persulfate activation vice and the accelerated capture of photo-generated
electrons by persulfate versa to collectively generate more radicals for E. coli inactivation
in the ilmenite/persulfate/visible light process and the improved photocatalytic activity
for visible light owing to natural minerals enriched in transition metals activating the
persulfate system [32]. By the combined utilization of persulfate (PS) and visible light (Vis)
irradiation, the ilmenite/PS/Vis process is demonstrated by the result that the bactericidal
efficiency increased fourfold than pristine (Figure 2B). In addition, a novel magnetic natural
pyrrhotite (Fe2O3–FeS2) mineral photocatalyst modified through thermal treatment was
found to exhibit a remarkably enhanced bactericidal activity. As is observed in Figure 2C–E,
the SEM showed that the bacterial cells are more vulnerable to powerful ROS [40]. Sim-
ilarly, it is demonstrated that natural wolframite with a narrow band gap can generate
electrons and holes under visible light to get involved in inactivating E. coli K-12 [18].
Besides, micrometer-scale ZnO/ZnFe2O4 coupled photocatalyst also exhibited excellent
100% lethality of E. coli under visible light irradiation [38]. These findings indicate that
natural mineral materials have strong bactericidal potential, and the bactericidal potential
is mainly attributed to the visible light response of transition metal oxides contained in
natural minerals.
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3.1.2. Nitrogen Oxide Removal

NO is one of the main pollutants that not only trigger disease but also cause great
damage to the natural environment and our daily life. However, traditional de-nitration
processes have high requirements for reaction conditions, such as selective catalytic re-
duction, which limits the application of these methods in real-life situations with low
NO concentration [70]. Therefore, removing NO via photocatalytic material is of great
significance [71]. Natural mineral, as a low-cost and available material, has been expected
to be applied to NO removal. It has been proved that natural mineral materials can degrade
nitrogen oxides through the photocatalysis process.

Interestingly, as is shown in Figure 3A, Qingxin Ma and co-workers found that min-
eral dust has a significant influence on the nitrogen oxides in the atmosphere. The result
suggested that it is worthy of further study between mineral dust and the NOX trans-
formation [72]. Hence, it is expected to study the effect of natural mineral materials on
photocatalytic removal of NO, so as to design high-quality mineral photocatalysts for NO
removal. The Sr ion in celestite (SrSO4) contains empty orbitals, which help the photocata-
lyst to absorb more oxygen by coordination bonds [41]. Hence, the combination of celestite
(SrSO4) and photocatalyst may produce more reactive oxygen species. Combining illite
particles (SiO2, Al2O3) with photocatalysis has a similar property. The Si and AI of illite
particles (SiO2, Al2O3) are able to bridge the N in g-C3N4 to form the empty 3p orbital with
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the coordination bond [73]. The result showed that the removal rate of modified material
(0.18 min−1) was 1.8 and 3.0 times higher than the pristine. In addition, perovskite (CaTiO3),
with the appropriate band structure, has gained increasing attention in photocatalysis. It
must be stressed in Figure 3B that CaTiO3 can serve as support to provide more active sites
for the N-CQDs, which is beneficial for exciting electron and hole pairs [74]. The result
showed that the removal of gaseous NO removal and the selectivity of NO2 have been
demonstrated much better than before (Figure 3C). Moreover, some silicate minerals can
also act as support, which can assist the photocatalyst to remove NO. For instance, the
addition of attapulgite (Mg5Si8O20(OH)2(OH2)4·4H2O) can not only uniformly disperse
the composite catalyst to activate active sites but also absorb the NOx to react with the
active sites in order to produce the final products of NO3

−. The result showed that the
utilization of natural minerals in air purification is helpful for catalysis to produce some
active species with strong oxidation capability, but also absorb the target to react with those
active species.
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3.2. Water Purification by Advanced Oxidation Process

Advanced oxidation processes (AOP) such as the Fenton reaction and persulfate
activation have been widely used in environmental remediation such as organic pollutants
degradation due to the production of ROS such as •OH and •SO4

−.
It has been proved that the Fenton reaction can produce •OH reactive oxygen species

in aqueous solution to degrade pollutants. Some scholars have studied the performance
and mechanism of the removal of pollutants from water by the Fenton process, which uses
natural minerals as catalysts. Fe2+ plays a significant role in the Fenton reaction process, and
the electron transfer of Fe2+/Fe3+ can catalyze the decomposition of hydrogen peroxide to
produce •OH [75]. Therefore, it is expected to consider using the Fenton reaction of natural
minerals to remove pollutants in water remediation, such as organic matter and heavy
metals. In addition, some clay mineral has been proved to assist Fenton catalyst to degrade
organic matter [76]. Therefore, the utilization of clay or iron oxide minerals as catalysts
for the Fenton reaction is a promising alternative with great potential for environmental
remediation [77].

3.2.1. Degradation of Organic Pollutants by Fenton Catalysis

It has been observed that natural minerals have the ability to degrade organic matter,
which is expected to play a great role in environmental water remediation. In the Fenton
system with goethite (α-FeOOH) as an iron source, a large number of hydroxyl radicals
were generated, resulting in the degradation of bisphenol A [78]. The main principle of
natural mineral removal of organic pollutants in water is to use an advanced oxidation
process. Some natural minerals containing iron can activate hydrogen peroxide to produce
Fenton or Fenton-like reactions. As is shown in Figure 4A, with the addition of NH2OH,
goethite can form a surface Fenton reaction and activate H2O2 to produce more •OH [3].
The result showed this surface Fenton system is able to degrade various organic pollutants,
which has great practical application value in mineral remediation of the environment.
Some scholars have compared the removal effect of imidacloprid by different natural
iron minerals and zero-valent metals as Fenton catalysts, such as pyrite (FeS2), ilmenite
(FeTiO3), vanadium titano-magnetite, zero-valent iron, and zero-valent copper [79]. The
result revealed that the natural pyrite showed a high removal rate and stability, which
was considered to be a promising Fenton catalyst. Similarly, it has been observed that
natural pyrite can activate H2O2 to produce heterogeneous Fenton reactions to degrade
tetracycline [29]. As is shown in Figure 4B, iron divalent is formed on the surface of pyrite
and the main reactive oxygen species are •OH in the pyrite/H2O2 system. Moreover, the
oxidation efficiency of tetracycline exceeds 85%. In addition, some metal oxides in natural
minerals can activate persulfate to produce more reactive molecules to degrade pollutants.
Some scholars synthesized a new type of pyrite nanosheet by the hydrothermal method.
This pyrite nanosheet is oriented to form clusters of hexapo-nanosheets, which show an
excellent ability to adsorb and degrade ciprofloxacin [80]. The result from Figure 4C
reveals that the efficient Fe(III)/Fe(II) transformation has greatly promoted the activation
of persulfate, simultaneous releasing more SO4•− and •OH. Therefore, it can be concluded
that the oxidation of refractory pollutants is mainly catalyzed by Fe(II) on the mineral
surface. Surface Fe(II) reacts with H2O2 to produce more reactive oxygen species such as
hydroxyl radicals [81]. Besides, some clay minerals can be used as support to provide more
active sites for the catalyst. It has been observed that clinoptilolite (SiO2, Al2O3, CaO),
montmorillonite (Al2O3, MgO, SiO2), and kaolinite (Al2O3, SiO2) all have the ability to
increase specific surface area, enhancing the performance to remove organic matters in
water remediation.
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3.2.2. Oxidation of As(III) by Fenton Catalysis

Arsenic contamination in natural water has posed a great threat to millions of people
in many regions of the world. Studies have found that some natural minerals can release
iron minerals that can be used to oxidize As(III) in water by Fenton catalytic reaction. For
instance, it has been observed that some sulfide minerals such as CuFeS2 and FeS2 have
the capability of activating H2O2 [27]. As is shown in Figure 4D, the oxidation of Fe2+

released from pyrite contributed much to the generation of •OH, •O2
−, which is beneficial

to remove As(III). The reactive oxygen species (ROS) effectively promote As(III) oxidation
and adsorption on the pyrite surface [30]. Above all, natural minerals are a promising
material to participate in the redox reaction to reduce the toxicity of the metals or nonmetals
in wastewater.

3.2.3. Water Purification by Persulfate Activation

Some natural minerals are abundant in transition metals (oxides) such as iron, man-
ganese, and copper, which are generally used for the chemical activation of persulfate (PS)
to produce powerful ROS of •SO4

− [3]. Removal of pollutants by persulfate oxidation
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is another AOP. The use of metals to activate persulfate is a common method with the
property of low energy consumption and high efficiency.

Nanoscale zerovalent iron, iron oxides, and pyrite (FeS2), are promising candidates
for activating PS/PMS in environmental remediation [29]. Xiangwei Zhang and co-
workers first utilized natural illite(SiO2, AI2O3) micro-sheets to activate peroxy-mono-
sulfate (PMS) [82]. These elements and their oxides can donate electrons to activate
PS molecules due to their variable chemical states and empty orbitals. As is shown in
Figure 5A, Tianming Cai and co-workers investigated that the addition of Fe mineral could
effectively accelerate the redox cycle of Fe(III)↔ Fe(II) to produce ROS, contributing to im-
proving the activation of peroxydisulfate(PDS) [83]. In addition, some physical approaches
(radiation, heat, and sonication) also can be adopted to promote the degradation of organic
pollutants via direct PS activation or facilitating Fe(III)/Fe(II) conversion. For instance,
Fe(II) in ilmenite promotes the activation of PS and generates more free radicals to inacti-
vate Escherichia coli under visible light irradiation [32]. Besides, as is shown in Figure 5B,
natural chalcopyrite (CuFeS2, NCP) has been investigated to activate peroxisulfate (PDS),
which is able to simultaneously degrade the organic pollutants Rhodamine B (RhB) and
reduce hexavalent chromium (Cr (VI)) [27]. Similarly, natural chalcopyrite is considered
for use in wastewater remediation. It is observed in Figure 5C that the addition of natural
chalcopyrite significantly activated the PDS system and produce massive free radicals to
improve the degradation efficiency [28].
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3.3. Removal of Heavy Metals and Volatile Organic Compounds (VOCs) by Adsorption

Some clay minerals have bidimensional structures and abundant surface active groups,
which can be defined as alternative adsorbents [84]. Therefore, it can be considered to use
natural minerals for environmental remediation, such as soil restoration and air purification.

3.3.1. Adsorption of Heavy Metals

Studies have shown that natural minerals have been proven for soil remediation. For
instance, zeolite (A(x/q)[(AlO2)x(SiO2)y]·n(H2O)), with the microporous aluminosilicate
frameworks, has the ability of ion exchange to absorb containments. It can be clearly
observed in Figure 6A that the ion-exchange capacity and hydrophilicity of Si/Al can be
significantly affected by adjusting Si/Al from 1 to infinity [50]. On this basis, Cheng-yu
Chen and co-workers combined nano ferric oxide with zeolite to adsorb cadmium from
wastewater [85]. In addition, adjusting the interlayer space and the porosity of the clay
minerals through heating treatment can be adopted as an effective measure to enhance its
absorption. Kexin Guo and co-workers used a natural clay palygorskite (Si/SiOx) to serve
as a highly regenerable and efficient phosphate scavenger. The result disclosed that the
co-calcination palygorskite (Pal) and La-based nanoparticles lead to the formation of Al2O3,
Fe2O3, and MgO nanoparticles acting as new sites for phosphate adsorption, exhibiting
excellent regeneration performance with high removal capacity [54]. As is shown in
Figure 6B, it has been found that some clay minerals have the ability to adsorb heavy metals
in soil. This is due to the excellent adsorption capacity of silicate clay minerals with a large
specific surface area and porous structure. In conclusion, it is worth mentioning that the
larger specific surface area and pore volume of natural minerals can provide more reaction
sites, so the composites have better adsorption activity than pristine. Furthermore, synthetic
minerals are expected to be promising functional adsorbents in environmental remediation.
Some scholars have turned waste into wealth. They utilize some “waste”, such as concrete
and slag, to synthesize novel self-assembly adsorption materials (Figure 6C) [25].

Besides, it must be emphasized that the utilization of natural minerals is able to reach
in situ immobilization, is non-disruptive, and cost-effective. For instance, natural sepiolite
(Si12Mg8O30(OH)4(OH2)48H2O) has a significant immobilization effect for heavy metals
in soil. In addition, it has been observed that the hierarchical pore architecture of some
clay minerals can selectively remove heavy metal ions in soil [50]. The discussion above
proves that natural minerals can be used in soil remediation. Furthermore, Chunjie Yan
and co-workers first studied that moderate thermal activation can improve the adsorption
performance of sepiolite [86–88]. The result disclosed that thermal activation can tune the
surface charge of sepiolite and generate more adsorption active sites. This finding can
provide a new reference for the modification of other natural minerals.
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3.3.2. Volatile Organic Compounds (VOCs) Adsorption

VOCs pollutants are carbon-containing organic chemicals from a wide range of sources,
including outdoor sources (such as chemical production, automobile exhaust, and so
on). Studies show that natural minerals could be attractive candidate adsorbents [4]. It
has been proven that adjusting the proportion of oxides to control the morphology of
minerals can be regarded as an effective means to improve mineral properties. For instance,
some researchers synthesized zeolite with adjustable morphology and structure, which
showed good adsorption performance of VOCs. On the other hand, it is also an excellent
modification strategy to combine natural minerals with other mesoporous materials to
construct fresh structures. The research revealed that the optimal composite of zeolite and
silica showed significant VOCs adsorption performance.
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4. Conclusions

Natural minerals are widely distributed on earth, and some of them have stable chem-
ical structures with excellent electrochemical performance, which therefore are promising
candidates used for environmental remediation. This review summarized the applications
of natural minerals in water and air purification such as sterilization, NO and VOCs oxida-
tion, and heavy metals removal using the techniques of photocatalysis, advanced oxidation
(Fenton catalysis and persulfate activation), and adsorption.

Natural mineral materials have unique advantages of abundant resources, low price,
and environmentally benign. However, they suffer from low efficiency from the viewpoint
of practical applications. In addition, the complex structure of natural mineral materials
makes it difficult to determine the active component. In future research, the following
problems related to natural mineral materials deserve our attention:

(1) Some mineral materials have a low content of transition metal compounds. In
order to achieve the same catalytic effect as the artificial metal catalyst, the natural mineral
should be modified. For example, impregnation and roasting are considered to further
improve the pore structure of natural mineral materials and increase the active sites on
the surface of catalysts, so as to strengthen the activity of mineral materials. Therefore,
significant attention should be attached to the modification strategy of natural minerals,
which is of great importance not only to the field of environmental remediation, but also to
the industrialization application of catalysts, and the comprehensive utilization level of
mineral resources.

(2) In practical applications, it is considered that auxiliary means are used to enhance
the properties of natural mineral materials. For instance, in terms of photocatalytic steril-
ization of natural mineral materials, there may exist some problems, such as the gradual
evolution of bacterial resistance to ROS, the toxicity of high concentration of ROS to normal
tissues and cells, the biological safety of photocatalytic materials, and the poor penetration
ability of visible light or even near-infrared light to deep tissue infection. Therefore, it can
be combined with photothermal therapy, microwave-assisted therapy, ultrasound therapy,
and other strategies to improve the property.

(3) Natural mineral materials provide new solutions for enhanced environmental
remediation. However, no matter pristine mineral materials or modified natural mineral
materials, the complex characteristics of its components make obstacles to the practical ap-
plication in the field of environmental remediation. In future developments, it is necessary
to study the active components, such as using density functional theory calculations to
determine the active surface.

(4) Natural mineral catalysts can significantly improve the ability of Fenton catalysis
and persulfate oxidation to remove pollutants, but in practical applications, appropriate
mineral materials should be selected according to the property of pollutants.

(5) The advantage of natural minerals is that they are conducive to reuse after recovery.
However, recycling experiments have found that the catalytic activity of natural minerals
decreases after limited realization. Therefore, it is necessary to conduct in-depth research
on the active components of natural minerals to prevent the loss of active components of
natural mineral catalysts and improve the reuse ability.
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